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A B S T R A C T

Recent studies assessing agricultural policies, including the EU’s Agri-Environment Scheme, have shown that
these have been successful in attaining some environmental goals. In Finland, however, the economic situation
of farms has dramatically fallen and hence, the actions do not result in social acceptability. Sustainable in-
tensification is a means to combine the three dimensions of sustainability: environmental, economic and social.
Here we introduce a novel land use optimization and planning tool for the sustainable intensification of high-
latitude agricultural systems. The main rationale for the development of the tool was to achieve a systematic and
comprehensive conception for land allocation across Finland, where field parcels vary substantially in their
conditions. The developed tool has a three-step scoring system based on seven physical characteristics (parcel
size, shape, slope, distance to the farm center and waterways, soil type and logistic advantages) and the pro-
ductivity of field parcels. The productivity estimates are based on vegetation indices derived from optical sa-
tellite data. The tool allocates virtually all > 1 million field parcels in Finland either to sustainable in-
tensification, extensification or afforestation. The tool is dynamic in the sense that its boundary values for land
allocation can be fixed according to changes in social targets and supporting policies. Additionally, it can be
applied year after year by acknowledging new available data, e.g., on vegetation indices and field parcel re-
arrangements between farms. Furthermore, it can be applied to all farm types and across Finland. It is a tool for
land use planning, implementation and monitoring, but its thorough implementation calls for further devel-
opment of policy instruments, which are currently more supportive towards land sharing than land sparing
activities.

1. Introduction

Agriculture in Finland has swerved off the road of sustainable de-
velopment when considering all the dimensions of sustainability, i.e.,
the economic and social dimensions in addition to environmental sus-
tainability (Peltonen-Sainio et al., 2015b, 2016a). Undesirable shifts in
the socio-economic conditions in high-latitude agriculture have been
driven by changes in policy, markets and prices since Finland joined
European Union in 1995. The minimization of costs has been the pri-
mary response of the farmers trying to navigate the emerging economic
challenges caused by reductions in cereal prices with concomitant in-
creases in fertilizer, energy and labour costs (Niemi and Ahlstedt,
2014). The use of inputs and resources has not only declined per se but

their use has been “averaged” across agricultural land without suffi-
ciently considering differences between field parcels in their physical
characteristics, productivity and responsiveness to input use. Such an
operational model does a disservice to sustainability when it ignores the
need for more inputs of highly productive, responsive fields parcels,
while it often overdoses the allocation of inputs to poorly performing
fields (Peltonen-Sainio et al., 2015b).

The planning and management of agricultural systems ‒ with many
expectations from both producer and society ‒ are complex and de-
pendent on biological and socio-economic conditions in a region
(Dogliotti et al., 2014b). Acknowledging such conditions is crucial
when developing tools to support farmers’ decision-making. Recently, a
number of design-support tools, models and methodologies, e.g. for
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multi-stage, multi-objective and multi-criteria optimization of land use
have been developed to meet various aims. For example, land use
planning tools and models support the optimization of: a) crop se-
quencing and allocation to maximize farmers’ profits while fulfilling the
basic requirements set to enhance biodiversity and preserve soil quality
(Galán-Martín et al., 2015; Capitanescu et al., 2017); b) the allocation
of land and water resources to maximize productivity and minimize soil
erosion and other environmental problems (Gao et al., 2010; Galán-
Martín et al., 2017; Singh, 2017); c) planning land use changes by ac-
knowledging their impacts and trade-offs with nature conservation and
ecosystem services (Groot et al., 2007; Kennedy et al., 2016; Groot
et al., 2018); and d) land use and management to foster adaptation to
climate change (Klein et al., 2013). Already quite modest modifications
to farming practices may considerably increase farm performance when
measured with various indicators (Groot et al., 2012). As climatic and
socio-economic conditions steer land use planning (Dogliotti et al.,
2014a), developed tools often acknowledge the conditions of a certain
region, though the method as such may also be applicable elsewhere.
Success in developing a tool and implementing it to meet the real-world
challenges related to land use planning and optimization (Seppelt et al.,
2013) call for a participatory approach and the entrance of farmers,
advisers, policy makers and other relevant stakeholders into the plan-
ning and development processes (Le Gal et al., 2011; Kaim et al., 2018),
as well as their participation in reviewing the outcomes (Cotter et al.,
2014).

Recent studies assessing the impacts of EU policies, especially the
Agri-Environment Scheme (AES), have revealed declining trends in
yields, quality and productivity in Finnish agriculture (Peltonen-Sainio
et al., 2015b, 2016a). Therefore, major changes are needed to combine
environmental, economic and social sustainability in the future
(Soussana et al., 2012). Sustainable intensification is the means to
combine all these three dimensions of sustainability (Gadanakis et al.,
2015; Bretagnolle et al., 2018). Land sparing as a measure of sustain-
able intensification actions usually means further enhancement of
yields in intensive arable landscapes and allows the removal of some
land from agricultural production and sparing it for nature. Land
sharing, on the other hand, refers to large-scale, low-intensive land use
(Law and Wilson, 2015) and hence, only negligible agricultural land
areas remain untouched. Our land use optimization approach follows
the basic idea of land sparing, whereas the current agriculture in Fin-
land resembles the land sharing course.

We introduce a land use optimization tool, based on an a priori
method (Kaim et al., 2018), meaning that the used algorithms are lar-
gely based on an outcome of a process where farmers’ decision-making
behaviour was “phenotyped” and applied (Peltonen-Sainio et al., 2017,
2018). Such a tool is necessary because decision making is a challen-
ging process not least due to the high number of interacting and
sometimes conflicting factors and conditions that need to be acknowl-
edged and prioritized, and farmers do not have sufficient and exact
information for their decision making. Therefore, we developed a tool
to examine large-scale land use changes as a part of the sustainable
intensification of agricultural systems in Finland. This tool enables
dynamic land use changes over time, i.e., shifts from extensification to
intensification and vice versa. The tool also indicates the land area that
should be removed from agricultural production for afforestation,
which again is an irreversible decision for a farmer. Finland is well
justified as a testbed for such a national-scale, novel scheme due to the
high variability in field parcel characteristics, as well as variable
growing conditions, yield and quality of harvested crops, as well as the
environmental vulnerability depending on region (Peltonen-Sainio and
Jauhiainen, 2014; Peltonen-Sainio et al., 2016b). Furthermore, Finnish
crop rotations suffer from cereal and even cereal species monocultures
and thereby, a lack of diversity (Peltonen-Sainio et al., 2017). Land use
changes implemented by utilizing the land use optimization tool in-
troduced here may facilitate improvements not only on a farm scale but
also on a landscape scale and may enhance biodiversity (Piha et al.,

2007; Herzon et al., 2011; Ekroos et al., 2013), reduce greenhouse gas
(GHG) emissions especially as peatlands are targeted for afforestation
(Regina et al., 2016), and alleviate the risk of nutrient leaching
(Puustinen et al., 2010), which all need to be monitored in the next
phase.

The development of the land use optimization tool called for a de-
tailed understanding of the variation in productivity and physical
characteristics on the field parcel scale, as these conditions are im-
portant drivers for land allocation and land use changes. Furthermore,
to achieve systematic assessment, scoring, implementation and mon-
itoring of future land use changes, differences depending on the farm
type and farm size need to be acknowledged. The aim of this study was
to develop a land use optimization tool, which considers 1) numerous
physical field parcel characteristics that are critical for land allocation,
and furthermore, 2) combine this information with optical spectrum
satellite data based on Normalized Difference Vegetation Index (NDVI)
-values to enable the assessment of productivity differences between
field parcels. The ultimate aim is to facilitate the future sustainable
intensification of high-latitude agricultural systems by classifying field
parcels as either sustainably intensified, extensified or afforested fields.
Sustainably intensified fields form the main field capital of a farm and
are primarily used for food production, while extensified fields are al-
located for greening purposes (green fallow, nature managed fields,
game fields etc.) to increase landscape diversity and recover from soil
compaction or any other imperfections. Afforested fields again have too
many serious defects and therefore, lack any future role for food se-
curity.

2. Materials and methods

The land use optimization tool was developed to include three
scoring rounds that provide traffic lights in each step of the scoring
process. The first scoring round is based on the general physical char-
acteristics of field parcels and the second round is based on productivity
estimations that are calibrated using optical satellite NDVI-values es-
timated for each parcel and also on the proximity to waterways. The
final third scoring round again focusses on the soil type, especially on
organic peat soils, and on the logistic advantages for field operations.
Economic aspects were indirectly included into the tool by considering
e.g., field size, shape and productivity, distance to farm center, and also
logistic advantages in the final stage of field parcel disposition, while
environmental aspects were included by acknowledging field slope,
proximity to waterways and soil type.

2.1. General physical characteristics of field parcels used for the 1st scoring
round

Data from the Agency of Rural Affairs (Mavi) from 2011 to 2015
was used to assess the physical field parcel characteristics, the size of
the field parcel (ha), the distance of a field parcel from the farm centre
(m) divided by the farm size in hectares and the field shape and slope
(%). During the first step of the land use allocation process, all four
physical characteristics were proportioned to their medians and
thereafter, additional characteristic-specific coefficients were used: the
coefficient was dependent on how relevant the characteristic was to the
farmers’ land allocation decision (Peltonen-Sainio et al., 2018). A
multinomial logistic regression analysis was carried out to model the
probability of the allocation of field parcels for different crops. This
analysis was based on 64,744 field parcels: if the probability was low
for the allocation of the field parcel to non-productive greening crops,
the physical characteristics of the field parcel were considered to be
good and vice versa. The general form of the model was: log(p/(1-p)) =
μ + xβ. Because the relationship between log(p/(1-p)) and different
physical field parcel characteristics x=(x1 x2 x3 x4) was not linear,
different characteristics were categorized in the original analysis
(Peltonen-Sainio et al., 2018). To achieve continuous scoring, a broken-
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line approximation was carried out for estimated values of β:
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where xi4 is the shape of the ith field parcel [= the area of field / (the
length of the boundaries of the field / 4)2; i.e., the shape is 1.00 for a
square field]. The maximum value of the shape is 4/π=1.27324.

According to the original logistic regression analysis, μ=0.426.
Additionally, from the general form of the logistic regression equation,
p= exp(μ + xβ)/(1+exp(μ + xβ)). Next, p was used as the 1st scoring
item and all the scores were between 0 and 1. If the 1st score was
≥0.55 then the field was defined as “green” (sustainable intensifica-
tion), if again 0.40≤ 1st score< 0.55 the field was defined as “yellow”
(uncertain whether sustainably intensified or extensified), 0.30≤ 1st
score< 0.40 as “red” (extensification) and 0.00≤ 1st score< 0.30 as
“dark red” (afforestation).

2.2. Productivity and proximity to waterways used for the 2nd scoring
round

2.2.1. Satellite imagery and derived NDVI-values
After the first scoring according to the general physical character-

istics of the field parcels, the production capacity was assessed by using
satellite data for different crops from critical growth stages to de-
termine the total biomass and yield. Scoring was done on three pre-
selected dates between the 1st of July and 10th of August. Dates were
selected separately for each sub-area to minimize the cloud cover over
the study area. For grasslands, three dates were selected between the
10th of May and 10th of June. In Finland, the first cut is typically done
between the 15th and 25th of June and the NDVI-values for perennial
grasses are mutually comparable only before that. The different crops
included in the assessment were spring barley (Hordeum vulgare L.), oats
(Avena sativa L.) and wheat (Triticum aestivum L.), spring rapeseed (both
Brassica rapa L. and B. napus L.), winter wheat and rye (Secale cereale
L.), peas (Pisum sativum L.) and faba beans (Vicia faba L.), as well as
perennial grasslands.

NDVI was used to characterize the differences in the productivity of
the field parcels. NDVI is a numerical band combination ratio of RED
and Near Infrared (NIR) reflectance extracted from optical satellite
imagery. The calibrated and scaled NDVI-values for different agri-
cultural crops indicate photosynthetic activity in different vegetative
and generative development stages. NDVI estimation has been widely
used previously in Earth remote sensing campaigns to monitor large
area changes in biomass and crop yields in EU countries (Gobron et al.,
2006).

Data from two satellite systems was used in this study. From 2011
until 2015 data was provided by NASA through the Landsat 7 and 8
missions. For 2016 and 2017 data from ESA’s Sentinel-2 mission was
used (Drusch et al., 2012). The Landsat data products were downloaded
from the service of the U.S. Geological Survey [https://earthexplorer.

usgs.gov/]. In regards to the NDVI values, both Landsat and Sentinel-2
provide similar multispectral image bands in the optical and near-in-
frared region. Sentinel-2 has slightly better spatial resolution, which
makes it easier to use in mapping NDVI variations within parcels,
however, it does not affect the parcel averaged NDVI values.

In the calculation of the parcel specific NDVI attributes, the Land
Parcel Identification System (LPIS) was used. LPIS is a digitized agri-
cultural land parcel database maintained by the Finnish agency for
rural affairs (Mavi) and it contains over 1.2 million field parcels in
Finland. The derivation of averaged NDVI values per field parcel was
done with a similar processing chain to the atmospherically corrected
Landsat and Sentinel-2 data products. The Landsat data was processed
manually using Esri ArcGIS and QuantumGIS (Geographical
Information System) software. The Sentinel-2 data was processed au-
tomatically by utilizing the Earth Observation processing toolkit de-
veloped at FGI (for more details see (Wittke et al., 2019)). Only cloud-
masked products with less than 30% cloud cover for the Landsat data
(2011–2015) and less than 99% cloud cover per tile for the Sentinel-2
data (2016–2017) during the growing season over Finland were used.

First, geo-corrected NDVI raster images were calculated using the
red and NIR band values (Table 1). The NDVI values were then inter-
sected with the LPIS land parcels of the 20 pilot farms (and cloud-
masked for Sentinel-2). The mean NDVI values within the parcels were
stored in a standard csv file format for further analysis. Real data on
specific crop rotations as well as soil data for different crops was also
added to the file. Then, the NDVI values calculated from the satellite
images were phenologically reclassified using the SatPhenClass algo-
rithm (Laurila et al., 2010a, b). The phenological phases of phenB and
phenC correspond to the vegetative and generative developmental
phases of the studied crops, i.e. phases that are especially critical for
determining productivity.

For this study, the satellite data sources were not combined, but
used individually in the selected time windows. Even though data from
separate satellite systems was used in this study, differences in the
ground resolution (30m for Landsat and 10m for Sentinel-2) and band
wavelength intervals did not show a detectable bias in the extracted
NDVI values per parcel in visual inspection. This was due to the aver-
aging over the parcels and high band overlap of the bands required for
NDVI calculation. Therefore, the satellite data was considered to be
sufficiently accurate for the analysis considering the variations within
class present in other data sources. Comparisons of different field par-
cels within same area were made separately for all years. This finally
eliminates possible bias caused by two different satellites.

2.2.2. Estimating productivity gap and acknowledging proximity to
waterways

By following the procedure described above more than 1,300,000
NDVI-values were compiled. The Landsat data covered several regions
of Finland, while the Sentinel 2 data was from Southwest Finland. The
data was then used to analyze the productivity of the field parcels.
Finland was divided into 20 regions because there were clear differ-
ences between NDVI-values of different regions. The productivity gap

Table 1
Satellite platforms whose data were used in NDVI calculations, the used spectral
bands and their spatial resolution on ground.

Satellite
platform

Year Band
number

Band central
wavelength
(nm)

Bandwidth
(nm)

Ground
resolution
(m)

Landsat 7 2011 –
2013

3 (red) 660.0 60 30
4 (NIR) 835.0 130 30

Landsat 8 2014 –
2015

4 (red) 654.5 37 30
5 (NIR) 865.0 28 30

Sentinel-2 2016 –
2017

4 (red) 664.6 38 10
8 (NIR) 832.8 145 10
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was calculated as:
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Where xi is the NDVI-value for the ith field parcel, g90, g50 and g25 are
90th, 50th and 25th percentiles of the NDVI-distribution for the crop
cultivated at the ith field parcel. Parameters a and b are regression
coefficients so that the gap is 0 and 0.30 at g90 and g50, respectively. In
the same way, c and d are regression coefficients so that the gap is 0.30
and 0.55 at g50 and g25, respectively. This means that an NDVI-value
higher than the 90th percentile had no NDVI-gap. If an NDVI-value was
smaller than the 90th percentile the gap increases linearly until the
NDVI reached the median (g50) where the gap was 0.30. If an NDVI-
value was smaller than the median, the gap increased with a slope re-
sulting in a gap of 0.55 and then the NDVI-value reached the lowest
quarter. These gap-values were obtained from the official yield statistics
of Luke. Compared to the yield level at the 90th percentile, the yield loss
was 30% and 55% for farms located in the median and lowest quarter of
the yield level distribution. The definition of the gap was needed be-
cause variation between field parcels was smaller in both low and high
NDVI-values rather than values which were close to 0.50. Without this
definition, some crops or geographical areas would have had higher
gaps than others without any true rationale. Furthermore, the NDVI-
values from Landsat were in general smaller than the corresponding
values from Sentinel. This could be caused by differences in growing
seasons as well as different algorithms used for the satellite images. To
avoid possible bias, calculations of the gap based on distribution of the
NDVI-values (25th, 50th and 90th percentiles) from the same year, area
and crop were carried out. This eliminates all possible bias caused by
systematic differences in NDVI-values.

Both the first scoring round and the scoring of the productivity gap
(in the second scoring round) were always between 0 and 1. Both scores
were then combined. Thereafter, the proximity to waterways was
considered and borderline fields (yellow, but close to red) were allo-
cated for extensification.

2.3. Soil type and logistic advantages of field parcels used for the 3rd
scoring round

In the case of an organic peat soil type, a field parcel with a red light
according to the second stage scoring round was determined as dark red
in the third scoring round. This means that the land would be directed
to afforestation because it failed to hold sufficient value for allocation
for extensification as it evidently lacks any future potential for food
security. If the field parcel got a yellow light in the second scoring
round and its soil type was peat, the parcel was allocated for ex-
tensification instead of intensification. On the other hand, especially if
the logistic advantages were found to be high for a field parcel with a
yellow light from the second scoring round, and the soil type was other
than organic peat, the field parcel was allocated for intensification in-
stead of extensification even though it had some disadvantages. In such
cases, it was apparent that virtually all the other nearby field parcels
were allocated for intensification and hence, discarding one field parcel
from a uniform set of intensified parcels was not considered to be ra-
tional.

The scoring process was first developed to be moderate with com-
posed boundary values for afforestation and extensification. In order to
test the dynamism of the developed tool, we also shifted boundary
values to consider a potential situation with more ambitious target
setting to be supported by novel policy instruments. Impacts of mod-
erate and ambitious target setting on land allocation depending on farm
size, farm type and region were evaluated.

2.4. Benchmarking the outcomes of land use optimization tool

The 857 field parcels of the 20 pilot farms were used as validation
data for the tool. In addition to this, we benchmarked the outcomes of
the land use optimization tool with the farmers’ perspectives on the use
of the land in pilot farms. Semi-structured interviews were carried out
with all 20 pilot farmers at their own farms during spring 2016. The
farms were in four areas of Finland and they represented the primary
farm types in the area. Interviews lasted around three hours per farm
and also other issues besides land use optimization were discussed. Pilot
farmers were interviewed without informing the farmers of the out-
comes of the land use optimization process. Each farmer had a map of
their fields available (either their own fields or that they leased), and
they shared their views and experiences on the performance of different
field parcels. The views of the farmers were recorded and marked into
the field parcel maps for further analysis. Each field was categorized
afterwards as: a) evidently the best, however, often meaning most
productive fields, but also often having other advantageous character-
istics (n= 103), b) underperforming, but with some identified means
that might improve their condition (n= 92) and c) poorly performing
fields (n=85). These farmer’s scorings were compared to the outcomes
of the land use optimization tool after the first and the second round
scorings.

We also benchmarked how the outcomes of the land use optimiza-
tion tool performed depending on the farm size, farm type and region.
This benchmarking was carried out both after the first and the third
scoring rounds. The distribution of fields in different traffic light cate-
gories (in the first round) and land uses (intensification, extensification,
afforested) were compared with farm sizes and farm types, and the
interaction between them was examined using multinomial logistic
regression.

3. Results

The developed land use optimization tool was based on a three-step
categorization of field parcels according to eight field parcel char-
acteristics (Fig.1). The logic was to first assess the general field parcel
characteristics (size, distance from farm center, shape and slope) and to
weight each of them according to their importance for a farmer. The
impacts of field size and shape on scoring during the first round are
shown in Fig. 2. Field size had very strong and systematic impact on the
first round scoring. Fields larger than some nine hectares did not,
however, get higher scores anymore. If the field was larger than the
median size of 1.7 ha, only a low share of fields in the pilot farms was
scored as yellow and hardly any as red (extensified). If a small field
(< 1.7 ha) was allocated to intensification, it was close to the farm
center and also all the other general characteristics were very favorable.
Contrary to field size, field shape had only minor contribution to allo-
cation: shape with a very low value of 0.3 ranged quite similarly from
green to dark red as a field parcel with a value of 1.0 (Fig. 2).

In the second scoring round, NDVI-based productivity gap was in-
cluded in assessment. The scoring process was first developed to be
moderate (Fig. 3) with composed boundary values for afforestation and
extensification. If the productivity gap was higher than 50%, the field
parcel was never categorized are green. If the first round score was<
0.55, but the productivity gap was< 30%, the second round scoping
shifted the field parcel from yellow to green (Fig. 3). If again the score
was 0.30, but the productivity gap was< 30%, the parcel was re-
allocated from dark red to red pool. Proximity to waterway was con-
sidered after assessment of the productivity gap. If a field parcel was
next to the waterway and it was categorized as yellow but it was close
to the boundary line of red, it was reallocated to the red category in-
stead of yellow (see as orange in Fig. 3). A majority of the field parcels
were allocated to sustainable intensification when moderate target
setting was used (Table 2). In order to test the dynamism of the de-
veloped tool, boundary values were tightened for ambitious target
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setting. Thereby, a higher share of field parcels was allocated for ex-
tensification and afforestation at the expense of green and yellow field
pools (Table 2). If the field parcel was allocated to afforestation during
the second scoring round, it remained there also after the third round.
Similarly field parcels allocated to sustainable intensification remained
as green after the third round. If the parcel was allocated to ex-
tensification but its soil type was peat, it was reallocated to afforesta-
tion during the final scoring round. Similarly yellow field parcels with
peat soil were allocated to extensification. A red parcel was reallocated
to the green field pool, if all the other nearby fields were also cate-
gorized as green.

The outcome of the first scoring round, that was only based on
physical characteristics of the field parcels, indicated that land alloca-
tion was strongly dependent on farm size (one-way ANOVA,
P < 0.001). Less land was directed for the intensified field pool,
slightly more was assigned to extensified field pool and again equally to
the afforestation pool on small farms (< 30 ha) when compared to very
large farms (Table 2). Additionally, a significantly higher share of fields
was directed to the yellow pool (Fig. 1) on small farms than on other
farm sizes. The impact of the farm size tended to be similar for the first

and the third scoring rounds and this was also true for the different farm
types. It appeared that the small farms had a lower share of advanta-
geous (green) fields, but a high share of yellow and red fields but not
dark red coded fields. The share of field parcels allocated to afforesta-
tion (dark red) was actually the highest for the very large farms ac-
cording to both modest and ambitious target settings for the land use
changes (Table 2). Small farms were often specialized in horticulture or
horse and sheep production. Hence, farms with low competitiveness
and limited prerequisites for conventional production have specialized
into niche production. On the other hand, farms with the most favor-
able fields according to their physical properties were prime crop, pig
and poultry producing farms.

It appeared that also the interaction between region× farm
size× the farm type was significant (P < 0.001). For example, the
share of green coded fields declined for small farms compared to large
farms in cases where the farm was specialized in dairy production,
special crops or horticulture, in contrast to other farm types. When
comparing the first and the third scoring rounds in the case of the
ambitious target settings for land use changes (Table 2), on very large
farms (≥100 ha) virtually all the green coded fields remained in the

Fig. 1. Process chart with traffic lights indicating the three-step scoring system of the land use optimization tool according to which field parcels are allocated to
sustainable intensification (green), extensification (red) or afforestation (dark red). The borderline cases after the 1st and the 2nd scoring are shown in yellow.

Fig. 2. The impact of the size (left hand side)
and shape of field parcels (on the right) on
scoring in the first round depending on the
other parcel characteristics of 857 field parcels
of pilot-farms (blue dots). The parcel size has a
stronger impact than the field shape. The
median is shown with a vertical line (value
1.00 on the horizontal axis, corresponding
1.7 ha for field size) and the traffic lights are as
described in Fig. 1. The dashed line represents
the score as a function of the size or shape of
the field parcel when all other characteristics of
the field parcel remain unchanged.
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pool of sustainably intensified parcels. The share, however, slightly
declined for smaller farms. 33%, 26%, 25% and 24% of the fields that
had yellow light in the first scoring round turned red (extensified par-
cels) during the final scoring round for small, medium, large and very
large farms, respectively. Correspondingly, 17%, 16%, 15%, 15% of
small, medium, large and very large farms, respectively, shifted from
red to dark red (afforestation). Furthermore, fields given a yellow light
turned red very frequently on horticultural farms (32%), while this was
less often for poultry farms (21%), sheep and horse farms (22%) and pig
and cattle farms (23%). There was also a tendency for fields given a red
light to eventually turn green quite frequently on sheep farms (17%)
compared to other farm types (9–14%). Allocation of field parcels to
different categories varied depending on region (Fig. 4). A high share of
sustainably intensified fields were clustered in southern inland and
northern coastal regions, while again a high share of extensified and
afforested fields in south-western coastline as well as in inland region
and eastern part of the country.

Interviewed pilot farmers tended to rank their fields according to
productivity, i.e., at the expense of any other field characteristic. They
were able to characterize only 280 of the 857 field parcels. The median
for the second round scoring (considering both physical characteristics

and the productivity gap of each field parcel) was high (0.77) for the
fields that farmers ranked to be the best (Fig. 5). The median was 0.70
for the underperforming fields with identified means to improve con-
ditions and 0.62 for the most poorly performing fields.

4. Discussion

Sustainable intensification is a highly current topic for high-latitude
agricultural systems, as these areas have struggled with many economic
challenges and dissatisfaction of farmers during the last couple of
decades, since Finland joined the EU (Niemi and Ahlstedt, 2014). Fur-
thermore, policy measures such as those of the AES are again on the
agenda as Finland prepares for the next program reform after 2020.
When targeting full scale renovation such as sustainable intensification
of agricultural systems (Petersen and Snapp, 2015; Rockström et al.,
2017), one of the core challenges is that farmers are no longer aware of
the productivity differences between the field parcels. This results from
the long-term use of minimized inputs that ignore substantial differ-
ences in field characteristics. Highly variable weather, which is typical
for high-latitude conditions, further blurs the understanding of the
causal relationships for the expression of yields (Peltonen-Sainio et al.,

Fig. 3. The scoring system used to allocate field parcels depending on their physical characteristics (1st scoring round) and productivity (2nd scoring round with
assessment of the productivity gap; where 0=no productivity gap compared to the best 10% the fields, median= 0.35). On the left side is a case with a modest target
setting and on the right side there is another with an ambitious target setting. The black vertical lines indicate the boundary values for the 1st scoring round. The
orange colored area indicates fields that were coded yellow, but which are close to the red boundary values and therefore these are turned red if the fields are next to
waterways.

Table 2
Traffic lights indicating the share of land (% of field area) allocated to intensification (green), extensification (red) and afforestation (dark red) as well as the
borderline cases between intensification and extensification (yellow) according to the 1st scoring round for general physical characteristics of field parcels and the
final 3rd scoring round depending on farm size and farm type when the original modest target settings for land use changes were used (ambitious target settings in
parenthesis).

Farm The 1st scoring The final 3rd scoring

Green Yellow Red Dark red Green Red Dark red

Farm size:
< 30 ha 54.9 (37.7) 32.4 (44.2) 7.6 (16.4) 0.6 (1.7) 89.8 (64.4) 9.7 (32.4) 0.5 (3.2)
30‒59 ha 66.8 (42.8) 25.8 (38.4) 6.8 (17.1) 0.5 (1.8) 93.1 (74.3) 6.4 (23.1) 0.5 (2.6)
60‒99 ha 71.4 (44.8) 21.6 (34.8) 6.5 (18.2) 0.6 (2.3) 94.0 (75.6) 5.4 (21.5) 0.7 (2.9)
≥100 ha 76.0 (45.6) 17.3 (31.2) 6.1 (19.9) 0.6 (3.3) 92.6 (74.4) 6.5 (21.8) 1.0 (3.9)

Farm type:
Dairy 64.1 (40.7) 27.3 (37.7) 7.9 (18.9) 0.7 (2.7) 92.6 (74.7) 6.5 (22.0) 0.9 (3.4)
Pig 74.4 (48.2) 19.5 (33.4) 5.7 (16.6) 0.5 (1.9) 94.4 (78.2) 5.1 (19.1) 0.5 (2.7)
Poultry 75.5 (46.6) 19.0 (36.9) 5.1 (15.3) 0.4 (1.3) 95.4 (79.8) 4.3 (18.2) 0.4 (2.1)
Horse/Sheep 61.1 (32.5) 28.7 (42.0) 9.1 (21.5) 1.0 (4.0) 90.4 (70.8) 8.3 (24.6) 1.3 (4.6)
Cereal 72.3 (44.9) 21.5 (36.0) 5.7 (16.9) 0.5 (2.2) 92.8 (73.5) 6.5 (23.4) 0.7 (3.1)
Special crops 72.9 (39.0) 20.7 (38.3) 6.0 (20.2) 0.5 (2.5) 92.1 (70.8) 7.2 (25.8) 0.7 (3.4)
Horticulture 53.0 (26.5) 33.4 (42.9) 12.5 (27.6) 1.1 (3.0) 89.0 (62.5) 10.5 (32.5) 0.6 (5.0)
Others 61.3 (32.8) 30.0 (43.6) 7.9 (20.1) 0.8 (3.5) 88.8 (64.8) 9.9 (30.2) 1.3 (5.0)
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2016b), as does the high share of leased land (Pouta et al., 2012) be-
cause a farmer is less familiar with the conditions of leased land. This
study confirmed that there were indeed substantial differences between
field parcels in their physical characteristics and productivity, even
within a farm. This urges not only the development of a tool that fa-
cilitates farmers in their decision making but also its immediate im-
plementation. Many field characteristics are important drivers for land
allocation, but compromises are also needed (Myyrä and Pietola, 2002;
Peltonen-Sainio et al., 2017, 2018). The developed land use optimiza-
tion tool combines all the necessary information on the field parcel

scale, which is currently either lost, hidden or incomparable, to support
the farmer’s decision making regarding land allocation either for in-
tensification, extensification or afforestation.

4.1. Benchmarking scoring with farmers’ conceptions

The interviewed farmers were keen on the information provided by
the land use optimization tool, especially because the tool revealed
productivity differences between field parcels. When the scoring of the
land use optimization tool (Fig. 1) was compared to the outcome of
field categorizations carried out by the farmers (Fig. 5), it was evident
that the farmers faced challenges in their decision making when si-
multaneously trying to consider and value multiple field characteristics.
They often were drawn into comparing fields only according to their
yield and even in this case only by identifying the best and the worst
parcels. Furthermore, only 280 out of 857 field parcels were ranked by
farmers. In fact, this uncertainty or even inability to rank fields was one
of the main rationales for the development of the tool which aims to
achieve a systematic and comprehensive conception for land allocation
across Finland. According to interviews, the pilot farmers often highly
ranked fields that tended to be productive consistently without con-
sidering other field parcel characteristics, even though a high number
of other field characteristics also drive the decision making (Fig. 1) and
are also considered to be important for successful farming (Peltonen-
Sainio et al., 2018). Nonetheless, the median of the scores provided by
the tool was higher for fields that farmers ranked to be the best (Fig. 5).
This indicates that farmers were to some extent able to identify their
best field parcels, though the scores provided by the tool ranged from
poor (0.34) to very high (0.98). Furthermore, the pilot farmers told that

Fig. 4. Land allocated by the land use optimization tool to sustainable intensification (left) and extensification or afforestation (right) depending on the region in
Finland. Each square in the map equals 10× 10 square meter land area. Green square indicates that the share of sustainably intensified fields is ≥40%, light green
that it is< 40% in the left-hand map, while red color in the right-hand map indicates that the share of extensified and afforested fields is ≥25% and orange that it
is< 25%. Gray color indicates that there is less than 100 field parcels in the area and white that there is no fields at all.

Fig. 5. Categorization of the field parcels by the pilot farmers (a= the best,
b=underperforming with identified means to improve conditions, and
c= poorly performing fields) compared to the outcome of the 1st and the 2nd
round scorings of the land use optimization tool. The boxes indicate the lower
and upper quartile. The dot within the box is median. Whiskers indicate the
most extreme datapoints.
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they were very interested in gaining additional understanding about the
ranking of their fields according to simultaneous consideration of many
field parcel characteristics and whether their fields should be in-
tensified or extensified. Extensification per se did not cause much of-
fence to the pilot farmers when there were evident rationales for such
land use changes. In fact, the pilot farmers were keen on having a more
critical land use plan as an outcome of the optimization process, i.e., a
higher share of extensified fields parcels, to support the allocation of
their near future land renovation efforts. Therefore, we also tested a
version with more ambitious target settings to enable the allocation of a
higher share of land for extensification. On the other hand, the pilot
farmers who participate in research projects do not represent the
standard mean of all farmers but most likely belong to the upper
quartile, which explains their eagerness for an outcome that challenges
them. The farmers again strongly opposed afforestation, as they con-
sidered that their ancestors had cleared the forests to create fields in the
most favorable regions, often close to the waterways with access to the
ecosystem services they provide for farming (Peltonen-Sainio et al.,
2015a). Afforestation is an irreversible step that excludes the land from
any future production and is thereby considered to impair food se-
curity. Despite this, pilot farmers considered that ˜2% of their fields
were poor, which is a higher share than the original modest boundary
values (Table 2). These poor fields in the pilot farms represent the
potential pool for afforestation. Such fields were more typical for small
farms and they were located far away from the farm center and wa-
terways. Furthermore, they were small, irregularly shaped and flat, but
none of them were on peatlands. Such parcels are often unprofitable
(Myyrä and Pietola, 2002) and hence, allocated as green fallow land
and nature management fields to provide environmental benefits
(Herzon et al., 2011; Ekroos et al., 2013), though their productivity was
actually often quite reasonable. These examples indicate that the land
use in farms was not irrational or undesirable, as also highlighted by
Gao et al. (2010), compared to the outcomes of the tool, which again
are likely to facilitate its implementation.

4.2. Differences in land allocation depending on farm size, farm type and
region

As a high-latitude country, growing conditions in Finland vary
considerably depending on region. Therefore, also farm types are partly
polarized like dairy and beef production in the northern part of the
country, while prime crop production in the South- and West-Finland.
The highest total field area is in the coastal regions, but the farms again
tend to be large especially in the southern crop production region,
where also a majority of the large fields are located. In the south-
western coastline and in some inland regions fields are less uniform in
shape than elsewhere, while again in western and northern coastal re-
gion they are especially flat.

Land use optimization tool indicated the highest share of sustain-
ably intensified fields for the north-western coastal region and the
southern prime crop production region of Finland (Fig. 4). The highest
share for extensified and afforested fields were again in inland regions
and eastern part of the country. The lowest share of sustainably in-
tensified fields was found for small farms (Table 2). Hence, small farms
had the highest share of extensified fields, but they were also often
specialized in horticulture or horse and sheep production. Interestingly,
farms with low competitiveness and limited prerequisites for conven-
tional production and also for expansion, have adapted by specializing
into niche production. This is not necessarily even a feasible option for
large or very large farms. It is possible that these special farm types
have least opportunities to implement the outcomes of the land use
optimization tool due to a low total field area that already challenges
farm business. Contrary to these farm types, especially pig and poultry
farms, but also southern crop production farms and northern dairy and
beef farms had the highest share of sustainably intensified fields. This
confirms that the shares of intensified and extensified fields were not

attributable to any dominating field parcel characteristic, but de-
pending on region, different parcel characteristics complemented each
other.

4.3. Implementing, monitoring and impacting policies

The developed land use optimization tool is currently implemented
for all 40,000 Finnish farmers via the EconomyDoctor portal (https://
portal.mtt.fi/portal/page/portal/economydoctor/) of the Natural
Resources Institute of Finland (Luke). The tool will be launched for
farmers’ use in winter 2019 with strong authentication to safeguard
privacy. Farmers may grant access to advisors and neighboring farmers,
while other users will have access to compiled materials across regions,
farm types etc., where a single farmer cannot be identified. This is the
means by which this project will share information with stakeholders
involved in the landscape planning processes. The tool is routinely
updated automatically when new data appears, e.g., changes in the field
parcels that have been cultivated (owned or leased) on each farm and
regarding the data on NDVI-based productivity gaps. Not only having a
distinguished platform for tool implementation, but also applying par-
ticipation-based methods (Le Gal et al., 2011) with farmers, advisors,
researchers and policy makers will pave the way for the tool deploy-
ment.

It is important to anticipate ‒ but also after large scale piloting to
monitor ‒ the environmental and economic impacts of sustainable in-
tensification and land use changes, as part of this on-going R&D project.
Changes on a field parcel scale need to be implemented in a way to
provide advantageous landscape structures (Piha et al., 2007; Herzon
et al., 2011). An increase in landscape heterogeneity increases the
congruence of all studied taxa according to (Ekroos et al., 2013),
though the degree of the responses of each taxa in Finland has been
attributable to differences in underlying mechanisms. Furthermore,
envisaging and monitoring changes in GHG-emissions should be at the
core of impact assessments because land use changes are the most
powerful means to reduce agricultural GHG-emissions in Finland
(Regina et al., 2016). Furthermore, the capacity to reduce nutrient
leaching and erosion risks (Puustinen et al., 2010) through land allo-
cation are crucial as one third of the Finnish fields are located next to
waterways (Peltonen-Sainio et al., 2015a). The impacts on the farm
economy also need to be monitored. The settings of the land use opti-
mization tool can be further fine-tuned if needed to provide the best
outcome combining environmental impacts and farm economy.
Thereby, sustainable intensification actions may also gain social ac-
ceptance from farmers in addition to other citizens who are concerned
about the environmental impacts of agriculture and future food security
in the context of global change.

One can foresee that the land use optimization tool could provide
many opportunities for applications beyond its original target use,
supporting sustainable intensification of high-latitude agricultural sys-
tems and the allocation of inputs and efforts on the farm. For example,
it provides valuable information on the pricing of field parcels con-
sidering their sale, purchasing or leasing. Such compiled data and in-
dependent scoring of all field parcels according to their characteristics
are not currently available to support fair pricing. Hence, those leasing
their land aspire for the highest price in the region without sufficiently
considering the true value of the field according to its conditions and
productivity. Another example is that better, consistent and comparable
data on field parcel conditions may support further development and
implementation of crop insurance (Pietola et al., 2011), which since
2016 has substituted state crop failure payments in Finland. The land
use optimization tool may offer some means of reducing the typical
crop insurance risks, such as adverse selection and moral hazard pro-
blems (Miranda and Vedenov, 2001) by identifying poorly performing
land that should be allocated to greening purposes instead of wasting
resources on it.

The land use optimization tool may also support field parcel
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exchange and arrangements between farms in Finland, which is one of
the aims in the recent national strategy (MMM, 2015), and which is also
encouraged by the EU Commission with the primary aim to achieve
even and sufficiently large farm units and parcel structures to improve
the farm logistics and economy (Myyrä and Pietola, 2002). In fact, the
goal of field parcel exchange and arrangements is not novel as such.
Reinforcing such structural change has aimed uniform farm structure
since Finland joined EU, however, without yet being successful. One of
the main reasons is uncertainty on the equality of the field parcels ex-
changed between farms and hence, the suspected risk for disappoint-
ment. The developed tool indicates field parcels that are high quality
per se but far away from the farm center. Such field parcels, when af-
filiated with another farm, may be closer to the farm center and in
better contact with other high-quality field parcels, which again could
provide logistic and economic advantages (Myyrä and Pietola, 2002).
When assessed by the land use optimization tool, scores for such ori-
ginally distant field parcels may be elevated due to well-planned field
parcel exchange between farms. Hence, the flexible use of the land use
optimization tool would provide better opportunities for comparing
field parcel characteristics. This may even include systematic numeric
scorings for parcel exchange and rationalization between nearby farms,
and this would thereby support progress towards more even farm units.
It also supports this through encouraging and sustaining field parcel
unification plans.

Policy instruments are critical when considering the implementa-
tion of the land use optimization tool. The current policy instruments
only partly support land allocation for intensified, extensified and af-
forested purposes (Sorvali and Lehtonen, 2015). Currently, most agri-
cultural subsidies are paid through hectare-based payments which are
decoupled from production. Such payments do not require production
or productivity per se, but only to keep the land in “good agricultural
condition”. Hence, the decoupled hectare-based payments may promote
“land sharing” more than “land sparing” activities. Restrictions on
fertilizer application rates are strict, and due to the Nitrate Directive
and current AES rules, may result in more limited fertilizer rates than
those needed to attain the higher yields in sustainably intensified fields
considering also consistent genetic improvements in yield and nutrient
use efficiency provided by plant breeding (Rajala et al., 2017). Contrary
to the recent past, support is not currently offered for afforestation of
arable land and hence, the hectare-based, decoupled subsidies support
more extensification than afforestation. Therefore, it is emphasized that
the break-through of such a land use optimization tool developed here,
calls for acknowledging its potential in the future development of policy
instruments to enable comprehensive changes in the current agri-
cultural subsidy system to result in substantial, targeted land use
changes and a combination of environmental benefits with economic
sustainability and social acceptability. This has been fostered by a
dialogue with the policy makers throughout the development process of
the land use optimization tool.

5. Conclusions

In this paper we introduced a novel land use optimization and
planning tool for the sustainable intensification of high-latitude agri-
cultural systems and for combining environmental and economic sus-
tainability and social acceptance. The developed tool is based on a
three-step scoring system based on the physical characteristics and
productivity of field parcels. The tool is dynamic as both its boundary
values for the allocation of land either to be sustainably intensified,
extensified or afforested can be fixed according to changes in social
targets and supporting policies. It is also temporally flexible as it can be
applied year after year by acknowledging the new information avail-
able. It can be applied to all farm types and virtually throughout
Finland’s> 1 million field parcels. It is thereby, a tool for land use
planning and implementation, but also for monitoring changes. Its
large-scale implementation beyond piloting, however, calls for further

development of policy instruments which are currently more supportive
towards land sharing than land sparing activities.
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