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Abstract: We mapped a large-scale wastewater treatment plant onto a complex network and
we investigated how the structural properties of the graph evolve in time as the facility is
operated. The Viikinmäki plant is mapped onto a dependence network in which the nodes are
online process measurements and interconnectivity between nodes encodes pairwise correlations
between the corresponding time series, as estimated over moving-windows. In this initial study,
the construction of a graph of Viikinmäki is presented and results are discussed with the goal of
understanding its usability as model for process interactions and encoder of latent structures.
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1. INTRODUCTION

Recent years have witnessed a remarkable research effort
in network science, with advancements fostered by studies
of complex systems, such as those found in social, infor-
mation and biological sciences (Barabási, 2012). Concepts
from algebraic graph theory, probability theory and sta-
tistical mechanics are at the core of the theory of complex
networks (Estrada, 2016; Crane, 2018). Complex systems
are mapped onto graphs and their functioning studied from
the internal structure of the resulting networks. For the
task, a host of techniques has been developed (Dorogovt-
sev, 2010; Newman, 2018). Goals range from explorative
to system analytical (Barrat et al., 2008; Kolaczyk, 2009;
Lambiotte and Masuda, 2016). In explorative analyses,
interest is in identifying statistical features, such as degree
and path distributions, node and edge centralities, that
characterise the system from the topological structure and
communication paths of the graph. In network system
analysis, interest is in the effect of a static graph connec-
tivity on dynamical phenomena and in the dynamics of
temporal graphs in which connectivity varies over time.

Although their use is not widely spread, complex networks
and graphs have also been considered in process systems
engineering. The earliest applications have been proposed
by Gilles (1998) and Mangold et al. (2002) in the context
of plant design and operation. More recently, the com-
partmental nature of process plants has been discussed by
Preisig (2009) as a way of addressing online balancing of
mass and energy flows. The flowsheets of chemical plants
have been studied by Maurya et al. (2004) to define a
graph-theoretical approach to fault-diagnosis. Andrade Jr.
et al. (2006) also studied the properties of plant flowsheets

and observed the existence of a small-world structure.
Recently, Koeln and Alleyne (2018) propose a hierarchical
model predictive control for network power flow system.

The literature seems to focus on the graph nature of pro-
cess plants as it is induced by the exchange of mass and/or
energy between compartments. In this work, on the other
hand, we are interested on the more intangible connection
that exists between sensor measurements, irrespective of
the physical trajectory of process flows. We consider a
large-scale wastewater treatment plant (WWTP) and we
map it on a graph, in such a way that nodes correspond to
on-line sensors and the edges between them represent their
mutual dependence. The scope is to study the behaviour of
such a representation over time, under a range of operating
conditions, and to evaluate its applicability as a model for
encoding the interactions between process variables.

The work is structured as follows. In Section 2, the
Viikinmäki wastewater treatment plant is overviewed in
terms of main process units and existing automation
setting. In Section 3, introductory notions on graph theory
are reviewed; emphasis is on structural properties that
highlight the relevance of the nodes. Section 4 discusses
how the Viikinmäki plant has been mapped onto a network
and discusses some results that emerged from its analysis.

2. THE VIIKINMÄKI WWTP

The Viikinmäki WWTP (1.1M Population Equivalent) is
the largest municipal wastewater treatment plant in the
Nordic countries. The plant is built in a bedrock and treats
an average influent of 280K m3d−1 (with peaks of 800K
m3d−1), 93% is domestic and 7% is industrial wastewater.
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The wastewater treatment line consists of bar screening,
grit removal, pre-aeration, primary sedimentation, acti-
vated sludge process (ASP, 8+1 lines in DN-configuration),
secondary sedimentation with (8+1)×2 tanks, and tertiary
biological treatment (10 denitrifying post-filtration lines,
FLT). Sludge is treated in 4 mesophilic digesters and de-
watering systems. Biogas from sludge digestion is used for
electricity and heat generation. Since 2004 (introduction of
FLT lines) and since 2014 (introduction of 9th ASP line), a
total nitrogen removal of ≈ 90% and a biochemical oxygen
demand removal of ≈ 95% of yearly averages is achieved.

Activated sludge process The activated sludge process
consists of nine plug-flow basins, one line is sketched in
Figure 1. Each line begins with a mixing zone where pre-
settled wastewater, return sludge from secondary sedimen-
tation and internal recycle sludge are fed. Each basin is
split in six sequential zones, the anoxic ones being in the
beginning. The number of non-aerated zones (anoxic vol-
ume) depends on the aeration mode, which is adjustable.
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Fig. 1. Viikinmäki: Activated sludge process, one line.

The ASP lines are monitored with sensors providing on-
line measurements for the most important process vari-
ables (Table 1). Influent from the primary sedimentation
to the ASP lines is characterised in terms of flow-rate (I-
Q). Flow-rates of sludge recirculation from the secondary
sedimentation tanks (S1-QR and S2-QR) and internal
recirculation (QA) are also measured. Dissolved oxygen
(DO) concentration is measured in zones Z2 to Z6 (Z2/Z6-
DO), while mixed liquor suspended solids are analysed
only in zone Z6 (Z6-SS). The effluent is monitored in
terms of ammonia (D-NH4), nitrate (D-NO3), alkalinity
(D-ALK) and pH (D-pH). Lime is dosed upstream to
control alkalinity within the optimal range for nitrification.

Table 1. Activated sludge process lines (Li,
i = 1, . . . , 9), measured and calculated data.

Name Description Units

Li-I-Q Influent flow-rate m3/s
Li-Q-INT Internal recycle flow-rate m3/s
Li-S1/S2-QR Return sludge from S1 and S2 dm3/s
Li-S-QRTOT Total recycle flow-rate m3/s
Li-Z2/Z6-DO Dissolved oxygen (Z2 to Z6) mg/L
Li-Z1/Z6-QAIR Air flow-rate (Z1 to Z6) Nm3/s
Li-Z6-SS Suspended solids (Z6) g/L
Li-D-NH4 Ammonia mg/L
Li-D-NO3 Nitrate mg/L
Li-D-ALK Alkalinity mmol/L
Li-D-pH pH −
Li-AERO-DO Average DO (Z2 to Z6) mg L−1

Li-AERO-QAIR Total QAIR (Z2 to Z6) Nm3/s

In each of the ASP lines, dissolved oxygen in all the
zones (Z2-DO to Z6-DO) can be feedback-controlled by

the corresponding air flow-rates. Aerobic zones Z6 to Z4
are always aerated, with a DO target of 3.5 mgL−1.
Aeration in zones Z3 to Z2 is progressively switched
on only when the ammonia content D-NH4 exceeds a
treatment threshold (4 mgL−1). Zone Z1 is never aerated.
When aerated, the DO targets in zones Z2 to Z3 are usually
set to 3.5 mgL−1. The number of aerated zones is used
to meet the removal efficiency by adjusting the anoxic
volume. As common practice for the external recycle, the
flow-rates of return activated sludge from settlers (S1/S2-
QR) are set to be proportional to the influent (I-Q). As
for the internal recycle, a logic based on recirculated sludge
and influent flow-rate and number of aerated zones, is used.

Denitrifying post-filtration The denitrifying postfiltra-
tion unit receives wastewater from the (8+1)×2 secondary
sedimentation tanks. Nitrate removal is achieved by ten
Biostyr filters (Figure 2 and Table 2) arranged in parallel.
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Fig. 2. Viikinmäki: Denitrifying post-filtration, one line.

Influent wastewater from sedimentation is distributed to
the filter cells and, before each cell, the flow is split in two
streams (QW1 and QW2), where methanol in water (10%
dilution) is added (QM1 and QM2). Methanol provides a
biodegradable organic substrate as energy source for the
denitrifying bacteria. Methanol flow-rate into each filter is
manipulated to control the nitrate concentration in the cell
(NO3); the control is also based on nitrate and dissolved
oxygen loads into the filters (I-NO3 and I-DO). Inside
the filter, wastewater flows upwards through a floating
support covered in biomass. To control clogging, the cells

Table 2. Denitrifying post-filtration lines (Fi,
i = 1, . . . , 10), measured and calculated data.

Name Description Units

F-I-NO3 (1,2) Influent Nitrate (sensor 1,2) mg/L
F-I-SS (1,2) Influent Suspended solids (sensor 1,2) mg/L
F-I-DO Influent Dissolved oxygen mg/L
F-I-TP Influent Total phosphorus mg/L

Fi-QW(1,2) Wastewater flow-rate (line 1,2) m3/s
Fi-QM(1,2) Methanol flow-rate (line 1,2) m3/h
Fi-P(1,2) Pressure (bottom, top) kPa
Fi-NO3 Nitrate mg/L
Fi-CR (HL) Clogging rate (Head-loss) % (m)

F-I-NO3 Average influent NO3 mg/L
F-I-SS Average influent SS mg/L
Fi-QW-TOT Total QW m3/s
Fi-QM-TOT Total QM m3/h
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The wastewater treatment line consists of bar screening,
grit removal, pre-aeration, primary sedimentation, acti-
vated sludge process (ASP, 8+1 lines in DN-configuration),
secondary sedimentation with (8+1)×2 tanks, and tertiary
biological treatment (10 denitrifying post-filtration lines,
FLT). Sludge is treated in 4 mesophilic digesters and de-
watering systems. Biogas from sludge digestion is used for
electricity and heat generation. Since 2004 (introduction of
FLT lines) and since 2014 (introduction of 9th ASP line), a
total nitrogen removal of ≈ 90% and a biochemical oxygen
demand removal of ≈ 95% of yearly averages is achieved.

Activated sludge process The activated sludge process
consists of nine plug-flow basins, one line is sketched in
Figure 1. Each line begins with a mixing zone where pre-
settled wastewater, return sludge from secondary sedimen-
tation and internal recycle sludge are fed. Each basin is
split in six sequential zones, the anoxic ones being in the
beginning. The number of non-aerated zones (anoxic vol-
ume) depends on the aeration mode, which is adjustable.
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Fig. 1. Viikinmäki: Activated sludge process, one line.

The ASP lines are monitored with sensors providing on-
line measurements for the most important process vari-
ables (Table 1). Influent from the primary sedimentation
to the ASP lines is characterised in terms of flow-rate (I-
Q). Flow-rates of sludge recirculation from the secondary
sedimentation tanks (S1-QR and S2-QR) and internal
recirculation (QA) are also measured. Dissolved oxygen
(DO) concentration is measured in zones Z2 to Z6 (Z2/Z6-
DO), while mixed liquor suspended solids are analysed
only in zone Z6 (Z6-SS). The effluent is monitored in
terms of ammonia (D-NH4), nitrate (D-NO3), alkalinity
(D-ALK) and pH (D-pH). Lime is dosed upstream to
control alkalinity within the optimal range for nitrification.

Table 1. Activated sludge process lines (Li,
i = 1, . . . , 9), measured and calculated data.

Name Description Units

Li-I-Q Influent flow-rate m3/s
Li-Q-INT Internal recycle flow-rate m3/s
Li-S1/S2-QR Return sludge from S1 and S2 dm3/s
Li-S-QRTOT Total recycle flow-rate m3/s
Li-Z2/Z6-DO Dissolved oxygen (Z2 to Z6) mg/L
Li-Z1/Z6-QAIR Air flow-rate (Z1 to Z6) Nm3/s
Li-Z6-SS Suspended solids (Z6) g/L
Li-D-NH4 Ammonia mg/L
Li-D-NO3 Nitrate mg/L
Li-D-ALK Alkalinity mmol/L
Li-D-pH pH −
Li-AERO-DO Average DO (Z2 to Z6) mg L−1

Li-AERO-QAIR Total QAIR (Z2 to Z6) Nm3/s

In each of the ASP lines, dissolved oxygen in all the
zones (Z2-DO to Z6-DO) can be feedback-controlled by

the corresponding air flow-rates. Aerobic zones Z6 to Z4
are always aerated, with a DO target of 3.5 mgL−1.
Aeration in zones Z3 to Z2 is progressively switched
on only when the ammonia content D-NH4 exceeds a
treatment threshold (4 mgL−1). Zone Z1 is never aerated.
When aerated, the DO targets in zones Z2 to Z3 are usually
set to 3.5 mgL−1. The number of aerated zones is used
to meet the removal efficiency by adjusting the anoxic
volume. As common practice for the external recycle, the
flow-rates of return activated sludge from settlers (S1/S2-
QR) are set to be proportional to the influent (I-Q). As
for the internal recycle, a logic based on recirculated sludge
and influent flow-rate and number of aerated zones, is used.

Denitrifying post-filtration The denitrifying postfiltra-
tion unit receives wastewater from the (8+1)×2 secondary
sedimentation tanks. Nitrate removal is achieved by ten
Biostyr filters (Figure 2 and Table 2) arranged in parallel.
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Fig. 2. Viikinmäki: Denitrifying post-filtration, one line.

Influent wastewater from sedimentation is distributed to
the filter cells and, before each cell, the flow is split in two
streams (QW1 and QW2), where methanol in water (10%
dilution) is added (QM1 and QM2). Methanol provides a
biodegradable organic substrate as energy source for the
denitrifying bacteria. Methanol flow-rate into each filter is
manipulated to control the nitrate concentration in the cell
(NO3); the control is also based on nitrate and dissolved
oxygen loads into the filters (I-NO3 and I-DO). Inside
the filter, wastewater flows upwards through a floating
support covered in biomass. To control clogging, the cells

Table 2. Denitrifying post-filtration lines (Fi,
i = 1, . . . , 10), measured and calculated data.

Name Description Units

F-I-NO3 (1,2) Influent Nitrate (sensor 1,2) mg/L
F-I-SS (1,2) Influent Suspended solids (sensor 1,2) mg/L
F-I-DO Influent Dissolved oxygen mg/L
F-I-TP Influent Total phosphorus mg/L

Fi-QW(1,2) Wastewater flow-rate (line 1,2) m3/s
Fi-QM(1,2) Methanol flow-rate (line 1,2) m3/h
Fi-P(1,2) Pressure (bottom, top) kPa
Fi-NO3 Nitrate mg/L
Fi-CR (HL) Clogging rate (Head-loss) % (m)

F-I-NO3 Average influent NO3 mg/L
F-I-SS Average influent SS mg/L
Fi-QW-TOT Total QW m3/s
Fi-QM-TOT Total QM m3/h
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are backwashed one at a time with effluent wastewater and
a counter-current airflow. After filtration, wastewater from
the filters is collected in the effluent channel, for discharge.

Influent wastewater to the denitrifying post-filtration unit
is monitored, before division to each of the cells, in terms of
dissolved oxygen (F-I-DO), suspended solids (F-I-SS(1,2)),
nitrate (F-I-NO3(1,2)) and total phosphorus (F-I-TP).

3. BRIEF ON NETWORK CONCEPTS

Networks are understood as diagrammatic representations
of a system whose components are interconnected. Infor-
mally, networks consist of nodes that represent the com-
ponents of the system and pairs of nodes are joined by
links, which represent interactions between components.
Networks admit a mathematical representation as graphs.
We provide an overview of graph theory notions and of
some structural properties of simple graphs (Diestel, 2010).

3.1 General and algebraic notions

Consider a finite set V = {v1, v2, . . . , vn} of elements and
let V ⊗ V be the set of all ordered pairs [vi, vj ] of the
elements of V . A relation on set V is any subset E ⊆ V ⊗
V = {e1, e2, . . . , em}. If [vi, vj ] ∈ E implies [vj , vi] ∈ E,
then E is symmetric. If [v, v] ∈ E for all v ∈ V , then E is
reflexive. The relation is anti-reflexive if [vi, vj ] ∈ E implies
vi ̸= vj . A simple graph is defined as the pair G(V,E); V
is the set of nodes and E is a symmetric and anti-reflexive
relation on V . The elements of E are the edges or links.

The number n = |V | of nodes corresponds to the number
of entities in the system, the number m = |E| of links rep-
resents the number of relations between them. Symmetry
of E implies that simple graphs are undirected and inter-
actions are bi-directional. In weighted graphs, edges are as-
signed a strength; E is replaced by W = {w1, w2, . . . , wm}.
Two nodes u and v are adjacent if a link e = {u, v}
joins them; Nodes u and v are incident with link e
and link e is incident with nodes u and v. Interactions
between nodes occur even when they are not directly
linked. A walk is a sequence of not necessarily distinct
edges, (u1, v1), (u2, v2), · · · , (up, vp), such that vi = ui+1,
i = 1, 2, . . . , (p−1). If vp = u1, the walk is closed. A trial is
a walk whose edges (but not necessarily all the nodes) are
distinct, a path is a trail whose nodes (and all the edges)
are distinct. The walk/trial/path length is p and it can be
shown that the shortest walk between distinct nodes is also
the shortest path. A network is connected if there is a path
between any two nodes. If a simple graph is not connected
then it can be divided in disjoint connected components.

Adjacency relations Let G(V,E) be a simple network
with V = {1, 2, . . . , n}. For all pairs u, v ∈ [1, n], we define

auv = 1, if (u, v) ∈ E; (0, otherwise).

The |V | × |V | matrix A = (auv) is called the (node-)
adjacency matrix of G. Since E is symmetric also A is
symmetric (undirected links) and since E is anti-reflexive,
diagonal entries of A are zeros (no self-links). In an
undirected graph, the u-th row/column ofA has ku entries,
the number of nearest neighbours of node u. As any square
matrix can be understood as a graph, if we let auv = wuv

be the weight of an edge, then A induces a weighted graph.

The spectrum of the adjacency matrix is related to the
structure of the network. The spectrum σ(A) is the set of
the m distinct eigenvalues of A, with their multiplicities,

σ(A) =

{
λ1(A) λ2(A) · · · λm(A)

ν[λ1(A)] ν[λ2(A)] · · · ν[λm(A)]

}
.

The eigenvalues λ(A) are the zeros of the characteristic
polynomial |λI−A| and satisfy Aϕ = λ(A)ϕ, where each
of the non-zero vectors ϕ is an eigenvector. As A is non-
negative, its eigenvalues are all real and the largest one
λ1(A) is non-negative. λ1(A) has multiplicity one and a

positive eigenvector ϕ1(A) = [ϕ
(1)
1 ,ϕ

(2)
1 , . . . ,ϕ

(n)
1 ]T , the

Perron-Frobenius principal eigenvector. The spectrum of
Amakes partitions of the nodes that are determined by the

sign pattern of the eigenvectors. As {ϕ(i)
1 }ni=1 are positive,

they are interpreted as all nodes are grouped in a single
cluster. Eigenvector ϕ2 exhibits a bi-partition as some
nodes associate to positive and other to negative entries.

Node-degree and node-degree distribution The node de-
gree ku of node u in G(V,E) is the number of edges (nearest
neighbour nodes) that are incident on that node. If we de-
note by 1 a |V |×1 vector of ones, we get a column-vector of
node degrees, k = [k1, k2, . . . , kn]

T = (1TA)T = A1. For
weighted networks, the weighted degree (node strength)
ku equals the sum of the weights of links incident with u.

Information about node degrees is used to analyse the
structure of the network. The analysis is based on the node-
degree/strength distribution. Let p(k) = n(k)/n with n(k)
the number of nodes having degree k in a network of size
n be the probability that a randomly uniformly selected
node has degree k. A unimodal probability function can be
summarised by ⟨k⟩ = (1/n)1Tk, the expected node-degree.

3.2 Metric and structural notions

We can enumerate walks in G(V,E) by using powers Ap

of its adjacency matrix; Entry (Ap)u,v counts walks of
length p between nodes u and v. Ap can be expressed

from σ(A) as (Ap)uv =
∑

j ϕ
(u)
j ϕ

(v)
j λp

j (A). The shortest

walk/path between u and v is obtained from powers of A
as the smallest value of p for which (Ap)uv is non-zero.
The smallest through-p-link separation of nodes u and v is
regarded to as network distance d(u, v). Pairwise distances
d(u, v) can be arranged in a square symmetric matrix D.
The maximum entry for a row/column in D is the node
eccentricity, it is used to denotes the graph diameter.

The notion of node centrality is used to determine which
nodes are important, according to some criterion. There
exists a number of criteria, from a node’s ability to
communicate with other nodes, to its closeness to many
other nodes or its relevance in enabling communication
between network parts. When formalised, these properties
lead to a host of centrality measures (Freeman, 1979).

Degree centrality The degree centrality of a node corre-
sponds to its degree and it measures its ability to directly
communicate with the other nodes in the network. It
accounts for short-range effects in the network. A node
is more influential than another one if its degree is larger.

As ku = (A1)u = (A)2uu counts the number of walks of
length 1 from node u, or the number of walks of length
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2 starting and ending at node u. Let the probability of
going from one node to another be (P)uv = (A)uv/ku and
let π = [π1,π2, . . . ,πn]

T be the stationary vector of the
Markov chain with |V |× |V | transition probability matrix
P, we get that the steady-state probability function of the
stochastic process on the graph depends on centrality ku

(πP)v =
∑

v∈V

πv(P)uv =

∑
u∈V ku(P)uv∑

u∈V ku
=

kv∑
u∈V kv

= πv.

Degree centrality thus models the flow of information
through u in an infinitely long random walk. As the sum of
weighted traces of the powers of A (the number of closed
walks) converges to the trace of its matrix exponential, we
define a measure of well-connectedness, the Estrada index

EE(G) = tr
(
I+A+A2/2!+· · ·

)
= tr(eA) =

∑m

i=1
eλi(A).

Closeness and betweenness centrality The closeness cen-
trality of a node defines how relatively close that node is
from the rest of the nodes in the network. The closeness
of a node u is defined to quantify its vicinity to nodes v it
is exchanging information with. Closeness is measured in
terms of shortest path distances, as inverse of the distance
sum of shortest paths d(u, v) from u to all other nodes v,

cu = (n− 1)/
∑

v∈V
d(u, v).

The betweenness centrality specifies how important a node
is in communication between other pairs of nodes in the
network. The betweenness of node z accounts for the
proportion of information that passes through that node in
communications between other pairs (u, v) of nodes. The
basic definition of betweenness assumes that information
flow between two nodes occurs over shortest paths,

bz =
∑

u∈V

∑

v∈V

f(u, z, v)

f(u, v)
(u ̸= v ̸= z),

f(u, v) is the number of shortest paths linking u and v and
f(u, z, v) is the number of such shortest paths through z.

Katz and eigenvector centrality We expressed node de-
gree as number of walks of length one from that node.
This idea is extended to longer walks, so that neighbouring
nodes have more influence than distant ones. To combine
walks of all lengths, we use a factor α that assigns more
weight to shorter walks, as in Katz centrality (Katz, 1953)

Ku =
[
(I+ α−1A1 + α−2A2 + · · ·+ α−pAp + · · · )1

]
u

=
[ ∞∑

p=0

(α−pAp)1
]

u
❀

[(
I−

1

α
A
)−1

1
]

u
,α ̸= λ1(A)

It is shown by Bonacich (1987) that entries of the principal
eigenvector ϕ1(A) are node centralities in the Katz’s sense
( ∞∑

p=1

α1−pAp
)
1 = α

[∑

j

λj(A)

α− λj(A)
ϕT

j ϕj

]
1 =

α↑λ1(A)
ϕ1.

Graph Laplacian An important operator defined on a
network is the discrete Laplacian. Consider an arbitrary
orientation of the links in G(V,E), suppose that for link
[u, v] we set u as positive and v as negative end. We can
represent G as the |V |×|E| oriented incidence matrix∇(G),

∇ij =

{
+1, vi is the positive end of ej
−1, vi is the negative end of ej

; (0, otherwise).

Let f : V → R be an arbitrary function which is assigned
a value at each node and e an oriented graph link, we
understand ∇f : E → R as discrete gradient operator.
The operator ∇∇f : R|V | → R|V | is the negative discrete
Laplacian. By using the degree vector and adjacency
matrix, we can write the Laplacian as L = diag(k) −A.
The spectrum σ(L) of the graph Laplacian matrix is the
set of m distinct eigenvalues of L with their multiplicities

σ(L) =

{
λ1(L) λ2(L) · · · λm(L)

ν[λ1(L)] ν[λ2(L)] · · · ν[λm(L)]

}
.

L is positive semidefinite, with bounded eigenvalues and
ν[λ1(L)] equals the number of connected components.

Let us interpret the graph as a system of |V | equal masses
connected by |E| equal springs. The Laplacian of the sys-
tem is given by its kinetic energy minus the potential func-
tion from which force components are defined; As such, it
corresponds to the graph Laplacian. The eigenvalues λ(L)
correspond to (squared) natural frequencies at which the
network of harmonic oscillators vibrates in the absence of
an external force. The smallest eigenvalue λ1(L) = 0 does
not contribute to the vibrational energy, as all nodes move
coherently in the same direction. The other eigenvectors
represent node displacements due to harmonic oscillation.

4. THE VIIKINMÄKI COMPLEX NETWORK

In this section, we discuss the construction of the complex
network of the Viikinmäki wastewater treatment plant
from a collection of measurements over a period of about
7 years (Jan 1, 2012-May 7, 2017). We present the main
structural features of the Viikinmäki network and their
time evolution, hourly, on an illustrative selection of pro-
cess episodes, on a shorter period (July 11-Aug 11, 2016).

4.1 Process data and network definition

The Viikinmäki network is a sequence of graphs Gt(V,E)
built from online plant measurements collected as hourly
averages. The set of nodes consists of |V | = 314 process
variables; 22×9 variables from the ASP (Table 1), 11×10
from the FLT section and influent concentrations to FLT
lines (Table 2), and air concentrations of N2O and CO2 in
the ventilation channel. The edge set is fixed (|V | = 3228):
Variables belonging to the same ASP or FLT lines are
linked together (for instance, all Li variables connect to
each other) whereas, across lines, only consistent variables
are linked together (for instance, Li-Z6-SS links with Lj-
Z6-SS, for all i and j). Edge strengths vary with time, as
weights Wt quantify connectivity in terms of correlation
between endpoint variables, as repeatedly estimated over
a 7-day moving-window that shifts forward at every hour.

The network Gt(V,E), as observed on July 11, 2016 at
12PM, is depicted in the upper panel of Figure 3, in which
a graph layout that places each node on a circle is used.
Node relevance is encoded by using for node u a size
that is proportional to its degree centrality ku, whereas
the strength of the edges wuv is represented by dying
the links on the basis of the current correlation between
variables (u, v) at the endpoints (from green to yellow, as
correlation increases). In the ASP lines, the nodes with
largest degree centralities (that is, nodes that correlate
more with neighbouring nodes) are found in the influent
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2 starting and ending at node u. Let the probability of
going from one node to another be (P)uv = (A)uv/ku and
let π = [π1,π2, . . . ,πn]

T be the stationary vector of the
Markov chain with |V |× |V | transition probability matrix
P, we get that the steady-state probability function of the
stochastic process on the graph depends on centrality ku

(πP)v =
∑

v∈V

πv(P)uv =

∑
u∈V ku(P)uv∑

u∈V ku
=

kv∑
u∈V kv

= πv.

Degree centrality thus models the flow of information
through u in an infinitely long random walk. As the sum of
weighted traces of the powers of A (the number of closed
walks) converges to the trace of its matrix exponential, we
define a measure of well-connectedness, the Estrada index

EE(G) = tr
(
I+A+A2/2!+· · ·

)
= tr(eA) =

∑m

i=1
eλi(A).

Closeness and betweenness centrality The closeness cen-
trality of a node defines how relatively close that node is
from the rest of the nodes in the network. The closeness
of a node u is defined to quantify its vicinity to nodes v it
is exchanging information with. Closeness is measured in
terms of shortest path distances, as inverse of the distance
sum of shortest paths d(u, v) from u to all other nodes v,

cu = (n− 1)/
∑

v∈V
d(u, v).

The betweenness centrality specifies how important a node
is in communication between other pairs of nodes in the
network. The betweenness of node z accounts for the
proportion of information that passes through that node in
communications between other pairs (u, v) of nodes. The
basic definition of betweenness assumes that information
flow between two nodes occurs over shortest paths,

bz =
∑

u∈V

∑

v∈V

f(u, z, v)

f(u, v)
(u ̸= v ̸= z),

f(u, v) is the number of shortest paths linking u and v and
f(u, z, v) is the number of such shortest paths through z.

Katz and eigenvector centrality We expressed node de-
gree as number of walks of length one from that node.
This idea is extended to longer walks, so that neighbouring
nodes have more influence than distant ones. To combine
walks of all lengths, we use a factor α that assigns more
weight to shorter walks, as in Katz centrality (Katz, 1953)

Ku =
[
(I+ α−1A1 + α−2A2 + · · ·+ α−pAp + · · · )1

]
u

=
[ ∞∑

p=0

(α−pAp)1
]

u
❀

[(
I−

1

α
A
)−1

1
]

u
,α ̸= λ1(A)

It is shown by Bonacich (1987) that entries of the principal
eigenvector ϕ1(A) are node centralities in the Katz’s sense
( ∞∑

p=1

α1−pAp
)
1 = α

[∑

j

λj(A)

α− λj(A)
ϕT

j ϕj

]
1 =

α↑λ1(A)
ϕ1.

Graph Laplacian An important operator defined on a
network is the discrete Laplacian. Consider an arbitrary
orientation of the links in G(V,E), suppose that for link
[u, v] we set u as positive and v as negative end. We can
represent G as the |V |×|E| oriented incidence matrix∇(G),

∇ij =

{
+1, vi is the positive end of ej
−1, vi is the negative end of ej

; (0, otherwise).

Let f : V → R be an arbitrary function which is assigned
a value at each node and e an oriented graph link, we
understand ∇f : E → R as discrete gradient operator.
The operator ∇∇f : R|V | → R|V | is the negative discrete
Laplacian. By using the degree vector and adjacency
matrix, we can write the Laplacian as L = diag(k) −A.
The spectrum σ(L) of the graph Laplacian matrix is the
set of m distinct eigenvalues of L with their multiplicities

σ(L) =

{
λ1(L) λ2(L) · · · λm(L)

ν[λ1(L)] ν[λ2(L)] · · · ν[λm(L)]

}
.

L is positive semidefinite, with bounded eigenvalues and
ν[λ1(L)] equals the number of connected components.

Let us interpret the graph as a system of |V | equal masses
connected by |E| equal springs. The Laplacian of the sys-
tem is given by its kinetic energy minus the potential func-
tion from which force components are defined; As such, it
corresponds to the graph Laplacian. The eigenvalues λ(L)
correspond to (squared) natural frequencies at which the
network of harmonic oscillators vibrates in the absence of
an external force. The smallest eigenvalue λ1(L) = 0 does
not contribute to the vibrational energy, as all nodes move
coherently in the same direction. The other eigenvectors
represent node displacements due to harmonic oscillation.

4. THE VIIKINMÄKI COMPLEX NETWORK

In this section, we discuss the construction of the complex
network of the Viikinmäki wastewater treatment plant
from a collection of measurements over a period of about
7 years (Jan 1, 2012-May 7, 2017). We present the main
structural features of the Viikinmäki network and their
time evolution, hourly, on an illustrative selection of pro-
cess episodes, on a shorter period (July 11-Aug 11, 2016).

4.1 Process data and network definition

The Viikinmäki network is a sequence of graphs Gt(V,E)
built from online plant measurements collected as hourly
averages. The set of nodes consists of |V | = 314 process
variables; 22×9 variables from the ASP (Table 1), 11×10
from the FLT section and influent concentrations to FLT
lines (Table 2), and air concentrations of N2O and CO2 in
the ventilation channel. The edge set is fixed (|V | = 3228):
Variables belonging to the same ASP or FLT lines are
linked together (for instance, all Li variables connect to
each other) whereas, across lines, only consistent variables
are linked together (for instance, Li-Z6-SS links with Lj-
Z6-SS, for all i and j). Edge strengths vary with time, as
weights Wt quantify connectivity in terms of correlation
between endpoint variables, as repeatedly estimated over
a 7-day moving-window that shifts forward at every hour.

The network Gt(V,E), as observed on July 11, 2016 at
12PM, is depicted in the upper panel of Figure 3, in which
a graph layout that places each node on a circle is used.
Node relevance is encoded by using for node u a size
that is proportional to its degree centrality ku, whereas
the strength of the edges wuv is represented by dying
the links on the basis of the current correlation between
variables (u, v) at the endpoints (from green to yellow, as
correlation increases). In the ASP lines, the nodes with
largest degree centralities (that is, nodes that correlate
more with neighbouring nodes) are found in the influent
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(input and recycle flow-rates) and effluent (concentrations)
variables, thus leaving variables associated to control loops
as peripheral (DO concentrations and air flow-rates in the
reactor zones). As for the FLT lines, the variables that are
less central are those associated to the clogging conditions.
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Fig. 3. Viikinmäki. The network of the WWTP (July
11, 2016 at 12PM, upper panel). The middle panels
depict: left) the degree probability distribution, and;
right) the maximum and average shortest path dis-
tances between pairs of nodes, over the given period.
The bottom panels depict the Laplacian eigenvalues
(left) and the Estrada index (right), during the period.

Figure 3 also displays the degree probability density dis-
tribution p(k) (mid-left) and the maximum and average
shortest path distances d(u, v) (mid-right), over the se-
lected period. The degree distribution shows a consistent
bimodality, as a result of the strategy chosen for linking
process variables between process sections. Bimodality be-
comes less evident as the network diameter, the maximum
shortest path distance, gets larger. A similar behaviour can
be observed also in terms of the smallest eigenvalues of the
discrete Laplacian and the Estrada index (bottom panels).

The degree distribution of the graph observed on July 11
at 12PM (bottom panel of Figure 4) shows how the first
mode (ku ≈ 8) of the degree distribution relates to ASP
nodes, whereas the second one (ku ≈ 15) associates to
FLT. The upper panels in Figure 4 show the portions of
graph corresponding to the variables in the ASP and FLT
sections (as of July 11, 2016 at 12PM). The layouts depict
the spontaneous equilibrium configuration of a system
of attractive forces between joined pairs of nodes and

0 5 10 15 20 25
0

0.01

0.02

Fig. 4. Viikinmäki, on July 11, 2016 at 12PM. The partial
networks for the ASP (upper left) and FLT (upper
right) sections. The bottom panel depicts the bimodal
node degree distribution (solid line), and the two
Gaussian mixture components for ASP and FLT lines.

repulsive forces between all pairs of nodes. Node size shows
degree centrality and edges are dyed based to correlation.

4.2 Structural analysis

To discuss the behaviour of the Viikinmäki network, we
analyse the node centralities of all variables at both the
network-scale (across ASP and FLT lines) and at the
subscale of the individual lines, on two illustrative cases.

Figure 5 shows the line (or cumulative) degree- and
closeness-centrality of all the ASP lines, over time. As line
centralities are computed by summing up the centralities
of all the variables belonging to that line, it is expected
that lines subjected to similar operating and instrumental
conditions be characterised by similar centrality values,
along time. The depicted centralities, though characterised
by different time series, show a coordinated behaviour of all
ASP lines, over most of the period. It is, however, possible
to note that, according to degree centrality, two drifts from
coordinated operations can be detected. The detachments
associate to line L9 (≈ June 20) and line L2 (≈ July 24).
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Fig. 5. Viikinmäki, ASP lines. Cumulative degree- (ku,
left) and closeness- centrality (cu, right) of each line.

Although it is easy to associate the anomaly in L2 to the
fact that the line had been shutdown for yearly mainte-
nance, the identification of what induced the detachment
of line L2 requires the inspection of the time series of the
ASP lines and the centrality of individual variables.

From Figure 6, it is possible to see how, though ASP
lines appear to be similarly operated, the degree centrality
of L9-D-NO3/-NH4 and L9-D-ALK dropped significantly
after June 20. As for the centrality of the other variables,
only L9-AERO-QAIR shows an associated, but relatively
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Fig. 6. Viikinmäki, ASP lines. Timeseries (left column) and
degree centrality (right column) of selected variables.

smaller, change. A close analysis of the L9-variables shows
a rapid variation in alkalinity around June 20. The varia-
tion, probably due to an adjustment of lime dosing, coin-
cides with a short break of the internal sludge pump. The
episode induced a further drop in alkalinity and a sharp
peak in the effluent NH4. The NH4 peak can be associated
to the low alkalinity. Hence, the low NO3 concentrations
do not result from an efficient denitrification, but rather
from a poor nitrification. The poor nitrification caused
a persistent change in the diurnal pattern of NO3 that
is not easy to visualise from the time series, but can be
detected from the centrality. Although not reported, a
similar behaviour was found in other centrality measures.

Being downstream along the plant, FLT lines are subjected
to homogenised influent conditions and thus, usually, they
are similarly operated. Figure 7 shows this coordinated
operation of the filter lines in terms of total influent flow-
rate (QM-1 + QM-2) and total methanol (QW-1 + QW-2).
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Fig. 7. Viikinmäki, FLT. Timeseries of selected variables.

This similarity is also reflected in the cumulative degree
centralities (not shown). It is interesting to analyse how
the node centrality of the process variables within an
individual filter varies in response to changing conditions.
As an illustrative example, consider the increase in influent
flow-rate to the plant (Figure 6, influent flow-rate I-Q
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Fig. 8. Viikinmäki: FLT F5. All eigenvector centralities.

to ASP lines) on June 20, 2016. The variation induced
a change in nitrogen removal efficiency in the ASP, as
detected by the cumulative closeness centrality (Figure 5)
and a subsequent effect in methanol dosage in the FLT
line(s). In Figure 8, this is clearly visible in terms of the
eigenvector centrality of the process variables in filter F5.

5. CONCLUSIONS

A large-scale wastewater treatment plant has been mapped
onto a complex network and the structural characteristic
of the resulting temporal graph have been studied, as the
plant is subjected to routine operations. This qualitative
study highlights how variations in structural graph prop-
erties, mainly diameter and node centralities, correspond
to changes in operating and instrumental conditions in
the plant. We speculate that such properties of the graph
relate to hidden dynamical states of the plant and deserve
to be further studied with system analytical techniques.
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Fig. 6. Viikinmäki, ASP lines. Timeseries (left column) and
degree centrality (right column) of selected variables.

smaller, change. A close analysis of the L9-variables shows
a rapid variation in alkalinity around June 20. The varia-
tion, probably due to an adjustment of lime dosing, coin-
cides with a short break of the internal sludge pump. The
episode induced a further drop in alkalinity and a sharp
peak in the effluent NH4. The NH4 peak can be associated
to the low alkalinity. Hence, the low NO3 concentrations
do not result from an efficient denitrification, but rather
from a poor nitrification. The poor nitrification caused
a persistent change in the diurnal pattern of NO3 that
is not easy to visualise from the time series, but can be
detected from the centrality. Although not reported, a
similar behaviour was found in other centrality measures.

Being downstream along the plant, FLT lines are subjected
to homogenised influent conditions and thus, usually, they
are similarly operated. Figure 7 shows this coordinated
operation of the filter lines in terms of total influent flow-
rate (QM-1 + QM-2) and total methanol (QW-1 + QW-2).
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Fig. 7. Viikinmäki, FLT. Timeseries of selected variables.

This similarity is also reflected in the cumulative degree
centralities (not shown). It is interesting to analyse how
the node centrality of the process variables within an
individual filter varies in response to changing conditions.
As an illustrative example, consider the increase in influent
flow-rate to the plant (Figure 6, influent flow-rate I-Q
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Fig. 8. Viikinmäki: FLT F5. All eigenvector centralities.

to ASP lines) on June 20, 2016. The variation induced
a change in nitrogen removal efficiency in the ASP, as
detected by the cumulative closeness centrality (Figure 5)
and a subsequent effect in methanol dosage in the FLT
line(s). In Figure 8, this is clearly visible in terms of the
eigenvector centrality of the process variables in filter F5.

5. CONCLUSIONS

A large-scale wastewater treatment plant has been mapped
onto a complex network and the structural characteristic
of the resulting temporal graph have been studied, as the
plant is subjected to routine operations. This qualitative
study highlights how variations in structural graph prop-
erties, mainly diameter and node centralities, correspond
to changes in operating and instrumental conditions in
the plant. We speculate that such properties of the graph
relate to hidden dynamical states of the plant and deserve
to be further studied with system analytical techniques.
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