Evidence for genetically determined degeneration of proprioceptive tracts in Friedreich ataxia

Brice Marty, PhD,* Gilles Naeije, MD, PhD,* Mathieu Bourguignon, PhD, Vincent Wens, PhD, Veikko Jousmäki, PhD, David R. Lynch, MD, PhD, William Gaetz, PhD, Serge Goldman, MD, PhD, Riitta Hari, MD, PhD, Massimo Pandolfo, MD, PhD, and Xavier De Tiège, MD, PhD

Abstract

Objective
To assess with magnetoencephalography the developmental vs progressive character of the impairment of spinocortical proprioceptive pathways in Friedreich ataxia (FRDA).

Methods
Neuromagnetic signals were recorded from 16 right-handed patients with FRDA (9 female patients, mean age 27 years, mean Scale for the Assessment and Rating Of ataxia [SARA] score 22.25) and matched healthy controls while they performed right finger movements either actively or passively. The coupling between movement kinematics (i.e., acceleration) and neuromagnetic signals was assessed by the use of coherence at sensor and source levels. Such coupling, that is, the corticokinematic coherence (CKC), specifically indexes proprioceptive afferent inputs to the contralateral primary sensorimotor (cSM1) cortex. Nonparametric permutations and Spearman rank correlation test were used for statistics.

Results
In both groups of participants and movement conditions, significant coupling peaked at the cSM1 cortex. Coherence levels were 70% to 75% lower in patients with FRDA than in healthy controls in both movement conditions. In patients with FRDA, coherence levels correlated with genotype alteration (i.e., the size of GAA1 triplet expansion) and the age at symptom onset but not with disease duration or SARA score.

Conclusion
This study provides electrophysiologic evidence demonstrating that proprioceptive impairment in FRDA is mostly genetically determined and scarcely progressive after symptom onset. It also positions CKC as a reliable, robust, specific marker of proprioceptive impairment in FRDA.
Friedreich ataxia (FRDA) is a rare autosomal recessive inherited ataxia mainly caused by expanded GAA triplet repeats in the first intron of the frataxin (FXN) gene (GAA1). GAA1 triplet expansion size correlates with age at onset and disease severity.1 FRDA neuropathology affects dorsal root ganglia (DRG), posterior columns, and spinocerebellar tracts in the spinal cord, followed by progressive atrophy of the cerebellar dentate nuclei and efferent fibers,2 leading to a tabeto-cerebellar ataxic pattern.3

Neuropathology and imaging studies show that DRG and spinal abnormalities occur very early and seem stable over time, leading to the onset and initial progression of ataxia.4,5 However, DRG in patients with long disease duration still show signs of active inflammation, supporting a continuing degenerative process.5 Dissecting the developmental from the progressive components of DRG and spinal pathology is therefore a critical issue for translational research in FRDA.6

Here, we used magnetoencephalography (MEG) and corticokinematic coherence (CKC) to address that issue by objectively assessing the function of proprioceptive ascending pathways in FRDA. CKC indexes the coupling between cortical activity and movement kinematics (e.g., acceleration) during repetitive voluntary7,8 and passive9,10 movements. CKC is driven by movement-related proprioceptive afferents to contralateral primary sensorimotor (cSM1) cortex10,11 and is relatively independent of movement rate.12 Typically, CKC peaks at movement frequency and harmonics over cSM1 cortex.7–10 We expected CKC levels at cSM1 cortex to be substantially reduced in patients with FRDA and that they would correlate with GAA1 triplet expansion size, age at disease onset, clinical scores, or disease duration.

Methods

Participants

Sixteen patients with FRDA (mean age 27 years, range 9–46 years; 9 female and 7 male patients; mean Scale for the Assessment and Rating of Ataxia [SARA] score 21.4, range 9.5–30.5; mean GAA1 triplet expansion 621, range 280–910) also agreed to undergo somatosensory evoked potential (SEP) recording using electric stimulation of the right median nerve. Recording and analysis of SEPs were done as in the Naples cohort.13 except that, for comfort reasons, the 2 trials consisted of 256 rather than 1,000 epochs.

Ethics statement

All participants were included in the study after providing written informed consent. The study had prior approval by the CUB Hôpital Erasme Ethics Committee and was performed in accordance with the Declaration of Helsinki.

Experimental paradigm

The MEG experiment comprised three 5-minute conditions (active, passive, and rest) that were randomized across participants.

Figure 1 illustrates the 2 movement conditions used in this study.

In active, participants performed repetitive right index finger–thumb oppositions at a regular rate (≈2 Hz). Pauses were introduced if necessary.

In passive, a pneumatic artificial muscle (PAM) stimulator adapted from Piitulainen et al.11 induced passive flexion–extension of participants’ right index finger at 3 Hz. This stimulator consisted of an elastic PAM (DMSP-10-100 AM-CM; Festo AG & Co, Esslingen, Germany) inserted horizontally in a polyoxymethylene cylinder on which participants could rest their hand. The PAM moved in the horizontal direction (5 mm of displacement) when its internal air pressure was varied (0–4 bars). The pressure was regulated by a solenoid valve (SYS220-6LOU-01F-Q, SMC Corp, Tokyo, Japan) that was controlled by the internal MEG-stimulator system.

In active and passive conditions, participants’ finger movements were monitored with a 3-axis accelerometer (ADXL335 iMEMS Accelerometer, Analog Devices, Inc, Norwood, MA) attached to the nail of their right index finger.

In rest, participants were instructed to relax and not to move.

In all conditions, participants were instructed to gaze at a fixation point in the magnetically shielded room to avoid any eye movements or visual perception of the moving finger. They also wore earplugs to block the noise generated by finger movements or the PAM stimulator.
Data acquisition
MEG signals were recorded with a whole-scalp–covering neuromagnetometer placed in a lightweight magnetically shielded room (Vectorview & Maxshield [Elekta Oy, Helsinki, Finland] for 10 patients and 4 healthy controls, and its upgraded version with similar sensor layout, the Triux & Maxshield [MEGIN, Helsinki, Finland], for 6 patients and 12 control individuals). MEG signals were filtered at 0.1 to 330 Hz and sampled at 1 kHz. Four head-tracking coils were used to monitor participants’ head position inside the MEG helmet. The locations of the coils and at least 200 head-surface points (on scalp, nose, and face) with respect to anatomic fiducials were determined with an electromagnetic tracker (Fastrak, Polhemus, Colchester, VT) before MEG data acquisition. Acceleration signals were recorded time-locked to MEG with the use of a low pass at 330 Hz and a sampling rate of 1 kHz. High-resolution 3D T1 cerebral MRIs were acquired on a 1.5T MRI scanner (Intera, Philips, the Netherlands). Both MEG and MRI data were acquired at the CUB Hôpital Erasme.

Data preprocessing
Continuous MEG data were first preprocessed offline with the signal space separation method\(^1\)\(^4\) to suppress external interferences and to correct for head movements. Acceleration signal was computed at every time sample as the euclidian norm of the 3 band-passed accelerometer channels. Both MEG and accelerometer signals were split into 2-second epochs with 1.5-second overlap, leading to a spectral resolution of 0.5 Hz.\(^1\)\(^5\) Epochs within which the amplitude of MEG signals filtered through 0.1 to 145 Hz exceeded 3 pT (magnetometers) or 0.7 pT/cm (gradiometers) were marked as artifact contaminated and rejected from further analysis. This procedure led to a similar number of epochs (patients with FRDA: active 665 ± 126 [mean ± SD], passive 667 ± 160; healthy controls: active 755 ± 52, passive 655 ± 180) between conditions (analysis of variance [ANOVA], active vs passive \(F_{1,15} = 1.09, p = 0.44\)) and groups of participants (ANOVA, patients with FRDA vs healthy controls \(F_{2,30} = 1.38, p = 0.26\)).

Movement regularity
Movement regularity was quantified in the active condition for all participants. The principal component of the 3 high-passed (0.5 Hz) accelerometer signals was computed and then Fourier transformed. The resulting power spectrum was then smoothed with a gaussian kernel (full width at half-maximum [FWHM] 0.3 Hz). The first peak of the spectrum curve was then identified, and its FWHM was estimated. The former provided an estimate of movement frequency; the latter, an indicator of movement regularity (i.e., the smaller its value, the more regular the movements), at least under the hypothesis of movement stationarity. However, self-paced movement may present nonstationary drifts in movement frequency over the whole recording session while still being regular in the short term. Therefore, the global regularity index may lead to a false indication of irregularity. To take this possibility into account, we also estimated a short-time measure of regularity by computing the above FWHM index within 10-second-wide sliding windows and then averaging it over all windows.

Coherence analyses between accelerometer and MEG signals in sensor space
Coherence quantifies the degree of coupling between 2 signals by providing a number between 0 (no linear dependency) and...
Coherence analyses in source space

MEG forward models and individual-level coherence maps were then computed in source space following a procedure detailed in previous studies from our group\(^9\) to obtain normalized coherence maps in the Montreal Neurological Institute space for each participant, condition (active, passive), and frequency of interest. Coherence maps at the group level were subsequently produced.\(^9\)\(^-\)\(^11\)

Statistical analyses

Sensor-space coherence at the individual level
The statistical significance of individual coherence levels was assessed under the hypothesis of linear independence.\(^16\) The significance threshold \((Ct)\) is given by the following:

\[
Ct = 1 - p^{\frac{1}{L-1}}
\]

where \(p\) is the chosen significance level for individual channels and \(L\) is the number of disjoint epochs used for coherence estimation. The significance level was set to \(p < 0.05\) Bonferroni corrected for multiple comparisons (i.e., 306 channels).

Statistical differences in movement frequency, movement regularity, and coherence levels in sensor space
Differences in movement frequency (active, passive) and regularity (active) between groups of participants (patients with FRDA vs healthy controls) were assessed with a 2-sample \(t\) test. The effects of group of participants, movement conditions, and frequencies of interest on maximal sensor-level coherence were assessed with 3-way repeated-measures ANOVA. Results were considered statistically significant at \(p < 0.05\).

Source-space coherence at the group level
The statistical significance of local coherence maxima, identified in group-level coherence maps for each movement condition and frequency of interest, was assessed with a nonparametric permutation test,\(^18\) following the procedure described in reference \(7\). Statistical differences in group-level coherence maps in active and passive between healthy controls and patients with FRDA were assessed for each frequency of interest with a nonparametric permutation test similar to those previously described,\(^7\) with the only difference that group-level difference maps were obtained by subtracting healthy controls’ Fisher-transformed active or passive coherence maps with the corresponding coherence maps of patients with FRDA.

Correlation analyses of individual source-space coherence values
Spearman rank correlation tests were used to seek for possible relations between the maximum coherence levels of patients with FRDA at the cSM1 cortex for each frequency of interest and the size of GAA1 triplet expansion, SARA score, age at onset of clinical symptoms, and disease duration. Of note, the patient with point mutation in the FXN gene was excluded from the correlations with GAA1 triplet expansion. Results were considered statistically significant at \(p < 0.05\).

Data availability
Deidentified participant data will be shared, as well as the study protocol and statistical analyses, on request.

Results

Active condition
Despite identical instructions, patients with FRDA moved at a slower pace and less regularly than healthy controls (movement frequency [F0] 1.75 ± 0.5 vs 2.60 ± 1 Hz, \(p = 0.03\); stationary movement regularity 1.20 ± 1.10 vs 0.64 ± 0.35 Hz, \(p = 0.084\); short-time regularity 0.59 ± 0.14 vs 0.49 ± 0.07 Hz; \(p = 0.016\)).

Coherence at the sensor level
The table and figure 2 summarize sensor-level coherence results obtained in both groups of participants and movement conditions.

Statistically significant coherence peaked at F0 and its first harmonics (F1) in all healthy controls in the active condition and in all (F0) and 15 of 16 (F1) of them in the passive condition. All patients with FRDA displayed a significant coherence peak at F0, while 15 of 16 of them presented a significant coherence peak at F1 in the active condition. In the passive condition, significant coherence was found in 14 of 16 of patients with FRDA at F0 and in 8 of 16 of them at F1. In both groups of participants and conditions, coherence was maximal at central sensors contralateral to hand movements.

The 3-way ANOVA conducted on maximal sensor-level coherence disclosed a main effect of frequency of interest

<table>
<thead>
<tr>
<th>Table</th>
<th>Maximal coherence level at rolandic MEG sensors contralateral to finger movements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>Maximal coherence level (mean ± SD)</td>
</tr>
<tr>
<td></td>
<td>F0</td>
</tr>
<tr>
<td>Healthy controls</td>
<td>0.39 ± 0.18</td>
</tr>
<tr>
<td>Patients with FRDA</td>
<td>0.12 ± 0.08</td>
</tr>
</tbody>
</table>

Abbreviations: FRDA = Friedreich ataxia; MEG = magnetoencephalography.
(F\textsubscript{1,15} = 17.2, p = 0.001), movement condition (F\textsubscript{1,15} = 27.2, p = 0.0001), and participant group (F\textsubscript{1,15} = 20.3, p < 0.0001), an interaction between frequency of interest and movement condition (F\textsubscript{1,15} = 10.5, p = 0.006), and no other significant interaction (F\textsubscript{1,15} < 0.70, p > 0.77). This pattern of results was explained by higher CKC values in healthy controls compared with patients with FRDA and lower CKC values at F\textsubscript{1} than at F\textsubscript{0} in the passive condition. On the basis of sensor-level coherence results, only F\textsubscript{0} and F\textsubscript{1} were considered for further source-space analyses.

Coherence at the source level

To identify the neuronal networks involved in coherence in active and passive conditions, similar coherence analyses were performed at the frequencies of interest (i.e., F\textsubscript{0} and F\textsubscript{1}) at the source level. Figure 3 illustrates the results.

Active condition

In healthy controls, significant F\textsubscript{0} and F\textsubscript{1} coherence occurred at the cSM1 cortex with maximal amplitude over the hemisphere contralateral to hand movements (F\textsubscript{0}: Montreal Neurological Institute peak coordinates [−44 21 58] mm, coherence value 0.40; F\textsubscript{1} [−43 23 60], 0.38). Of note, a clear but nonsignificant local coherence maximum was also observed at the ipsilateral primary sensorimotor (iSM1) cortex ([42 31 56], 0.10). In patients with FRDA, significant F\textsubscript{0} coherence occurred at bilateral primary sensorimotor cortices with maximal amplitude over the hemisphere contralateral to hand movements (cSM1 cortex [−41 18 60], 0.10; iSM1 cortex [34 18 65], 0.08). Significant F\textsubscript{1} coherence was also found only at the cSM1 cortex ([−45 22 57], 0.10). Coherence at F\textsubscript{0} and F\textsubscript{1} over the cSM1 cortex (F\textsubscript{0} [−48 29 56]; F\textsubscript{1} [−36 17 64]) was significantly higher in healthy controls than in patients with FRDA (F\textsubscript{0}: 0.4 vs 0.10; F\textsubscript{1}: 0.38 vs 0.1).

Passive condition

In healthy controls and patients with FRDA, significant F\textsubscript{0} and F\textsubscript{1} coherence occurred at cSM1 cortex (healthy controls, F\textsubscript{0} [−45 21 58], 0.3/F\textsubscript{1} [−47 25 57], 0.10; patients with FRDA, F\textsubscript{0} [−48 19 54], 0.10/F\textsubscript{1} [−49 20 51], 0.04). At F\textsubscript{0}, coherence levels at cSM1 cortex were significantly lower in patients with FRDA compared with healthy controls (F\textsubscript{0} [−33 to 14 68], 0.10 vs 0.30), while no significant difference was observed at F\textsubscript{1}.

Correlation analyses

In patients with FRDA with GAA\textsubscript{1} triplet expansion (15 of 16 patients with FRDA), levels of cSM1 cortex coherence in active F\textsubscript{1} correlated with the age at onset (r = 0.75, p = 0.004) and with the size of GAA\textsubscript{1} triplet expansion (n = 15; r = −0.67, p = 0.001). In the passive condition, levels of F\textsubscript{1} cSM1 cortex coherence correlated only with the size of GAA\textsubscript{1} triplet expansion (n = 15; r = −0.59, p = 0.009). No other correlation appeared significant. Figure 4 illustrates those correlations. Of note, when the 2 patients with the shortest GAA\textsubscript{1} who are associated with the highest corticokinematic coherence (CKC) values at F\textsubscript{1} are removed from the analyses, correlations remain (nGAA\textsubscript{1}, active: r = −0.66, p = 0.014, passive: r = −0.56, p = 0.047; age at onset, active: r = 0.56, p = 0.047).

Somatosensory evoked potentials

N20 response was clearly identified in only 2 of 9 of the patients with FRDA who underwent classic SEP testing, with
latencies of 26.1 milliseconds and 27.7 milliseconds and amplitudes of 0.3 and 0.4 μV (normal values of the Clinical Neurophysiology Department of the CUB Hôpital Erasme for N20 latency and amplitude: 19.6 ± 1.0 milliseconds and 2.1 ± 0.9 μV, respectively).

Discussion

This study demonstrates that (1) the coupling between index-finger movement kinematics and cSM1 cortex neuromagnetic activity is reduced in patients with FRDA compared with healthy controls matched for age and sex during both active and passive finger movements, (2) CKC is a more reliable measure than SEPs in patients with FRDA, and (3) the level of coherence at cSM1 cortex in patients with FRDA correlates with the size of GAA1 triplet expansion in both active and passive at F1 but not with the SARA score or disease duration. These findings provide empirical evidence supporting that the severity of spinocortical proprioceptive pathway degeneration in FRDA is genetically determined and has little tendency to progress after disease onset. They also validate CKC as a specific and robust electrophysiologic marker of spinocortical proprioceptive pathway degeneration in FRDA.

Previous CKC studies performed in healthy controls demonstrated that CKC is robustly observed at the cSM1 cortex at the individual level during both active and passive finger movements. Furthermore, they highlighted that CKC is driven by movement-related proprioceptive afferent input to the cSM1 cortex with negligible influence of tactile input. A longitudinal study performed in a similar population also demonstrated that CKC levels at cSM1 cortex are fairly reproducible across sessions. All these findings set the rationale for using CKC to obtain an objective, reliable, and specific measure of proprioceptive pathways impairment in patients with FRDA. The working hypothesis guiding the present study was that the use of CKC would bring novel insights into FRDA pathophysiology and, more particularly, into the developmental vs the degenerative character of proprioceptive pathways impairment in this disorder.

As expected, in both active and passive conditions, CKC levels were substantially decreased in patients with FRDA (decrease by about two thirds or three quarters of the values in healthy controls). Furthermore, a negative correlation was found in both movement conditions between CKC levels at F1 and the size of GAA1 triplet expansion. These findings therefore imply that the low CKC levels observed in patients with FRDA are actually the consequence of an early and scarcely progressive, possibly developmental, pathology of spinocortical proprioceptive pathways. These results also imply that whenever genetic therapy to restore DRG and medullary
posterior column FXN level becomes available, it should be started as early as possible at the preclinical stage. However, an early proprioceptive pathology, possibly even hypoplasia, does not imply that the remaining somatosensory neurons responsible for residual proprioception in patients with FRDA would not degenerate with time and contribute to the progressive worsening of ataxia. However, CKC data indicate that, in the course of FRDA, the ongoing loss of proprioceptive pathways is likely to be minor compared with cerebellar and survival.35–38

Previous studies have demonstrated that SEPs are not reliably identified between one-third and two-thirds of patients with FRDA.13,21–26 Our finding that SEPs were visible in only 2 of 9 patients with FRDA is in line with those data. In the Naples cohort15 in whom SEPs were detectable in 36 of 52 patients, patients with FRDA had similar GAA1 repeat expansions (621 ± 225 for CUB Hôpital Erasme vs 661 ± 257 for Naples) but different disease durations (20 ± 11 vs 10 ± 7 years). However, the difference in disease duration is not likely to account for the discrepancy between our rates of recordable SEPs because in the Naples cohort N20 amplitude did not correlate with disease duration. A possible explanation for the better sensitivity of SEPs in the Naples cohort could be that, to record SEPs, those investigators averaged the neural responses elicited by 2,000 electric stimuli on each side,15 while we limited the number of electric stimuli on each side to S12, meaning that their signal-to-noise ratio was 2 times ours. Still, despite the frequent absence of SEPs in patients with FRDA, CKC was reliably recorded in all (active) or almost all (passive) patients, even when SEPs were not detectable. When measurable, the amplitude of N20 responses obtained in previous studies tended to be stable over time and correlated with the size of GAA1 triplet expansion, while the correlation with disease progression varied across studies.13,22–25,27 These findings indicate that the loss of N20 and the reduction of CKC levels share similar disease-related impairment of the somatosensory system. However, because CKC can be measured in almost all patients with FRDA, it appears as a robust, more reliable, and specific marker than SEP recordings to assess the pathology of proprioceptive pathways in FRDA. Patients with FRDA who are compound heterozygotes (GAA expansion and an FXN point mutation) display the same mixed afferent and cerebellar ataxia phenotype as homozygous patients with FRDA with GAA triplet expansion,28 so CKC can be used to assess spinocortical proprioceptive pathways alteration in these patients also. Results also suggest that CKC could be of great interest to assess impairment of proprioceptive pathways in various diseases affecting the posterior columns of the spinal cord such as multiple sclerosis,29 vitamin B12 deficiency,30 stroke,31 and medullary compression.32 Such studies would also inform about the specificity of the CKC alterations in different patient groups, including patients with FRDA. Finally, in FRDA and other genetic spinocerebellar ataxias, CKC could potentially serve to identify preclinical stages in patients in whom a genetic diagnosis was made. Indeed, in most common spinocerebellar ataxias (1, 2, 3, and 6) and in FRDA, genotypic anomalies predict only a part of age-at-onset variability, disease severity, and survival.33–35 On the other hand, in spinocerebellar ataxias, SEPs are altered as early as 8 years before symptom onset (for a review, see reference 36), which suggests that CKC, as a robust method, might help to sort presymptomatic patients and therefore play a role in the determination of the optimum time for early therapeutic intervention.

That patients with FRDA moved at a slower pace and less regularly than healthy controls in the active condition is

Figure 4 Correlations analysis

A

<table>
<thead>
<tr>
<th>Active CKC level (F1)</th>
<th>nGAA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>250</td>
</tr>
<tr>
<td>0.5</td>
<td>450</td>
</tr>
<tr>
<td>0.4</td>
<td>650</td>
</tr>
<tr>
<td>0.3</td>
<td>850</td>
</tr>
<tr>
<td>0.2</td>
<td>1050</td>
</tr>
</tbody>
</table>

Correlation: $r = -0.67$, $p = 0.001$

B

<table>
<thead>
<tr>
<th>Active CKC level (F1)</th>
<th>Age of onset (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>0.4</td>
<td>20</td>
</tr>
<tr>
<td>0.3</td>
<td>30</td>
</tr>
</tbody>
</table>

Correlation: $r = 0.75$, $p = 0.004$

C

<table>
<thead>
<tr>
<th>Passive CKC level (F1)</th>
<th>nGAA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>250</td>
</tr>
<tr>
<td>0.30</td>
<td>450</td>
</tr>
<tr>
<td>0.25</td>
<td>650</td>
</tr>
<tr>
<td>0.20</td>
<td>850</td>
</tr>
<tr>
<td>0.15</td>
<td>1050</td>
</tr>
</tbody>
</table>

Correlation: $r = -0.59$, $p = 0.009$
unlikely to explain the difference in CKC levels observed between the 2 groups. Indeed, CKC levels in active and passive conditions were similar at F0 in both groups of participants and stronger in the active condition at F1 in patients with FRDA. This (expected) difference in movement characteristics between patients with FRDA and healthy controls justifies the importance of the passive condition. The interest in the use of a metronome to pace active movements should be addressed in future studies. In active and passive conditions, CKC peaked at F0 and F1 over the cSM1 cortex in both groups of participants, which is in line with previous CKC studies performed in healthy individuals.7,9,10 Our finding that, in the active condition, local CKC maxima at the iSM1 cortex were significant only in patients with FRDA is explained by the statistical approach used in this study. Indeed, permutation tests may be too conservative (type II error) for voxels other than those with high coherence levels.18 In patients with FRDA, CKC levels at cSM1 cortex were much lower than those observed in healthy controls, explaining why CKC levels at the iSM1 cortex appeared significant in patients with FRDA and not in healthy controls.

The neural bases of CKC at F0 and F1 are still debated. Either F0 and F1 CKC may reflect cortical processing of different movement kinematics features, or F1 may be due to nonsinusoidal cortical activity at F0, leading to coherence at twice F0.7 In repetitive index-finger movements such as those used in this study, F0 is likely to reflect cycles of index finger flexions/extensions and corresponding proprioceptive signals, while F1 might reflect the contraction/relaxation of agonist and antagonist muscles during both flexion and extension. This difference between F0 and F1 CKC might explain why the CKC levels at cSM1 cortex of patients with FRDA correlated with the size of GAA1 triplet expansion and the age at onset better at F1 than at F0. In addition, the absence of a significant difference between healthy controls and patients with FRDA at F1 in the passive condition is probably related to the relatively weak coherence at F1 observed in healthy controls and to the variability of this frequency in patients with FRDA.

FRDA is a complex neurogenetic disorder that involves mainly degeneration of proprioceptive afferent and cerebellar pathways. Clinical rating scales are able to capture the progression of cerebellar impairment, but the involvement of proprioceptive pathways is less well quantified clinically, hence the need for robust markers of proprioceptive impairment. We provided electrophysiologic evidence that spinocortical proprioceptive impairment in FRDA is mostly genetically determined and scarcely progressive after symptom onset. We also demonstrate that CKC represents a reliable and robust individual-level marker of spinocortical proprioceptive loss in FRDA. CKC may therefore represent a useful addition to the armamentarium of FRDA clinical evaluation to assess the natural history of this disorder and the efficacy of dedicated early therapeutic approaches.

Study funding
This study was financially supported by the research grant “Les Voies du Savoir” from the Fonds Erasme (Brussels, Belgium), the Fonds de la Recherche Scientifique (Brussels, Belgium; research credit: J.0095.16.F), and a research grant from the Friedreich Ataxia Research Alliance (Drs. Pandolfo, Gaetz, and Lynch). Gilles Naeije was supported by a research grant from the Fonds Erasme (Brussels, Belgium). Mathieu Bourguignon was supported by the program Attract of Innoviris (grant 2015-BB2B-10), by the Spanish Ministry of Economy and Competitiveness (grant PSI2016-77175-P), and by the Marie Skłodowska-Curie Action of the European Commission (grant 743562). Xavier De Tiège and Gilles Naeije are Postdoctorate Clinical Master Specialists at the Fonds de la Recherche Scientifique (Brussels, Belgium). The MEG project at the CUB Hôpital Erasme is financially supported by the Fonds Erasme (research grant “Les Voies du Savoir”, Brussels, Belgium). The accelerometer and PAM stimulator were designed and manufactured at Aalto NeuroImaging, Aalto University, Finland.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Publication history
Received by Neurology September 27, 2018. Accepted in final form February 25, 2019.

Appendix
Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Role</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilles Naeije, MD, PhD</td>
<td>Université libre de Bruxelles (ULB), Brussels, Belgium</td>
<td>Author</td>
<td>Designed and conceptualized study; conducted the experiments; analyzed the data; wrote the manuscript; designed figure 4; wrote the revisions.</td>
</tr>
<tr>
<td>Brice Marty, PhD</td>
<td>Université libre de Bruxelles (ULB), Brussels, Belgium</td>
<td>Author</td>
<td>Conducted the experiments; analyzed the data; contributed to the writing of Methods, Results, and figures 1 through 3 legends; designed figures 1 through 3.</td>
</tr>
<tr>
<td>Mathieu Bourguignon, PhD</td>
<td>Université libre de Bruxelles (ULB), Brussels, Belgium</td>
<td>Author</td>
<td>Analyzed the data; drafted the manuscript for intellectual content.</td>
</tr>
<tr>
<td>Vincent Wens, PhD</td>
<td>Université libre de Bruxelles (ULB), Brussels, Belgium</td>
<td>Author</td>
<td>Analyzed the data; drafted the manuscript for intellectual content.</td>
</tr>
<tr>
<td>Veikko Jousmäki, PhD</td>
<td>School of Science, Aalto University, Espoo, Finland</td>
<td>Author</td>
<td>Designed and provided the PAM stimulator; provided input for research design and interpretation; drafted the manuscript for intellectual content.</td>
</tr>
</tbody>
</table>

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
Appendix (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Role</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>David R Lynch, MD, PhD</td>
<td>Children’s Hospital of Philadelphia, PA</td>
<td>Author</td>
<td>Drafted the manuscript for intellectual content.</td>
</tr>
<tr>
<td>William Gaetz, PhD</td>
<td>Children’s Hospital of Philadelphia, PA</td>
<td>Author</td>
<td>Provided input for research design and interpretation; drafted the manuscript for intellectual content.</td>
</tr>
<tr>
<td>Serge Goldman, MD, PhD</td>
<td>Université libre de Bruxelles (ULB), Brussels, Belgium</td>
<td>Author</td>
<td>Drafted the manuscript for intellectual content; provided input for research design and interpretation.</td>
</tr>
<tr>
<td>Riitta Hari, MD, PhD</td>
<td>Department of Art, Aalto University, Helsinki, Finland</td>
<td>Author</td>
<td>Drafted the manuscript for intellectual content; provided input for research design and interpretation.</td>
</tr>
<tr>
<td>Massimo Pandolfo, MD, PhD</td>
<td>Université libre de Bruxelles (ULB), Brussels, Belgium</td>
<td>Author</td>
<td>Designed and conceptualized the study; drafted the manuscript for intellectual content; provided input for research design and interpretation.</td>
</tr>
<tr>
<td>Xavier De Tiége, MD, PhD</td>
<td>Université libre de Bruxelles (ULB), Brussels, Belgium</td>
<td>Author</td>
<td>Designed and conceptualized the study; wrote the manuscript; drafted the manuscript for intellectual content; provided input for research design and interpretation; contributed to the revisions.</td>
</tr>
</tbody>
</table>

References

Evidence for genetically determined degeneration of proprioceptive tracts in Friedreich ataxia
Brice Marty, Gilles Naeije, Mathieu Bourguignon, et al.
Neurology published online June 13, 2019
DOI 10.1212/WNL.0000000000007750

This information is current as of June 13, 2019

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2019/06/13/WNL.0000000000007750.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
Gait disorders/ataxia
http://n.neurology.org/cgi/collection/gait_disorders_ataxia
Spinocerebellar ataxia
http://n.neurology.org/cgi/collection/spinocerebellar_ataxia
Trinucleotide repeat diseases
http://n.neurology.org/cgi/collection/trinucleotide_repeat_diseases

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise