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Abstract—The main target of this paper is to propose a
preferred set of features from a cellular network for using
as predictors to do the classification between the flying drone
User Equipments (UEs) and regular UEs for different Machine
Learning (ML) models. Furthermore, the target is to study
four different machine learning models i.e. Decision Tree (DT),
Logistic Regression (LR). Discriminant Analysis (DA) and K-
Nearest Neighbour (KNN) in this paper, and evaluate/compare
their performance in terms of identifying the flying drone UE
using three performance metrics i.e. True Positive Rate (TPR),
False Positive Rate (FPR) and area under Receiver Operating
Characteristic (ROC) curve. The simulations are performed using
an agreed 3GPP scenario, and a MATLAB machine learning tool
box. All considered ML models provide high drone detection
probability for drones flying at 60 m and above height. However,
the true drone detection probability degrades for drones at lower
altitude. Whereas, the fine DT method and the coarse KNN model
performs relatively better compared with LR and DA at low
altitude, and therefore can be considered as a preferable choice
for a drone classification problem.

Index Terms—UAV; Drone; Machine learning; 5G; Cellular
networks.

I. INTRODUCTION

Unmanned aerial vehicle (UAV), known as drones are
widely used for military applications, border surveillance,
foresting and agriculture, monitoring, for search and rescue in
emergency operations, and for a personal hobby [1]. The use of
drone can potentially and dramatically improve the rescue op-
eration and hence can reduce the number of human casualties.
In case of personal drone usage, most of the drone applications
are short range and are only suitable in a visual line of sight
with the drone. In order to extend the operational range of the
drone, recently the manufactures are providing the support of
Long Term Evolution (LTE) connectivity for controlling the
drone and for sending and receiving the data. Drones equipped
with high-definition cameras and LTE connectivity are able to
transmit live video streams [2], [3].

Cellular-connected drones provide large operational cover-
age, high speed for data transfer, robust security, and real
time communications. However, it should be noted that the
current cellular network was designed to provide services for
users located at the ground, and the current cellular networks
have not been designed to serve aerial users. The ground-to-
drone communication is significantly different from traditional
ground-to-ground links. Indeed, there is a strong relationship

between the channel characteristics and the flying altitude [4].
As the height above ground increases, the radio propagation
becomes closer to Line of Sight (LOS) free-space propagation.
Thus, the drone experiences more favorable propagation condi-
tions. On the other hand, the favorable propagation conditions
that drones enjoy at high altitude also becomes their limiting
factor due interference issue. High flying drone is visible
to more number of Base Stations (BS) and hence causes
strong interference in uplink direction, and a UE receives
strong interference from the interfering BSs. Therefore, the
interfering signals can be strong if they are not controlled
satisfactorily. This kind of problem is faced in real mobile
networks, and therefore requires a measure to limit the use of
cellular services by flying drones. A wide-scale deployment of
drones can be realized if interference management challenges
are addressed properly [3], [5].

In order to provide good QoS for regular UEs and for
drone UEs, the mobile operator needs to identify/classify them
correctly. Classification based on Machine Learning (ML) is
a two-step process, first is the learning step and second is
the prediction step. In the learning step, the model is devel-
oped/trained based on the given training data. In the prediction
step, the trained model is used to predict the response for
the given data [6]–[8]. The main target of this paper is to
extend the work done in [9], and the main contribution of
this paper is to propose a set of features which is to be
used by ML approaches to identify the flying drones in the
mobile networks. The selected set of features is based on
the radio measurement reports transmitted by the drones. The
second target of this paper is to compare the performance of
four machine learning schemes namely Decision Tree (DT),
Logistic Regression (LR), Discriminant Analysis, and K-
nearest neighbours (KNN) in terms of classifying between the
drone UE and regular UE.

The remainder of this paper is as follows. In Section II, we
describe the proposed methods and the evaluation methodol-
ogy. In Section III, we present the simulation environment and
evaluation results for the proposed machine learning solutions
followed by the conclusion in Section IV.

II. MACHINE LEARNING APPROACHES

In this section, we briefly explain different machine learning
approaches those are considered in this paper for analysis.



A. Decision Tree (DT)

A Decision tree (DT) is a supervised learning method that
can be applied to both classification and regression problems.
The Decision tree algorithm is easy to interpret and has a fast
prediction speed and requires small memory usage. A DT is
a flow chart like tree structure composed of the root node,
internal node, branch and the leaf node [6], [7]. The topmost
node in a decision tree is known as the root node, and the
leaf node represents the class/label or the final outcome of the
decision tree. The root node has no incoming edges and the
leaf node has no outgoing edges. The internal node represents
the test conditions or the decision rule on an attribute, and the
branch represents the outcome of that test. The machine learns
to partition the data on the basis of the feature/attributes. The
best feature is selected using the Feature Selection Measures
(FSM) in order to split the data sets. The feature selection
measure is a heuristic way of selecting the splitting metric
that the data is partitioned in the best possible manner. The
FSM provides a rank for each feature, and the feature with
the best score is selected as a splitting feature [6], [7]. In this
paper, we have evaluated three variants of decision tree (DT)
algorithm named as Fine, Medium and Coarse decision tree
algorithm. This classification of DT algorithm depends upon
the number of leaves used to make distinction between the
classes. In coarse DT approach the maximum number of split
is 4, whereas in medium and fine DT algorithm the maximum
number of split is increased to 20 and 100, respectively [10].

B. Logistic Regression (LR)

The logistic regression (LR) is a method for classifying a
given input vector x = (x1, x2, ..., xn) into one of two classes.
Logistic regression is applicable to only dichotomous nature
of the classification problems. It is based on a model that the
logarithm of the odds of belonging to one class is a linear
function of the feature vector used for classification shown as
follows [11].

ln(
p

1− p
) = α+ β1x1 + β2x2 + ...+ βnxn. (1)

As the LR is applicable to only dichotomous problems there-
fore in Eq. 1 the p is the probability of belonging to one (odd)
class and p−1 is the probability of belonging to another (even)
class, and the fraction p

1−p is defined as the odds ratio. In Eq. 1
the α and β1, β2, ..., βn are regression coefficients/weights
and those are estimated based on the input feature data. The
most widely used method to estimate these coefficients is the
maximum likelihood. Hence, the LR predicts the probability of
an outcome which can have only two values, and its probability
is limited to values between 0 and 1.

C. Discriminant Analysis (DA)

Unlike the LR method, whose application is limited to
classification problems with only two-classes, the Discriminant
Analysis (DA) approach can be applied for problems with
more than or equal to two classes. There are two types of
discriminant analysis considered in this paper and those are

named as Linear DA and Quadratic DA. In case of linear DA
there are linear boundaries between the classes, whereas there
are non-linear boundaries of an ellipse, parabola or hyperbola
shape between the classes in quadratic DA [10], [12]. The DA
is based on the statistical properties of the data for each class
and is based on simplified assumptions. The LDA assumes
that the data within each class has a Gaussian distribution and
each feature has the same variance. Quadratic discriminant
analysis (QDA) provides an alternative approach. Like LDA,
the QDA classifier also assumes that the data from each class
has Gaussian distribution. However, unlike LDA the QDA
assumes that each class has its own variance matrix.

D. K-Nearest Neighbours (KNN)

K-nearest neighbour (KNN) is a classification and super-
vised learning algorithm. The nearest neighbor classification
approach has good predictive accuracy, however it takes com-
paratively longer time to get trained in comparison with earlier
mentioned ML algorithms. In this method, the prediction for
a new input x is made through searching the entire training
set for the K most similar neighbors [8], [10]. The distance
metric is utilized to determine which of the K instances in
the training dataset are most similar to a new input. The most
popular distance metric is Euclidean distance. The value for K
is determined through algorithm tuning. Again, three variants
of KNN are considered in this paper named as fine, medium
and coarse KNN approaches. This sub-classification of KNN
algorithm depends upon the number of neighbors used to make
distinction between the classes. In coarse KNN method the
number of neighbor is set to 100, whereas in medium and
fine KNN method the number of neighbors is set to 10 and
1, respectively. Increasing the number of neighbors increases
the prediction accuracy, on the other hand it also increases the
training time and reduces the prediction speed [10].

III. SIMULATION METHODOLOGY

A. Simulation Environment and Problem Definition

The target of this work is to detect the rogue drone
utilizing cellular services by using an optimum feature set
and ML algorithm. The MATLAB is used as a simulation
tool, both for generating the data and for analyzing the
performance of different ML approaches in achieving the
target. For this research work, static simulations are performed
with considerable amount of test points in an agreed 3GPP
scenario. An urban environment with homogeneous macro
cell deployment is considered. A cloverleaf tessellation with
a regular hexagonal grid is used with nineteen macro sites
having an intersite distance of 500 m. Where, each macro
site has three sectors with fixed 120◦ angular separation in an
azimuth plane as shown in Fig. 1. The base station antennas
are mounted at the height of 25 m above the ground. The
frequency of operation is 2 GHz utilizing 10 MHz system
bandwidth. There are two main types of User Equipments
(UEs) considered in this work i.e. drone UEs and regular
UEs. The regular UEs are further sub-classified as outdoor
ground UEs in Non-Line of Sight (NLOS) environment and
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Fig. 1. Simulation scenario.

indoor UEs at different heights i.e. 1.5 m, 11.5 m, 21.5 m,
and 31.5 m in NLOS with BS. Similarly, in each simulation
scenario the drone UEs are set at the height of 15 m, 30 m,
60 m, 120 m, 200 m and 300 m. It is assumed that drone UEs
are in NLOS with BS at 15 m and 30 m height, whereas they
are in LOS with BS at 60m and above height. The detailed
description about the pathloss and channel models used for
drone and regular UEs can be found at [13] and [14]. The
focus area for collecting the simulation data is the central site
with cell number 1, 2 and 3. There are 27084 samples of each
UE type, and those UEs are homogeneously distributed in a
focus area. The classification learner app of MATLAB is used
to test different machine learning algorithms. We have used
the 75% of the total data to train the model and 25% of the
data is used to test the trained model for classifying the user
as drone UE or regular UE. The summary of the simulation
parameters is provided in Table. I.

TABLE I
GENERAL SIMULATION PARAMETERS

Parameters Unit Value
Network layout Cloverleaf
Number of sites No. 19
Cells per site No. 3
Intersite distance m 500
Frequency GHz 2
System bandwidth MHz 10
Cell TX power dBm 46
TX antenna height m 25
UE type Drone/Regular
Antenna model 3GPP extended model [15]

An extended 3GPP antenna model proposed in [15] is
used to model the antenna radiation pattern in horizontal
and vertical domain. The key parameters used in modelling
the antenna pattern are Half Power Beamwidth (HPBW) in
horizontal domain (θH ), HPBW in vertical domain (θV ), Front
to Back ratio in horizontal domain (FBRH ), Side Lobe Level
in vertical domain (SLLV ), and antenna maximum gain (AM ).

The summary of antenna parameters used in this paper is given
in Table. II. The main target of the cellular network is to serve
the regular users. As the intersite distance is 500 m, therefore
the antennas of all cells are downtilted by 6◦ to limit the
coverage of the cell, and to avoid overshooting.

TABLE II
3GPP ANTENNA MODEL PARAMETERS

θH θV FBRH SLLV AM

[◦] [◦] [dB] [dB] [dBi]
65 7 30 -18 17.7

B. Features For Training the Model
It is of critical importance to select the correct set of features

for training the machine learning algorithm. These features
should be available at BS through measurement reports. In
this paper, the following three features are considered:

1) Received Signal Strength Indicator (RSSI): It is defined
as the sum of the power coming from the serving cell and from
the interfering cells, plus the noise available over the system
bandwidth.

2) Signal to Interference plus Noise Ratio (SINR): It is the
ratio of the signal power coming from the serving cell to the
sum of the power coming from the interfering cells plus noise.

3) Number of reported cells: It is defined as the number
of cells for which the UE is making a measurement report.
Normally, a UE reports Reference Signal Received Power
(RSRP) of the serving cell and of the neighbouring cells with
a given measurement threshold with respect to a serving cell.
The selection of this feature is based on the fact that high flying
drones are expected to be in LOS with numerous cells, and
hence it is expected that drone UEs will have comparatively
bad SINR compared with regular UEs. Similarly, in case of
high flying drones it is expected to have more number of cells
within the overlapping window of certain dBs of a threshold
with respect to a received power from a serving cell. Therefore,
the number of reported cells will be vital in classifying the type
of UEs. The combination of these features is used to classify
between the regular UE and drone UE.

The Fig. 2(a) shows the number of reported cells in the focus
zone for outdoor NLOS regular ground UE, whereas Fig. 2(b-
d) show the number of reported cells for the drone UE flying at
different heights i.e. 30 m, 120 m, and 300 m, respectively. The
color bar shows the number of reported cells. The number of
reported cells varies over a wide range. However, the number
of reported cells greater than or equal to four is treated as four
in Fig. 2 for better visualization. It is interesting to compare
Fig. 2(a) and Fig. 2(b) as drone UE was flying at low altitude
of 15 m, therefore the number of reported cell profile of
drone UE at 15 m height is quite similar to a regular ground
UE. However, in Fig. 2(c-d) it is clearly evident that at high
altitudes the drone UE is visible to far more number of BSs
and hence the number of reported cells is high in case of high
flying drones. These results make this feature an interesting
choice for the authors to consider it as a part of the feature
set for a drone classification problem using machine learning.



(a) (b)

(c) (d)

Fig. 2. Number of reported cells within 5 dB threshold, (a) Regular ground UE in NLOS with BS in outdoor environment, (b) Drone UE at 30 m height in
NLOS with BS , (c) Drone UE at 120 m height in LOS with BS, and (d) Drone UE at 300 m height in LOS with BS.

C. Performance Metrics

This section defines the performance metrics used for the as-
sessment of different machine learning approaches. The target
of this paper is to identify the drone UE as drone UE, therefore
the drone detection probability or True Positive Rate (TPR) is
considered as one main performance metric. Secondly, it is
of equal importance to avoid detecting regular UE as drone
UE in order to avoid any unpleasant experience for regular
UE. Therefore, the Fale Positive Rate (FPR) is used as second
performance metric in this paper. It is essential to use both
of these metrics together for checking the performance of
machine learning approaches. The objective is to achieve the
highest TPR while maintaining the lowest FPR. The TPR and
FPR in percentage are defined as given in Eq. 2 and Eq. 3,
respectively.

TPR =
TP

TP + FN
∗ 100. (2)

FPR =
FP

FP + TN
∗ 100. (3)

In Eq. 2, TP denotes a number of samples with True Positive
value and FN denotes the number of samples with False

Negative value. True positive means detecting drone UE as
drone UE, whereas false negative means detecting drone UE
as ground UE. Similarly, in Eq. 3 the FP denotes a number of
samples with False Positive value and TN denotes the number
of samples with True Negative value. Here the false positive
means detecting the ground UE as a drone UE, and a true
negative means detecting the ground UE as a ground UE. The
third performance metric included in this paper is the Area
Under ROC Curve (AUC), where ROC stands for Receiver
Operating Characteristic. The value of AUC corresponds to
the probability of correctly detecting which of the UE is drone
type and which of the UE is regular type. The value of AUC
lies in the range of 0 and 1.The AUC value of 1 corresponds
to the ability of the machine learning approach to perfectly
classify the UE as a drone UE or a regular UE. The goal is to
achieve as high value of AUC as possible. Higher the value
of AUC, the better is the prediction performance of the ML
algorithm.

IV. SIMULATION RESULTS AND DISCUSSION

This section provides simulation results and discusses about
the performance comparison of four different approaches of
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Fig. 3. Drone detection, (a) True positive rate (TPR), and (b) False positive rate (FPR).

ML algorithms. As mentioned earlier in Section II that differ-
ent variants of decision tree (DT), discriminant analysis (DA),
and K-nearest neighbour (KNN) are considered in this paper.
However, due to limited space and for better visualization, the
results of only best performing variant of each ML approach
are shown here. The post analysis of the acquired results
revealed that in terms of considered performance metrics the
fine DT, quadratic DA, and the coarse KNN method provides
the best results among their class variants. Therefore, later the
results presented in Fig. 3 and Fig. 4 are with respect to fine
DT, quadratic DA, and coarse KNN methods.

The Fig. 3(a) and Fig. 3(b) show the TPR and FPR of
different ML approaches for drone detection as a function
of drone altitude. The target is to achieve high TPR while
maintaining as low FPR as possible, preferably zero or close
to zero. Therefore, it is important to analyze both the Fig. 3(a)
and Fig. 3(b) together. It is possible to achieve high probability
of detecting a drone correctly with a high false positive rate.
As it is shown in Fig. 3(a) that with DA method the TPR is
83% and 71.7% for drone flying at 15 m and 30 m altitude,
respectively. However, in Fig. 3(b) the FPR is around a high
value of 17.1% and 2.9% at 15 m and 30 m altitude. On the
other hand, DT and KNN methods have shown some resem-
blance in their performance for all considered drone heights.
The achieved TPR is 54.9% and 92% with DT method, given
the FPR of 4.3% and 2% for 15 m and 30 m high flying
drones, respectively. Whereas, the KNN offers the TPR of
62.4% and 91.3% while keeping the FPR of 5.2% and 1.3%
for 15 m and 30 m high flying drones, respectively. In [9], it
was shown that with their given features set and ML algorithm,
the drone detection probability was limited to 5% and 40%
while meeting the zero FPR at the height of 15 m and 30 m,
respectively. It clearly shows that the features set considered
in this paper is strong and handy compared the one provided
at [9]. For low flying drones the logistic regression method
performs significantly worse than other ML approaches. All

the considered ML approaches show good results for drone
flying at 60 m and above heights as shown in Fig. 3(a) and
Fig. 3(b). At low height the radio propagation condition of
the regular UE is similar to the flying drone UE, therefore
it is difficult and challenging to distinguish between them.
Whereas, high flying drones have different radio characteristics
from regular ground UEs or indoor UEs, and hence the TPR is
high for all ML approaches at high altitudes. In [9], the drone
detection probability is around 90%, whereas in this paper DT,
LR, and KNN has a drone detection probability of above 99%
with small FPR of 0.5% or less. It is difficult to rate the better
one between the DT and KNN method.

Fig. 4 shows area under ROC curve (AUC) for different
ML approaches. The AUC curve can be considered as a
good accuracy indicator and it is a measure of quality of the
classifier. It is already stated and shown earlier that the fine
DT and the coarse KNN method showed an almost identical
performance, and it can also be seen in Fig. 4 as AUC value if
0.95 for coarse KNN and 0.94 for fine DT for detecting 15 m
high flying drone. The value of AUC for these two approaches
is raised to 0.99 for 30 m high flying drones, and then for the
rest of the drone heights the AUC value is 1. The AUC result
shown in Fig. 4 shows that for high flying drones i.e. 60 m
and above heights all of the considered ML approaches had
shown a similar performance and were able to detect drone
properly. However, it is difficult and critical to detect the low
flying drones, and for low flying drones DT and KNN are the
two preferred approaches with a feature set considered in this
paper. In the light of the performance results acquired in this
paper, the fine DT and coarse KNN is ranked as best suited
ML approach for drone classification, and it is followed by
quadratic DA and finally the LR method is placed at the last
place. Finally, the summary of TPR and FPR results of all
considered ML approaches is given in Table III.



TABLE III
SUMMARY OF PERFORMANCE RESULTS OF DIFFERENT MACHINE LEARNING ALGORITHMS

Case Fine DT Med DT Coarse DT LR Linear DA Quadratic DA Fine KNN Med KNN Coarse KNN
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

15m 54.9 4.3 74.1 9.5 12.0 0.9 32.3 8.4 49.9 14.4 83.0 17.1 59.3 8.0 57.8 5.1 62.4 5.2
30m 92.0 2.0 83.8 1.7 73.9 2.5 1.6 7.1 3.0 13.8 71.7 2.9 88.8 2.1 90.5 1.1 91.3 1.3
60m 99.2 0.4 98.5 0.6 95.6 1.9 99.1 0.4 100.0 9.0 96.3 0.6 98.2 0.3 99.3 0.3 99.7 0.5
120m 97.8 0.6 97.9 1.4 96.8 3.3 97.7 0.8 98.7 7.2 96.6 0.9 96.8 0.6 98.2 0.6 98.9 1.0
200m 97.9 0.8 96.8 1.3 90.9 2.1 97.0 1.0 99.8 8.6 96.8 1.5 95.8 0.8 98.2 0.7 98.8 0.9
300m 96.8 0.8 95.4 1.0 89.9 2.1 96.0 1.3 98.4 7.9 97.1 1.9 95.5 0.9 96.6 0.7 97.7 0.1
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Fig. 4. Area under ROC curve.

V. CONCLUSION

In this paper, we have proposed a suitable set of features for
machine learning models and have compared the performance
of four different ML algorithms in identifying the flying
drones in a mobile network. The feature set includes the
RSSI, SINR, and the number of reported cells with 5 dB
overlapping window with respect to the serving cell received
power. In this paper, different variants of four considered ML
algorithms were evaluated by using a homogeneous macro-
cellular network in an agreed 3GPP scenario. Simulation data
was acquired using static drone User Equipments (UEs) at
different height and other regular UEs in an outdoor and indoor
environment. It was found that at 60 m and above height
the decision tree, logistic regression, and K-nearest neighbour
has a drone detection probability or in other words the true
positive rate of above 99% with a small false positive rate
of 0.5% or less. However, the drone detection probability
degrades at lower drone heights. The acquired simulation
results showed the TPR of 54.9% and 92% with DT method,
while maintaining the FPR of 4.3% and 2% for 15 m and
30 m high flying drones, respectively. Similarly, the KNN
offered the TPR of 62.4% and 91.3% while keeping the FPR
of 5.2% and 1.3% for 15 m and 30 m high flying drones,
respectively. Therefore, the DT and the KNN are the two
preferred approaches with a feature set proposed in this paper
for identifying the flying drone with good TPR and FPR
values.
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