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Near-optimal dispatching policy for energy-aware server

clusters

Samuli Aalto, Pasi Lassila

Department of Communications and Networking, Aalto University, Finland

Abstract

A server cluster can be modeled as a set of parallel queues, and the dis-
patcher decides to which queue the arriving jobs are routed. We consider an
energy-aware dispatching system in a Markovian setting, where each server,
upon becoming empty, enters a sleep mode to save energy, and to activate
the server after sleep incurs an additional setup delay cost. We seek to op-
timize the performance-energy trade-off by applying the so-called Whittle
index approach. As our main result, we derive sufficient conditions for the
system parameters under which the problem is provably indexable, and also
determine the corresponding Whittle index values explicitly. Our numerical
experiments demonstrate that the resulting energy-aware Whittle index pol-
icy is able to perform very close to the numerically solved optimal policy and
outperforms all considered reference policies.

Keywords: Optimal dispatching, task assignment, server cluster,
energy-aware server, InstantOff, Whittle index, indexability

1. Introduction

Server clusters processing huge volumes of computational jobs comprise
the core of modern data centers and cloud computing systems. Hierarchical
stochastic queuing models, such as multi-server systems with a central queue
or distributed systems with multiple parallel servers and queues, are reason-
able for the mathematical modeling of such server clusters [13], and allow
fundamental insights to be obtained for optimal job processing.

In this paper, we consider a distributed system of parallel servers with
their own queues where an arriving job is dispatched to one of the servers
upon arrival. Dispatching (a.k.a. task assignment) problems belong to the
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optimal control problems for parallel server systems [13]. However, there are
very few exact optimality results available. Maybe the most well-known is
the optimality of the Join-Shortest-Queue (JSQ) policy in a homogeneous
setting where all the servers have the same service rate, originally proved
for exponential service times in [31] and thereafter generalized to any service
time distributions with a non-decreasing hazard rate in [27].

One approach presented in the literature to produce near-optimal dis-
patching policies is to utilize the policy iteration algorithm from the theory
of Markov decision processes [25]. In policy iteration, the optimal policy is
solved iteratively starting from a given initial policy. At each step, the policy
is improved by optimizing in each state the action based on their immediate
and future costs. In particular with Poisson arrivals, the first policy iteration
(FPI) step can sometimes be made explicitly, see, e.g., [30, 3, 4, 15].

In all papers mentioned above, the servers are assumed to be ordinary
ones alternating between busy and idle states. In this paper, we are, however,
more interested in energy-aware servers that can be switched off (without
any delay) to save energy but, on the other hand, incur a setup delay when
switched back on. In [7], such servers were called InstantOff servers, while
the ordinary ones were referred to as NeverOff servers. In [23, 10, 9, 11], it
was shown, under various assumptions, that the optimal sleep state control
policy for a single server is either InstantOff or NeverOff. The FPI approach
has been applied also for the dispatching problem in the context of such
energy-aware InstantOff servers, see, e.g., [18, 17, 16, 12, 19, 14].

In this paper, instead of the FPI approach, we apply the Whittle index
approach to the energy-aware dispatching problem in order to generate alter-
native near-optimal control policies. This approach was originally developed
in the context of restless bandits [29]. The idea is that the constrained op-
timization problem with exactly one activated bandit in each time epoch,
which is known to be mathematically intractable, is first relaxed by allowing
to activate a varying number of bandits and only requiring that one ban-
dit is activated on average. This makes the problem much more tractable
by decomposing it to separate subproblems per each bandit. The related
Lagrangian relaxation parameter can be interpreted as the price of passiv-
ity. While the problem becomes separable, it is, however, not clear, a priori,
whether the problem is indexable, or not. Briefly said, indexability means
that, for each state of a single bandit, there is a unique threshold value of
the Lagrangian relaxation parameter such that for lower [higher] values of
this parameter the optimal decision in the relaxed problem is to be passive

2



[active]. In addition, such a unique threshold is called the Whittle index at
this state of the related bandit. If the problem is indexable, the resulting
Whittle index policy is known to be asymptotically optimal, at least under
certain technical conditions [28, 26].

The Whittle index approach has successfully been applied, e.g., to the op-
portunistic scheduling problems in [5, 21, 6, 2]. To the dispatching problem,
it has also been successfully applied, e.g., in [24, 4, 22], however, without the
energy aspect. Niño-Mora [24] managed to apply the Whittle index approach
to the dispatching problem in a successful way when the queues behave as
one-dimensional birth-death processes with a finite state space. Argon et
al. [4] assumed that the queues behave as ordinary M/M/1 queues with an
infinite state space. They also managed to show the indexability property
for a large class of cost functions (including the linear holding costs) and
derive the corresponding index values. Larrañaga et al. [22] considered dis-
patching problems where the queues behave as one-dimensional birth-death
processes with an infinite state space. They characterized the index under
the conjecture that the optimal policy is of threshold type.

Our target in this paper is to derive near-optimal policies by applying the
Whittle index approach for dispatching problems where the queues behave
as energy-aware M/M/1 queues provided with InstantOff servers, which is an
essentially more complicated task than for the ordinary M/M/1 queues (or
more general birth-death processes) due to the two-dimensional state space.
To study the performance-energy trade-off in such systems, we assume en-
ergy costs in addition to normal linear holding costs. We derive sufficient
and realistic conditions for the system parameters under which the prob-
lem is provably indexable and also determine the corresponding index values
explicitly.

An earlier version of the paper appeared in Proceedings of ITC 30 [1],
where we proved the indexability property for the systems with sufficiently
short setup delays, which, however, may not be a realistic assumption. In
the present paper, we manage to find sufficient conditions for indexability
that allow longer (and, thus, more realistic) setup delays. The original proof
of indexability presented in [1] relied on establishing a certain ordering of the
states in the two-dimensional state space. In the present paper, we show that
a set of successively looser conditions on the mean length of the setup delay
can be determined under which the problem still remains indexable. The
challenge in the proof is that the ordering of the states in the two-dimensional
state space changes along the system parameters. Our conditions essentially
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mean that for fixed values of all other system parameters except the total
arrival rate of jobs, there is always a lower bound on the total arrival rate
such that indexability is guaranteed above that. In other words, indexability
is guaranteed if the total load is high enough.

The performance of the Whittle index policy is illustrated by an extensive
set of numerical experiments. For a small system with only two servers, we
demonstrate that the resulting energy-aware Whittle index policy is indeed
able to perform very close to the numerically obtained optimal policy and
outperforms all other reference policies (FPI, JSQ, and the static load bal-
ancing policy). Similarly, in several scenarios involving a larger system with
10 servers, the Whittle index policy always performs best with respect to
the holding costs, but typically the FPI policy can yield a lower energy con-
sumption. However, with respect to the total costs, the Whittle index policy
is clearly better than any of the reference policies in all our experiments.

The rest of the paper is organized as follows. The energy-aware dis-
patching problem and the Whittle index approach to tackle it by utilizing a
relaxation of the original problem, are described in more detail in Sections 2
and 3, respectively. In Section 4, we describe how to get sufficient conditions
for indexability, and present the main result of the paper, which includes
explicit expressions for the related Whittle index values. The main result is
thereafter proved piecewise in Sections 5 and 6. In Section 7, we introduce
the energy-aware Whittle index policy for the original dispatching problem,
and compare it numerically with the FPI dispatcing policy and the ordinary
JSQ rule in Section 8. Finally, Section 9 concludes the paper.

The paper is provided with Supplemetary material available online, which
includes the proofs of the main results and also some auxiliary results with
their proofs, which play a central role in the proof of the main results.

2. Energy-aware dispatching problem

We consider the following energy-aware dispatching problem. New jobs
arrive according to a Poisson process with rate λ. At the arrival time, the
job is dispatched to one of K parallel servers, each provided with an infinite
buffer. Each server i is an exponential server with rate µi, i.e., the service
time of any job in this server is independently and exponentially distributed
with mean E[Si] = 1/µi. A necessary stability condition for such a system
is given by λ <

∑K
i=1 µi.
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The server is said to be busy when it is processing jobs. When server i
has processed all the jobs and its buffer becomes empty, it is immediately
switched off. Server i remains switched-off until a new job is dispatched to it,
after which it still needs an exponential setup phase with mean E[Di] = 1/δi,
before becoming busy again. In line with [7], such servers are called In-
stantOff servers in this paper. We also introduce here the following shorthand
notations used later on in this paper: σi = λ/δi and ρi = λ/µi.

The state of server i at time t is described by the pair (Ni(t), Zi(t)),
where Ni(t) ∈ N = {0, 1, . . .} denotes the number of customers and Zi(t) ∈
Z = {off, setup, busy} the energy state. Let Pi(z) ≥ 0 denote the (constant)
power consumption in energy state z. It is natural to assume that

0 ≤ Pi(off) < Pi(setup) ≤ Pi(busy). (1)

In addition, we introduce the following differential notation for z ∈ {setup, busy}:

P̂i(z) = Pi(z)− Pi(off) > 0. (2)

With each server i and time t, we also associate a decision variable Ai(t) ∈
A = {0, 1}. If Ai(t) = 1, then the next arriving customer is dispatched to
server i; otherwise not. Naturally, we require that, for any t,

K∑
i=1

Ai(t) = 1. (3)

At time t, server i incurs costs at rate

Ci(t) = hiNi(t) + βPi(Zi(t)), (4)

where hi > 0 is the holding cost rate per job and β ≥ 0 is an energy weight
factor. The problem is to choose the decision variables Ai(t) in such a way
that the expected long-run average cost,

lim
T→∞

E

[
1

T

∫ T

0

(
K∑
i=1

(hiNi(t) + βPi(Zi(t)))

)
dt

]
, (5)

is minimized, subject to constraint (3) for all t. The problem is considered
in the context of continuous-time Markov decision processes (CTMDP) [25],
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where the decision variables Ai(t) can only be changed when the state of the
whole system,

((Ni(t), Zi(t)) | i ∈ {1, . . . , K}),

changes.
Note that, without constraint (3), the problem is trivially solved by choos-

ing passivity: Ai(t) = 0 for all i and t. Including constraint (3), however,
makes the optimal dispatching problem extremely hard. In the following sec-
tion, we describe how the Whittle index approach can be utilized to tackle
it and to derive near-optimal dispatching policies.

3. Relaxed optimization problem

Following the ideas originally developed by Whittle in [29], we relax the
dispatching problem (5) by replacing the strict constraint (3) with an aver-
aged one,

lim
T→∞

E

[
1

T

∫ T

0

(
K∑
i=1

Ai(t)

)
dt

]
= 1, (6)

and approach the relaxed problem by Lagrangian methods.1 As a result, we
get the following separate subproblems. For each server i, we try to minimize
the objective function

lim
T→∞

E

[
1

T

∫ T

0

(hiNi(t) + βPi(Zi(t)) + ν(1− Ai(t))) dt
]
, (7)

where the Lagrangian multiplier ν can be interpreted as the price of passivity
per time unit.2 We further note that, if ν ≤ 0, then there is no need to be
active so that Ai(t) = 0 is optimal for any t. Thus, from this on, we assume
that ν > 0.

Let us now define the continuous-time Markov decision process related
to the separate subproblems with objective function (7). The state of the
“system” (i.e., server i) is given by the pair x = (n, z), where n ∈ N refers
to the number of customers and z ∈ Z to the energy state, and the possible

1Note that under the relaxed policy an arriving job is permitted to be allocated to
more than one server simultaneously, which is something that cannot happen in practice.

2Note a slight difference with [24], where the roles of activity and passivity are reversed
and the Lagrangian multiplier ν is interpreted as the price of rejection per arriving job.
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actions a ∈ A are “to dispatch” (a = 1) and “not to dispatch” (a = 0). Thus,
the state space

X = {(0, off)} ∪ {(n, setup) | n ≥ 1} ∪ {(n, busy) | n ≥ 1}

is discrete and the action space A finite. The stationary deterministic policy
πAi for server i that corresponds to the activity set A ⊂ X is defined on X as
follows:

πAi (x) =

{
1, if x ∈ A;
0, otherwise.

Let then ci(x, a; ν) denote the cost rate in state x ∈ X after action a ∈ A with
the price of passivity fixed to ν. In our model, we have, for any x = (n, z) ∈ X
and a ∈ A,

ci(x, a; ν) = hin+ βPi(z) + ν(1− a).

In addition, let qi(y|x, a) ≥ 0 denote the transition intensity from state x ∈ X
to another state y ∈ X \ {x} after action a ∈ A. In our model, the following
transitions are possible:

qi((1, setup)|(0, off), a) = aλ,
qi((n, busy)|(n, setup), a) = δi, n ≥ 1,
qi((n+ 1, setup)|(n, setup), a) = aλ, n ≥ 1,
qi((0, off)|(1, busy), a) = µi,
qi((n− 1, busy)|(n, busy), a) = µi, n ≥ 2,
qi((n+ 1, busy)|(n, busy), a) = aλ, n ≥ 1.

These state transitions are illustrated in Figure 1.
Since the state space X is discrete, the action space A finite, and the

cost rate linear with respect to n, there is a stationary deterministic policy
π∗i (defined by an optimal set of active states, A∗i ⊂ X ) that minimizes the
expected average costs (7) [25]. The optimal policy π∗i is characterized by
the optimality equations defined for each state x ∈ X by

c̄i(ν) = min
a∈A

{
ci(x, a; ν) +

∑
y 6=x

qi(y|x, a)(vi(y; ν)− vi(x; ν))

}
, (8)

where c̄i(ν) denotes the minimum expected average cost rate (per time unit)
and vi(x; ν) refers to the value function, which gives the difference in the
expected total costs when the optimal stationary policy is applied and the
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Figure 1: State transition diagram of our model. Straight lines represent transitions that
are possible for both actions a = 0 and a = 1. Dashed lines represent transitions that are
possible only for action a = 1.

system is started from state x or in equilibrium. The main task here is, for
each ν, to find a real value c̄i(ν) and function vi(x; ν) satisfying the optimality
equation (8).

In our model, the optimality equations (8) read as follows. For state
x = (0, off),

c̄i(ν) = βPi(off) + min{ν, λ∆i(0, off; ν)}, (9)

where we have defined

∆i(0, off; ν) = vi(1, setup; ν)− vi(0, off; ν).

For states x ∈ {(n, setup) | n ≥ 1},

c̄i(ν) = hin+ βPi(setup) + δi(vi(n, busy; ν)− vi(n, setup; ν)) +

min{ν, λ∆i(n, setup; ν)},
(10)

where we have defined

∆i(n, setup; ν) = vi(n+ 1, setup; ν)− vi(n, setup; ν).

For state x = (1, busy),

c̄i(ν) = hi + βPi(busy) + µi(vi(0, off; ν)− vi(1, busy; ν)) +

min{ν, λ∆i(1, busy; ν)},
(11)
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where we have defined

∆i(1, busy; ν) = vi(2, busy; ν)− vi(1, busy; ν).

For states x ∈ {(n, busy) | n ≥ 2},

c̄i(ν) = hin+ βPi(busy)− µi∆i(n− 1, busy; ν) +

min{ν, λ∆i(n, busy; ν)},
(12)

where we have defined

∆i(n, busy; ν) = vi(n+ 1, busy; ν)− vi(n, busy; ν).

Thus, from the optimality equations (9)–(12), we deduce that, for any state
x ∈ X , we have the following alternatives for the optimal decision in state x:

(i) if ν > λ∆i(x; ν), then
it is optimal to dispatch (a = 1) the next job to server i;

(ii) if ν = λ∆i(x; ν), then
both decisions (a = 0 and a = 1) are equally good and optimal;

(iii) if ν < λ∆i(x; ν), then
it is optimal not to dispatch (a = 0) the next job to server i.

(13)

We conclude this section by defining when this optimization problem is
indexable.

Definition 1. We say that the optimization problem with objective function
(7) is indexable3 if, for any state x ∈ X , there exists ν∗i (x) ∈ [−∞,∞] such
that

(i) it is optimal to dispatch (a = 1) the next job to server i in state x if
and only if ν ≥ ν∗i (x);

(ii) it is optimal not to dispatch (a = 0) the next job to server i in state x
if and only if ν ≤ ν∗i (x).

Such a value ν∗i (x) is referred to as the Whittle index of state x for the
problem with objective function (7).

Note that, according to this definition, the two actions are equally good
(and, thus, optimal) if ν = ν∗i (x).

3Note that we have adapted Whittle’s notation of indexability [29] to our dispatching
problem in a similar way as done in [4]. As a result, the heuristic index policy for the
original problem dispatches the arriving job to the server with the lowest index.
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4. Sufficient conditions for indexability, and the main result

Typically, the first problem in the Whittle index approach is to show that
the Lagrangian version of the relaxed problem is indexable [29]. In [1], we
managed to prove the indexability property for the system parameter values
that satisfy the following condition:

δi > µi

(
1 +

β

hi
P̂i(setup)

)
. (14)

Note that this condition is valid only if the mean setup delay E[Di] = 1/δi
is sufficiently short, which may be not that realistic an assumption. So, in
this paper, we aim at finding sufficient conditions for indexability that allow
longer (and, thus, more realistic) setup delays.

In this section, we describe how to get sufficient conditions for indexabil-
ity, and present the main result of the paper (Theorem 1). In the forthcoming
sections, we prove that those conditions are, indeed, sufficient for indexabil-
ity and also determine the corresponding Whittle index values explicitly. At
the end of this section, we give an illustrative example on the behavior of the
resulting Whittle index values (Example 1).

Let n ∈ {0, 1, . . .} be fixed (for a while), and consider a stationary deter-
ministic policy πAni for server i defined by the activity set An, where

An = {(m, busy) ∈ X | m ≤ n}.

Note that A0 = ∅. Denote πAni here briefly by π. In addition, let vπi (x; ν)
denote the value function for policy π. By the so-called Howard equations,
it is a tedious but still straightforward task to derive the following value
function differences (see Equation (A.8) in Appendix A, which can be found
in supplementary material of this paper):

∆π
i (0, off; ν) = vπi (1, setup; ν)− vπi (0, off; ν) =

hi

(
1
δi

+ 1
µi

∑n
j=0(j + 1)ρji

)
+ β

(
P̂i(setup) 1

δi
+ P̂i(busy) 1

µi

∑n
j=0 ρ

j
i

)
−

ν
µi

∑n−1
j=0 ρ

j
i ,

∆π
i (n+ 1, busy; ν) = vπi (n+ 2, busy; ν)− vπi (n+ 1, busy; ν) =

1
µi

(
(n+ 2)hi + βP̂i(busy)

)
.

Let us now require that

λ∆π
i (0, off; ν) = λ∆π

i (n+ 1, busy; ν) = ν. (15)
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The idea of condition (15) is as follows: From equation (13), we see that if
policy π = πAni is optimal, then the requirement λ∆π

i (n + 1, busy; ν) = ν
results in such a combination of parameter values, where both decisions (a =
0 and a = 1) are equally qood in state (n + 1, busy). It follows that, with

these parameter values, policies πAni and π
An+1

i are both optimal. Similarly,
from equation (13), we see that if policy π is optimal, then the requirement
λ∆π

i (0, off; ν) = ν results in such a combination of parameter values, where
both decisions (a = 0 and a = 1) are equally qood in state (0, off). It follows
that, with these parameter values, policies πAni and πBni are both optimal,
where we have defined Bn = An ∪ {(0, off)}. Thus, if policy π = πAni is
optimal and condition (15) is satisfied with some parameter combination,

then all three policies πAni , π
An+1

i , and πBni are optimal for such a parameter
combination. From condition (15) we are able to solve (any) two of the
parameters as a function of the other parameters. For δi, we get the following
solution:

δi =
µi

(
1 + β

hi
P̂i(setup)

)
∑n

j=0(n+ 1− j)ρji
.

Let us denote this solution by ai,n so that

ai,n =
µi

(
1 + β

hi
P̂i(setup)

)
∑n

j=0(n+ 1− j)ρji
, n ∈ {0, 1, . . .}. (16)

It is easy to see that the sequence (ai,n) is strictly decreasing and converging
to 0:

ai,0 > ai,1 > ai,2 > . . . > 0. (17)

Let then n ∈ {1, 2, . . .} be fixed (for a while), and consider now another
stationary deterministic policy πBni for server i defined by the activity set
Bn, where

Bn = {(0, off)} ∪ {(m, busy) ∈ X | m ≤ n}.

Denote πBni here briefly by π. Again by the Howard equations, it is possi-
ble to derive the following value function differences (see Equation (A.11) in
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Appendix A, which can be found in supplementary material of this paper):

∆π
i (1, setup; ν) = vπi (2, setup; ν)− vπi (1, setup; ν) =

hi

(
1
δi

+ 1
µi

∑n−1
j=0 (j + 2)ρji

)
+ β

(
Pi(busy)

µi

∑n−1
j=0 ρ

j
i

)
+ ν

µi
ρn−1
i − c̄πi (ν)

µi

∑n−1
j=0 ρ

j
i ,

∆π
i (n+ 1, busy; ν) = vπi (n+ 2, busy; ν)− vπi (n+ 1, busy; ν) =

1
µi

((n+ 2)hi + βPi(busy) + ν − c̄πi (ν)) ,

where c̄πi (ν) denotes the expected average cost rate (per time unit) for pol-
icy π.

Let us now require that

λ∆π
i (1, setup; ν) = λ∆π

i (n+ 1, busy; ν) = ν. (18)

The idea of condition (18) is very similar to that of (15): From equation (13),
we see that if policy π = πBni is optimal, then the requirement λ∆π

i (n +
1, busy; ν) = ν results in such a combination of parameter values, where
both decisions (a = 0 and a = 1) are equally qood in state (n + 1, busy). It

follows that, with these parameter values, policies πBni and π
Bn+1

i are both
optimal. Similarly, from equation (13), we see that if policy π is optimal,
then the requirement λ∆π

i (1, setup; ν) = ν results in such a combination of
parameter values, where both decisions (a = 0 and a = 1) are equally qood
in state (1, off). It follows that, with these parameter values, policies πBni and
πCni are both optimal, where we have defined Cn = Bn∪{(1, setup)}. Thus, if
policy π = πBni is optimal and condition (18) is satisfied with some parameter

combination, then all three policies πBni , π
Bn+1

i , and πCni are optimal for such
a parameter combination. From condition (18) we are able to solve (any)
two of the parameters as a function of the other parameters. For δi, we get
the following solution:

δi =
µi∑n−1

j=0 (n− j)ρji
.

Let us denote this solution by bi,n so that

bi,n =
µi∑n−1

j=0 (n− j)ρji
, n ∈ {1, 2, . . .}. (19)

It is again easy to see that the sequence (bi,n) is strictly decreasing and
converging to 0:

bi,1 > bi,2 > bi,3 > . . . > 0. (20)
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In addition, by comparing (16) and (19), we see that, for any n ∈ {0, 1, . . .},

ai,n = bi,n+1

(
1 + β

hi
P̂i(setup)

)
> bi,n+1. (21)

Now we are ready to formulate our main result related to the sufficient
conditions for indexability. This result will be proved piecewise in the forth-
coming sections (see Theorem 2 in Section 5 and Theorems 3 and 4 in Sec-
tion 6).

Theorem 1. If there is L ∈ {0, 1, . . .} such that, for all k ∈ {0, 1, . . . , L},

bi,k > ai,k, (22)

where ai,k and bi,k are defined in (16) and (19), respectively, and bi,0 = ∞,
then the relaxed optimization problem with objective function (7) for an In-
stantOff server i is indexable for the system parameter values that addition-
ally satisfy condition

δi > ai,L =
µi

(
1 + β

hi
P̂i(setup)

)
∑L

j=0(L+ 1− j)ρji
. (23)

In this case, the corresponding Whittle index for any state x ∈ X is given by

ν∗i (x) = hiHi,`,s(x) + βBi,`,s(x), (24)

where ` is defined by

` = min{k ∈ {0, 1, . . . , L} : δi > ai,k}, (25)

s is defined by

s =

{
0, if δi > bi,`,
1, otherwise,

(26)

and factors Hi,`,s(x) and Bi,`,s(x) are defined as follows:

For x = (0, off),

Hi,`,s(0, off) = 1∑`
j=0 ρ

j
i

(
ρi
∑`

j=0(j + 1)ρji + σi

)
,

Bi,`,s(0, off) = P̂i(busy)ρi + P̂i(setup) σi∑`
j=0 ρ

j
i

.
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For any x = (n, busy), where 1 ≤ n ≤ `,

Hi,`,s(n, busy) = (n+ 1)ρi,

Bi,`,s(n, busy) = P̂i(busy)ρi.

For any x = (n, busy), where n ≥ `+ 1,

Hi,`,0(n, busy) = Hi,`−1,1(n, busy),

Hi,`,1(n, busy) =

ρi

(
1

1+σi

∑n−`−1
k=0

(
σi

1+σi

)k∑n+1−k
j=0 (n+ 1− k − j)ρji + (`+ 1)

(
σi

1+σi

)n−`)
,

Bi,`,s(n, busy) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.

For any x = (n, setup), where n ≥ 1,

Hi,`,0(n, setup) = Hi,`−1,1(n, setup),

Hi,`,1(n, setup) = Hi,`,1(n+ `, busy) +

σi−ρi
∑`−1
j=0(`−j)ρji∑`
j=0 ρ

j
i

(
1

1+σi

∑n−1
k=0

(
σi

1+σi

)k∑n+`+1−k
j=0 ρji +

(
σi

1+σi

)n)
,

Bi,`,s(n, setup) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.

Remark 1. In [1], we proved the indexability property for the special case
L = 0 of Theorem 1. Note that condition (22) is trivially true in this case,
and (23) is equivalent with condition (14).

Remark 2. It is easy to give examples of the system parameter values that
satisfy condition (22) even for any k ∈ {0, 1, . . .}. This is the case, for
example, when

ρi =
λ

µi
≥ 2,

β

hi
P̂i(setup) ≤ 1,

as we see from the following proposition. In general, we can say that the
results of Theorem 1 can be applied whenever the arrival rate λ is high enough.
Note that, in such a case, the mean setup delay E[Di] = 1/δi can take any
positive value and still the problem is indexable.

Proposition 1. bi,n > ai,n for all n ∈ {0, 1, . . .} if and only if

ρi ≥ 1 +
β

hi
P̂i(setup). (27)
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Proof. For the proof, we define function

fn(z) =
∑n
j=0(n+1−j)zj∑n−1
j=0 (n−j)zj , z ≥ 0.

Note that

fn(z) =

{
n+2
n
, if z = 1;

n+1−(n+2)z+zn+2

n−(n+1)z+zn+1 , otherwise.

It is also easy to see that, for any z ≥ 0,

fn(z) > max{1, z} and limn→∞ fn(z) = max{1, z}. (28)

1◦ Assume first that bi,n > ai,n for all n ∈ {0, 1, . . .}. By (16) and (19),
inequality bi,n > ai,n is equivalent with inequality

fn(ρi) > 1 + β
hi
P̂i(setup). (29)

Now if ρi < 1 + β
hi
P̂i(setup), it follows from (28) that there is n such that

fn(ρi) ≤ 1 + β
hi
P̂i(setup),

which contradicts (29). Thus, it must be so that ρi ≥ 1 + β
hi
P̂i(setup).

2◦ Assume now that ρi ≥ 1 + β
hi
P̂i(setup). By (28), we have, for any n,

fn(ρi) > max{1, ρi} = ρi ≥ 1 + β
hi
P̂i(setup),

which completes the proof due to (29). �

Example 1. As an illustrative example of Whittle index values resulting
from (24), consider the following parameter values:

λ = 2, hi = 1, µi = 1, β = 1, P̂i(setup) = 1,

which implies that condition (27) is satisfied so that we can apply Theorem 1.
The resulting Whittle index values ν∗i (x) for states

x ∈ {(0, off), (1, busy), (2, busy), (3, busy), (4, busy), (1, setup), (2, setup)}

as a function of the mean setup delay E[Di] = 1/δi are shown in Figure 2.
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Figure 2: Whittle index values ν∗i (x) in Example 1 for different states x ((0, off): dotted
black; (1,busy): blue; (2,busy): green; (3,busy): red; (4,busy): orange; (1, setup): dashed
blue; (2, setup): dashed green) as a function of the mean setup delay E[Di] = 1/δi.
Condition (14) for a short mean setup delay is satisfied in the interval E[Di] ∈ (0, 1/ai,0),
where 1/ai,0 = 0.5. The other thresholds for the mean setup delay E[Di] are as follows:
1/bi,1 = 1.0, 1/ai,1 = 2.0, 1/bi,2 = 4.0, 1/ai,2 = 5.5, 1/bi,3 = 11.0. Note that, in between
these thresholds, the order of Whittle index values for different states remains unchanged,
as we will prove later on.

5. Whittle index for short setup delays

In this section, we prove (for completeness) the indexability property for
the special case L = 0 of Theorem 1. In addition, we derive an explicit
expression for the corresponding Whittle index. These results are given in
Theorem 2 below. As already mentioned above, condition (22) is trivially
true in this case, and (23) is equivalent with condition (14). So we are
considering the case of short setup delays.

Let us first introduce the following total order among all states x ∈ X :

(0, off) ≺ (1, busy) ≺ (1, setup) ≺ (2, busy) ≺ (2, setup) ≺ . . . (30)

16



In addition, let T (x), where x ∈ X , denote the following set of states:

T (x) = {y ∈ X | y � x}.

Thus, we have

T (0, off) = {(0, off)},
T (1, busy) = {(0, off), (1, busy)},
T (1, setup) = {(0, off), (1, busy), (1, setup)},
T (2, busy) = {(0, off), (1, busy), (1, setup), (2, busy)}, . . .

The corresponding policies π
T (x)
i with activity sets T (x) are called threshold

policies with respect to the total order (30). In addition, we include the
rudimentary threshold policy π∅i , where all states are passive, in the family
of threshold policies, denoted by ΠT

i . Note that each of these policies generate
a Markov process with a single and finite positive recurrent class. Its steady-
state distribution can be determined based on the global balance equations
and the normalization condition, and its relative value function by solving
the so-called Howard equations.

Theorem 2. Under assumption (14), the optimization problem with objec-
tive function (7) for an InstantOff server i is indexable, and the corresponding
Whittle index for any state x ∈ X is given by

ν∗i (x) = hiHi(x) + βBi(x), (31)

where factors Hi(x) and Bi(x) are defined as follows:

For x = (0, off),

Hi(0, off) = ρi + σi,

Bi(0, off) = P̂i(busy)ρi + P̂i(setup)σi.

For any x = (n, busy), where n ≥ 1,

Hi(n, busy) =
ρi

ρi(1+σi)−σi

(
ρi((n+1)−(n+2)ρi+ρ

n+2
i )

(1−ρi)2 +

σ2
i − (n+ 1)σi − σi(σi − ρi)( σi

1+σi
)n
)
, λ 6= µi,

1
2

(n+ 1)(n+ 2) +
σ2
i − (n+ 1)σi − σi(σi − 1)( σi

1+σi
)n, λ = µi,

Bi(n, busy) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.
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For any x = (n, setup), where n ≥ 1,

Hi(n, setup) ={
ρi((n+1)−(n+2)ρi+ρ

n+2
i )

(1−ρi)2 + σi, λ 6= µi,
1
2

(n+ 1)(n+ 2) + σi, λ = µi,

Bi(n, setup) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.

Proof. Because of page restrictions, the proof can be found in Appendix B
of the supplementary material of this paper. �

Remark 3. As can be seen from the proof, the holding cost factors Hi(n, busy)
and Hi(n, setup) in (31) can also be given as follows:

Hi(n, busy) =

ρi

(
1

1+σi

∑n−1
k=0

(
σi

1+σi

)k∑n+1−k
j=0 (n+ 1− k − j)ρji +

(
σi

1+σi

)n)
,

Hi(n, setup) = Hi(n, busy) +

σi

(
1

1+σi

∑n−1
k=0

(
σi

1+σi

)k∑n+1−k
j=0 ρji +

(
σi

1+σi

)n)
.

Note also that, in [1, Theorem 1], there is an unfortunate misprint in the
formula of Hi(n, setup) for the case λ 6= µi, which can be identified when
comparing it with the correct formula given above in (31).

Remark 4. The Whittle index for an ordinary NeverOff server with idle
and busy states can be determined from (31) by taking the limit δ →∞ (i.e.,
σ → 0) and interpreting the state (0, off) as the idle state of the NeverOff
server. Note that by taking the limit δ →∞, assumption (14) is satisfied for
any combination of the other parameters. In the limit, we get the following
formulas:

For the idle state with n = 0,

Hi(0) = ρi,

Bi(0) = ρi(Pi(busy)− Pi(idle)).

For any busy state with n ≥ 1,

Hi(n) =

{
ρi((n+1)−(n+2)ρi+ρ

n+2
i )

(1−ρi)2 , λ 6= µi,
1
2

(n+ 1)(n+ 2), λ = µi,

Bi(n) = ρi(Pi(busy)− Pi(idle)).
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We also note that without any energy costs (i.e., assuming β = 0) the re-
sulting Whittle index ν∗i (n) = hiHi(n), n ≥ 0, is equal to the corresponding
Whittle index given in [24, Eqn. (7.3)] for a finite-state M/M/1/n queue
when multiplied by the arrival rate λ. The slight difference in the index is
due to the difference in the problem setting itself: In our formulation the
Lagrangian multiplier ν is interpreted as the price of passivity per time unit,
while in [24] it is the price of rejection per arriving job.

Remark 5. Note that condition (14) does not include parameter λ. Thus,
under (14), indexability is guaranteed for any load of the system.

6. Whittle index for general setup delays

In this section, we prove the indexability property for the general case
L ≥ 1 of Theorem 1. In addition, we derive an explicit expression for the
corresponding Whittle index.

Note first that, for ` = 0, the proof is exactly same as the proof of
Theorem 2. Let then ` ∈ {1, 2, . . . , L} be such that ai,`−1 ≥ δi > ai,`, i.e.,

µi

(
1 + β

hi
P̂i(setup)

)
∑`−1

j=0(`− j)ρji
≥ δi >

µi

(
1 + β

hi
P̂i(setup)

)
∑`

j=0(`+ 1− j)ρji
. (32)

We split this case into two separate parts depending on whether s = 0 or
s = 1, and study them in their own subsections below.

6.1. Case s = 0

Let us first assume that bi,`−1 > ai,`−1 > δi > bi,` > ai,`, i.e.,

µi∑`−2
j=0(`− 1− j)ρji

>
µi

(
1 + β

hi
P̂i(setup)

)
∑`−1

j=0(`− j)ρji
> δi >

µi∑`−1
j=0(`− j)ρji

>
µi

(
1 + β

hi
P̂i(setup)

)
∑`

j=0(`+ 1− j)ρji
,

(33)

which corresponds to the case s = 0 of Theorem 1. For this case, the indexa-
bility property and the corresponding Whittle index are formulated below in
Theorem 3. The remaining special case δi = ai,`−1 is thereafter commented
on in Remark 6.
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We start by introducing a new total order among all states x ∈ X , which
replaces the earlier one, given in (30), from this on:

(1, busy) ≺ . . . ≺ (`, busy) ≺ (0, off) ≺
(1, setup) ≺ (`+ 1, busy) ≺ (2, setup) ≺ (`+ 2, busy) ≺ . . .

(34)

Naturally, this new order also affects the definition of sets T (x) = {y ∈ X |
y � x} so that now we have

T (1, busy) = {(1, busy)},
. . .

T (`, busy) = {(1, busy), . . . , (`, busy)},
T (0, off) = {(1, busy), . . . , (`, busy), (0, off)},
T (1, setup) = {(1, busy), . . . , (`, busy), (0, off), (1, setup)},
T (`+ 1, busy) = {(1, busy), . . . , (`, busy), (0, off), (1, setup), (`+ 1, busy)},
. . .

The corresponding policies π
T (x)
i with activity sets T (x) (together with rudi-

mentary policy π∅i ) are called threshold policies with respect to the total order
(34), and collectively denoted by ΠT

i .

Theorem 3. Under assumption (33), the optimization problem with objec-
tive function (7) for an InstantOff server i is indexable, and the corresponding
Whittle index for any state x ∈ X is given by

ν∗i (x) = hiHi(x) + βBi(x), (35)

where factors Hi(x) and Bi(x) are defined as follows:

For x = (n, busy), where 1 ≤ n ≤ `,

Hi(n, busy) = (n+ 1)ρi,

Bi(n, busy) = P̂i(busy)ρi.

For x = (0, off),

Hi(0, off) = 1∑`
j=0 ρ

j
i

(
ρi
∑`

j=0(j + 1)ρji + σi

)
,

Bi(0, off) = P̂i(busy)ρi + P̂i(setup) σi∑`
j=0 ρ

j
i

.
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For any x = (n, setup), where n ≥ 1,

Hi(n, setup) =

ρi

(
1

1+σi

∑n−1
k=0

(
σi

1+σi

)k∑n+`−k
j=0 (n+ `− k − j)ρji + `

(
σi

1+σi

)n)
+

σi−ρi
∑`−2
j=0(`−1−j)ρji∑`−1
j=0 ρ

j
i

(
1

1+σi

∑n−1
k=0

(
σi

1+σi

)k∑n+`−k
j=0 ρji +

(
σi

1+σi

)n)
,

Bi(n, setup) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.

For any x = (n, busy), where n ≥ `+ 1,

Hi(n, busy) =

ρi

(
1

1+σi

∑n−`
k=0

(
σi

1+σi

)k∑n+1−k
j=0 (n+ 1− k − j)ρji + `

(
σi

1+σi

)n−`+1
)
,

Bi(n, busy) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.

Proof. Because of page restrictions, the proof can be found in Appendix C
of the supplementary material of this paper. �

Remark 6. Consider now the special case δi = ai,`−1.
Assume first that ` = 1 so that

ai,0 = δi > bi,1 > ai,1. (36)

Now, by (35), it follows that

ν∗i (1, busy) = ν∗i (0, off).

On the other hand, we see from part 1◦ of the previous proof that the policies
π∅i , π

T (1,busy)
i , and π

T (0,off)
i are equally good and optimal at this point ν =

ν∗i (1, busy) = ν∗i (0, off). So, for a proper handling of this special case, we
need to modify the total order (34) in such a way that the states (1, busy)
and (0, off) have the same “rank”:

{(1, busy), (0, off)} ≺ (1, setup) ≺ (2, busy) ≺ (2, setup) ≺ (3, busy) ≺ . . .
(37)

This also affects the threshold policies T (1, busy) and T (0, off), which need
to redefined as follows:

T (1, busy) = T (0, off) = {(1, busy), (0, off)}.
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Assume now that ` ≥ 2 so that

bi,`−1 > ai,`−1 = δi > bi,` > ai,`. (38)

Again by (35), it follows that

ν∗i (`, busy) = ν∗i (0, off).

On the other hand, we see from part 2.2◦ of the previous proof that the policies
π
T (`−1,busy)
i , π

T (`,busy)
i , and π

T (0,off)
i are equally good and optimal at this point

ν = ν∗i (`, busy) = ν∗i (0, off). So, for a proper handling of this special case,
we need to modify the total order (34) in such a way that the states (`, busy)
and (0, off) have the same “rank”:

(1, busy) ≺ . . . ≺ (`− 1, busy) ≺ {(`, busy), (0, off)} ≺
(1, setup) ≺ (`+ 1, busy) ≺ (2, setup) ≺ (`+ 2, busy) ≺ . . .

(39)

This also affects the threshold policies T (`, busy) and T (0, off), which need
to redefined as follows:

T (`, busy) = T (0, off) = {(1, busy), . . . , (`− 1, busy), (`, busy), (0, off)}.

With these modifications, the optimization problem with objective function
(7) is indexable even under assumption (36) or (38), and the corresponding
Whittle index for any state x ∈ X is still given by (35), which can be proved
similarly as Theorem 3.

6.2. Case s = 1

Let us now assume that bi,`−1 > ai,`−1 > bi,` > δi > ai,`, i.e.,

µi∑`−2
j=0(`− 1− j)ρji

>
µi

(
1 + β

hi
P̂i(setup)

)
∑`−1

j=0(`− j)ρji
>

µi∑`−1
j=0(`− j)ρji

> δi >
µi

(
1 + β

hi
P̂i(setup)

)
∑`

j=0(`+ 1− j)ρji
,

(40)

which corresponds to the case s = 1 of Theorem 1. For this case, the index-
ability property and the corresponding Whittle index are formulated below
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in Theorem 4. The remaining special case δi = bi,` is thereafter commented
on in Remark 7.

We start again by introducing a new total order among all states x ∈ X ,
which replaces the earlier ones, given in (30) and (34), from this on:

(1, busy) ≺ . . . ≺ (`, busy) ≺ (0, off) ≺
(`+ 1, busy) ≺ (1, setup) ≺ (`+ 2, busy) ≺ (2, setup) ≺ . . .

(41)

Note that the difference between (41) and (34) is related to the order of states
(n, setup) and (n + `, busy) for all n ≥ 1. Naturally, this new order again
affects the definition of sets T (x) = {y ∈ X | y � x} so that now we have

T (1, busy) = {(1, busy)},
. . .

T (`, busy) = {(1, busy), . . . , (`, busy)},
T (0, off) = {(1, busy), . . . , (`, busy), (0, off)},
T (`+ 1, busy) = {(1, busy), . . . , (`, busy), (0, off), (`+ 1, busy)},
T (1, setup) = {(1, busy), . . . , (`, busy), (0, off), (`+ 1, busy), (1, setup)},
. . .

The corresponding policies π
T (x)
i with activity sets T (x) (together with rudi-

mentary policy π∅i ) are called threshold policies with respect to the total order
(41), and collectively denoted by ΠT

i .

Theorem 4. Under assumption (40), the optimization problem with objec-
tive function (7) for an InstantOff server i is indexable, and the corresponding
Whittle index for any state x ∈ X is given by

ν∗i (x) = hiHi(x) + βBi(x), (42)

where factors Hi(x) and Bi(x) are defined as follows:

For x = (n, busy), where 1 ≤ n ≤ `,

Hi(n, busy) = (n+ 1)ρi,

Bi(n, busy) = P̂i(busy)ρi.

For x = (0, off),

Hi(0, off) = 1∑`
j=0 ρ

j
i

(
ρi
∑`

j=0(j + 1)ρji + σi

)
,

Bi(0, off) = P̂i(busy)ρi + P̂i(setup) σi∑`
j=0 ρ

j
i

.
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For any x = (n, busy), where n ≥ `+ 1,

Hi(n, busy) =

ρi

(
1

1+σi

∑n−`−1
k=0

(
σi

1+σi

)k∑n+1−k
j=0 (n+ 1− k − j)ρji + (`+ 1)

(
σi

1+σi

)n−`)
,

Bi(n, busy) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.

For any x = (n, setup), where n ≥ 1,

Hi(n, setup) =

ρi

(
1

1+σi

∑n−1
k=0

(
σi

1+σi

)k∑n+`+1−k
j=0 (n+ `+ 1− k − j)ρji + (`+ 1)

(
σi

1+σi

)n)
+

σi−ρi
∑`−1
j=0(`−j)ρji∑`
j=0 ρ

j
i

(
1

1+σi

∑n−1
k=0

(
σi

1+σi

)k∑n+`+1−k
j=0 ρji +

(
σi

1+σi

)n)
,

Bi(n, setup) = ρi

(
P̂i(busy)− P̂i(setup) σi

1+σi

)
.

Proof. Because of page restrictions, the proof can be found in Appendix D
of the supplementary material of this paper. �

Remark 7. Consider now the special case δi = bi,`. More precisely said,
assume that

bi,`−1 > ai,`−1 > bi,` = δi > ai,`. (43)

By (42), it follows that, for any n ≥ 1,

ν∗i (n+ `, busy) = ν∗i (n, setup).

On the other hand, we see from part 4.2◦ of the previous proof that the policies
π
T (0,off)
i , π

T (`+1,busy)
i , and π

T (1,setup)
i are equally good and optimal at point ν =

ν∗i (` + 1, busy) = ν∗i (1, setup), and from 6.2◦ that the policies π
T (n,setup)
i ,

π
T (n+`+1,busy)
i , and π

T (n+1,setup)
i are equally good and optimal at point ν =

ν∗i (n + ` + 1, busy) = ν∗i (n + 1, setup) for any n ≥ 1. So, for a proper
handling of this special case, we need to modify the total order (41) in such
a way that the states (n + `, busy) and (n, setup) have the same “rank” for
any n ≥ 1:

(1, busy) ≺ . . . ≺ (`, busy) ≺ (0, off) ≺
{(`+ 1, busy), (1, setup)} ≺ {(`+ 2, busy), (2, setup)} ≺ . . .

(44)
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This also affects the threshold policies T (n+ `, busy) and T (n, setup), which
need to redefined, for any n ≥ 1, as follows:

T (n+ `, busy) = T (n, setup) =

{(1, busy), . . . , (`, busy), (0, off), (`+ 1, busy), (1, setup), . . . ,

(n+ `, busy), (n, setup)}.

With these modifications, the optimization problem with objective function
(7) is indexable even under assumption (43), and the corresponding Whittle
index for any state x ∈ X is still given by (42), which can be proved similarly
as Theorem 4.

7. Energy-aware Whittle index policy

Now we return to the original dispatching problem described in Section 2,
where we have K servers and a strict dispatching condition (3). Based on
the results given in Section 4, we introduce the following energy-aware index
policy.

Definition 2. For any InstantOff server i with state xi = (ni, zi), we define
index

νEW
i (xi) = ν∗i (xi), (45)

where ν∗i (xi) is defined by (24) in Theorem 1. The dispatching rule that
at every time t chooses the server with the lowest index νEW

i (xi) is called
the Energy-aware Whittle index policy (EW) for the original dispatching
problem. All possible ties are broken randomly.

In the following section, we will evaluate, by numerical simulations, the
performance of the proposed energy-aware Whittle index policy (EW), and
compare it to the dynamic policies Join-Shortest-Queue (JSQ) and First-
Policy-Iteration (FPI) mentioned in Section 1. Both of these policies are
also index-based. For JSQ, the index of an InstantOff server i with state
xi = (ni, zi) is clearly given by

νJSQ
i (xi) = ni. (46)

All possible ties are broken randomly.
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For FPI, the corresponding index was derived in [12]. This approach
requires to fix a basic dispatching policy, which is then improved by the pol-
icy iteration method. The first iteration is mathematically tractable if the
basic policy is chosen to be a static policy, in which the decisions are state-
independent. A natural static policy in this context is the Load Balancing
(LB) policy that makes probabilistic dispatching decisions, where the dis-
patching probabilities pi are proportional to the service rates µi. From [12],
we get the following index for an InstantOff server i with state xi = (ni, zi),
for which the dedicated arrival rate for server i, according to the static basic
policy, is given by λi = λpi:

νFPI
i (xi) = hiH

FPI
i (xi) + βBFPI

i (xi), (47)

where we have used the following notations:

For xi = (0, off),

HFPI
i (0, off) = 1

µi−λi + 1
δi
,

BFPI
i (0, off) = 1

µi

(
P̂i(busy) + P̂i(setup)µi−λi

λi+δi

)
.

For any xi = (ni, busy), where n ≥ 1,

HFPI
i (ni, busy) = ni+1

µi−λi −
1
δi

λi
µi−λi ,

BFPI
i (ni, busy) = 1

µi

(
P̂i(busy)− P̂i(setup) λi

λi+δi

)
.

For any xi = (ni, setup), where n ≥ 1,

HFPI
i (ni, setup) = ni+1

µi−λi + 1
δi
,

BFPI
i (ni, setup) = 1

µi

(
P̂i(busy)− P̂i(setup) λi

λi+δi

)
.

All possible ties are again broken randomly.

8. Numerical results

In this section we illustrate the performance of the Whittle-index based
EW policy and compare it against several reference policies to gain insight.
In addition to the dynamic policies JSQ and FPI already mentioned in the
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previous section, we use the static LB policy (also mentioned in the previ-
ous section) as a reference policy. Moreover, we apply the policy iteration
algorithm to numerically solve the optimal policy, whenever possible.

In our examples, the results for the policies JSQ, FPI and EW have been
produced by using discrete-event simulations. For each combination of the
parameters, the results are based on simulation runs with 4 · 106 arrivals.
Thus, there are enough statistics to estimate the performance measures so
accurately that the 95% confidence intervals are practically indistinguishable
and they have been omitted from the figures. The LB policy can be easily
evaluated numerically, since under that policy each queue behaves indepen-
dently from each other as an M/G/1 queue with setup delays, see, e.g., [12].
Finally, the results are shown as a function of the total load of the system,
given by ρ = λ/

∑
i µi. To vary the load ρ, we fix the µi and vary λ. Also,

in our examples for the power settings, we assume Pi(busy) = Pi(setup), for
all i, and the holding costs hi = 1, for all i.

Note that in the Whittle index policy, for a given value of λ with all other
parameters fixed, the indexability is not necessarily guaranteed and it must
be verified. To do this, one first determines the parameter ` through (25) and
then verifies that bi,k > ai,k for all k ≤ ` to have an indexable problem. The
parameter s is thereafter determined from (26). If the problem is indexable,
the parameters ` and s define the precise form of the index values, as also
illustrated earlier in Example 1. Basically, as the load increases with λ in
our numerical examples, there is always a lower bound for λ such that the
problem is indexable, unless ` = 0 in which case indexability is guaranteed
independent of λ, see (14).

8.1. Small system with 2 servers

In our first example, we consider a small system with only 2 servers. The
parameters are the following: {µ1, µ2} = {1, 2} 1/s, {δ1, δ2} = {4, 17} 1/s,
{P1(busy), P2(busy)} = {0.2, 0.3} kW, P1(off) = P2(off) = 0 kW and β = 1.
The parameters satisfy the condition (14) for both servers, and thus the
indexability is guaranteed for any value of the load. For this small system,
the state space of the four-dimensional process remains moderate and we are
able to apply the policy iteration algorithm to numerically solve the optimal
policy minimizing the mean total costs (5) in a truncated state space. Here
the truncation has been done at 35 jobs in each queue, which is sufficiently
high to allow a reasonably accurate estimation of the optimal policy even
at relatively high values of the load ρ. For each load, the policy iteration
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has been performed for 10 iterations, which yielded the optimal costs with
at least 5 digit accuracy.

The results are shown in Figure 3, which depicts the ratio of the mean
number of jobs (top left panel), the mean power (top right panel) and the
mean total cost (bottom panel) to the corresponding quantities of the optimal
policy as a function of the load ρ for different policies (LB, JSQ, FPI and
EW).
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Figure 3: Ratio of mean number of jobs (top left panel), mean power (top right panel)
and mean total cost (bottom panel) to the corresponding quantities of the optimal policy
as a function of the load ρ for different policies (LB, JSQ, FPI and EW) with 2 servers.

Consider first the performance ratio (top left panel). The static LB policy
clearly does not perform very well, and gets worse as load increases relative
to the optimal policy. On the other hand, the JSQ policy gets better and
better the higher the load, which can be explained by the fact that at very
high load all queues are active all the time and the energy-aware features
are not affecting the behavior that much. The servers are heterogeneous,
but JSQ also indirectly takes care of this as the queue in the faster server is
typically shorter than in the slower one. The FPI and EW policies are both

28



clearly near-optimal, i.e., the ratio is close to 1. However, the FPI policy is
less optimal than the EW policy. Then considering the results for the power
ratio (top right panel), it can be observed that the non-energy-aware JSQ
policy is the worst, being even worse than the static LB policy. Both LB and
JSQ are performing poorly at low loads but become better as load increases,
since at higher loads both servers are on all the time anyway. However,
the FPI policy is here even better with respect power consumption than the
optimal policy, and it is also better than EW, which remains very close to
optimal until ρ = 0.6 but then becomes marginally better than the optimal
policy. Finally, by looking at the total costs (bottom panel) we see that they
are close to the ones for the performance part as the weight β = 1 is quite
small relative to the total mean power. In summary, our proposed EW policy
is performing systematically better than FPI and it is overall very close to
the optimal policy; in fact it is indistinguishable from the optimal until load
ρ = 0.6, while the performance of the FPI policy starts deviating from the
optimal already at low load, reaching a deviation of approximately 10% at
higher load.

8.2. Larger system with 10 servers

In the previous example, the setup delays in particular were unrealisti-
cally short for real servers. Thus, next we study a somewhat larger sys-
tem consisting of 10 servers with realistic values for the power and setup
delay parameters. All servers are homogeneous in this scenario with the
following power parameters: Pi(busy) = 0.2 kW and Pi(off) = 0.01 kW,
for i = 1, . . . , 10. The mean setup delay is 10 s, i.e., δi = 0.1 1/s, for all
i = 1, . . . , 10. These power values and the setup times are similar to those
used in more experimental studies, see, e.g., [8, 20]. Finally, the service rate
µi = 1.0 1/s, and β = 1. In this case, the indexability is guaranteed approx-
imately for ρ > 0.05. Due to the size of the state space, the optimal policy
cannot be anymore numerically evaluated. Thus, in the following figures the
results are no longer normalized, but they represent the absolute values of
the corresponding quantities.

The results are shown in Figure 4, which shows the mean number of jobs
(top left panel), the mean power in kW units (top right panel) and the mean
total cost (bottom panel) as a function of the load ρ for different policies
(LB, JSQ, FPI and EW). Qualitatively the behavior of the policies relative
to each other is similar to what we observed earlier with 2 heterogeneous
servers, except for the properties of the FPI policy. In terms of the mean
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Figure 4: The mean number of jobs (top left panel), mean power (top right panel) and
mean total cost (bottom panel) with 10 homogeneous servers as a function of the load ρ
for different policies (LB, JSQ, FPI and EW).

number of jobs (top left panel), we again see that the static LB policy behaves
significantly worse than all dynamic policies. However, in this larger system
example a clear difference between JSQ and FPI emerges: at higher loads
JSQ is performing better than the FPI policy, while at lower loads FPI is
better than JSQ. Notably, our EW policy is still performing significantly
better than either FPI or JSQ. On the other hand, with respect to the power
consumption (top right panel), FPI performs best, i.e., it is packing jobs on
a fewer number of servers allowing them to sleep and save energy. Our EW
policy is still somewhat better than the static LB policy, while JSQ is even
worse than LB. With respect to the total cost (bottom panel), our EW policy
is overall giving the lowest mean cost, being smaller than that achieved by
FPI or JSQ. All dynamic policies are much better than LB.

Next we modify the system by having heterogeneous service rates and
busy powers such that µi = 1.0 1/s and Pi(busy) = 0.2 kW, for all i =
1, . . . , 5, and µi = 2.0 1/s and Pi(busy) = 0.3 kW for all i = 6, . . . , 10. Now
indexability holds if ρ > 0.13. The results are shown in Figure 5, which
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shows the mean number of jobs (top left panel), the mean power in kW
units (top right panel) and the mean total cost (bottom panel) as a function
of the load ρ for different policies (LB, JSQ, FPI and EW). Otherwise we
can observe qualitatively very similar to previous case, but our EW policy is
now somewhat better than FPI or JSQ in optimizing the performance when
servers have heterogeneous service rates. Correspondingly, the gap between
EW and FPI or JSQ in the total cost (bottom panel) is also slightly larger.

EW

LB FPI

JSQ

0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

ρ

E
[N
]

FPI

EW
LB

JSQ

0.2 0.4 0.6 0.8

1.4

1.6

1.8

2.0

2.2

2.4

2.6

ρ

E
[P
]

EW

FPI

JSQ

LB

0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

ρ

E
[C
]

Figure 5: The mean number of jobs (top left panel), mean power (top right panel) and
mean total cost (bottom panel) with 10 heterogeneous servers as a function of the load ρ
for different policies (LB, JSQ, FPI and EW).

Observe also the sawtooth-like behavior, in particular, in the energy
graphs for the EW policy, see Figure 4 (top right panel) and Figure 5 (top
right panel), but also to a lesser degree in the corresponding graphs on the
mean number of jobs. Also, by inspecting closely the mean number of jobs
graph for the FPI policy in Figure 5 (top left panel), the same phenomenon
can be observed at lower loads. We believe, that this is a consequence of the
dependence of the policies on λ, which is varying. The policies LB and JSQ
do not depend explicitly on λ and do not have this behavior.
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8.3. System with 10 NeverOff or InstantOff servers
Finally, we consider a scenario where the system with 10 servers consists

of a mixture of NeverOff and InstantOff servers. A NeverOff server in our
model corresponds to a server with δ → ∞ and the power consumption in
the off state is the idle state power of the server. We assume that servers
have all an identical service rate µi = 1.0 1/s and busy power consumption
Pi(busy) = 0.2 kW, for all i = 1, . . . , 10. The InstantOff servers have all
identical setup delays of 10 s, i.e., δi = 0.1 1/s and the off state power is
Pi(off) = 0.01 kW. Similarly, the NeverOff servers have off state power (cor-
responding to idle state power), which is 60% of the busy state power, i.e.,
Pi(off) = 0.12 kW. The NeverOff servers satisfy the indexability condition in-
dependent of ρ and the InstantOff servers satisfy indexability when ρ > 0.05,
i.e., they correspond to the earlier homogeneous scenario with 10 servers.

In this scenario, the number of NeverOff servers also needs to be deter-
mined. To this end, for a given value of λ, we choose the number of NeverOff
servers to be such that with them alone the system is slightly unstable and
the rest of the servers are then InstantOff servers. More precisely, the number
of NeverOff servers is set to bλ/µic.

The results as a function of the load with the different policies (LB, JSQ,
FPI, EW) for the performance (top left panel), power consumption (top right
panel) and total cost (bottom panel) are depicted in Figure 6. As earlier,
LB performs worst (top left panel). Also, FPI is performing better than JSQ
at lower loads, as earlier, but at higher loads although JSQ is better, the
difference to FPI is not that large. For the energy part (top right panel),
interestingly our EW policy is now slightly worse than LB at higher loads.
Overall in terms of the total cost (bottom panel), our EW policy yields the
lowest costs among all policies.

Finally, in order to have a more accurate idea of the behavior of each
policy across the different load values, in Figure 6 on the x-axis the load
values have been discretized with a spacing of 0.01, while in the earlier figures
the spacing was 0.05. The sawtooth-like behavior in the graphs is now evident
in all policies, which is here due to the changing configuration as the load
varies, i.e., the number of NeverOff servers increases by 1 each time load
increases by 0.1. In particular, for the LB, JSQ and EW policies the mean
number of jobs drops down (see upper left panel) each time a new NeverOff
server is added because this always reduces delays compared with a system,
where the corresponding server is an InstantOff server. However, for the FPI
policy, in addition to the effects of the changing configuration, the policy
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Figure 6: The mean number of jobs (top left panel), mean power (top right panel) and
mean total cost (bottom panel) with 10 NeverOff or InstantOff servers as a function of
the load ρ for different policies (LB, JSQ, FPI and EW).

itself changes gradually with the load causing additional non-smoothness in
the performance.

9. Conclusions

We have considered the energy-aware dispatching problem in a system
consisting of parallel M/M/1 queues with InstantOff servers. Such servers
go to sleep after becoming empty to save energy, but activation of the server
after sleep incurs an additional setup delay penalty. The costs in our system
model consist of linear holding costs and power consumption costs. The
performance-energy trade-off is characterized as a weighted sum of these.

To optimize the trade-off we have applied the Whittle index approach,
which is based on a certain relaxation of the original intractable dispatching
problem, and results in a separable problem, where each queue is considered
in isolation. In the earlier version of the paper [1], we proved the indexa-
bility property for the systems with sufficiently short setup delays, which,
however, may not be a realistic assumption. In the present paper, we have
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found sufficient conditions for indexability that allow longer (and, thus, more
realistic) setup delays. In addition, we have also derived the explicit form of
the Whittle index under these conditions. Our conditions essentially mean
that for fixed values of all other system parameters except the total arrival
rate of jobs, there is always a lower bound on the total arrival rate such
that indexability is guaranteed above that. In other words, indexability is
guaranteed if the total load is high enough.

The proof is technically challenging, as each queue is described by a two-
dimensional Markov process, representing the M/M/1 queue with setup. The
original proof of indexability relied on establishing a certain ordering of the
states in the two-dimensional state space when the mean setup delay is suffi-
ciently short. Here we show that a set of successively looser conditions on the
mean length of the setup delay can be determined under which the problem
still remains indexable. The challenge in the proof is that the ordering of the
states changes along the system parameters.

As demonstrated by our numerical experiments, the resulting energy-
aware Whittle index policy is able to perform very close to the numerically
solved optimal policy in a small system. In larger systems, where numerically
solving the optimal policy becomes intractable, the Whittle index policy still
outperforms all considered reference policies.

While we have managed to prove the indexability property and to derive
the Whittle index values explicitly whenever the system load is high enough,
it is still open whether this is possible for all parameter combinations with
lower load. Future research includes attacking this problem.

It would also be worth studying a more general system where the server is
woken up only when there is a sufficient number (say, k ≥ 1) of jobs waiting,
since, for a system with a single energy-aware server, it is known to perform
better than just having k = 1, see, e.g., [7, 23, 10]. Another direction of
future research is to consider whether the resulting Whittle index policy is
asymptotically optimal, which is the case under certain technical assumptions
[28, 26].
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