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Complex-Valued Nonlinear Adaptive Filters with
Applications in α-Stable Environments

Sayed Pouria Talebi, Stefan Werner, and Danilo P. Mandic

Abstract—A nonlinear adaptive filtering framework for pro-
cessing complex-valued signals is derived. The introduced adap-
tive filter extends the fractional-order framework of the authors
for dealing with real-valued signals to the complex domain via the
augmented statistical approach to complex-valued signal process-
ing. This results in a versatile class of adaptive filtering techniques
which allows the classical Gaussian assumption to be extended to
the generalized context of α-stables. For rigour, the performance
of the introduced adaptive filtering framework is analyzed, its
convergence criteria is established, and its application in tracking
signals of chaotic systems is demonstrated using simulations.

Index Terms—Nonlinear adaptive filtering, complex-valued α-
stable signals, fractional-order adaptive filtering.

I. INTRODUCTION

Classical adaptive filtering, learning, and control techniques
have been derived and implemented in the real domain [1]–
[4]. However, in a great number of engineering applications,
complex-valued modeling of physical systems provides a
straightforward mathematical framework for solving the differ-
ential equations that govern their behaviour; thus, allowing for
fast and convenient analysis of their performance [5]. In ad-
dition to communication engineering, perhaps the best known
example of such systems are electrical circuits, such as power
transmission systems [6]–[9]. Moreover, when equipped with
the power of augmented statistics, complex-valued modeling
and signal processing have been shown to be advantageous
in an increasing number of applications, such as wind profile
forecasting [10,11], frequency domain signal analysis [12], and
information processing [13]–[15].

Traditionally, complex-valued filtering techniques have been
developed with the implicit assumption that signals of in-
terest are Gaussian and second-order circular (proper), i.e.,
Gaussian with rotation invariant distributions. However, recent
developments have by and large put this assumption under
scrutiny [5,16]. In particular, adaptive filtering techniques
developed with impropriety in mind have been shown to
possess advantageous performance in an increasing number
of applications [5,12,16]–[18]. Moreover, modern filtering and
estimation applications often deal with signals that exhibit
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sharp spikes, the distributions of which decay slower than
the Gaussian case [19]–[24]. Modeling these signals has been
shown to be possible through the generalized framework
of α-stable random processes [22,25]. Although a number
of approaches for filtering such signals have been recently
introduced [26]–[30], these approaches are restricted to real-
valued signals. Thus, a comprehensive framework for dealing
with complex-valued α-stable signals is still lacking.

The focus of this work is on a flexible class of α-stable ran-
dom processes, termed complex-valued elliptically symmetric
α-stable, hereafter referred to as C-SαS for short. This is
motivated by the versatility of C-SαS processes that allow for
the derivation of mathematically tractable filtering solutions. In
addition, as a large class of α-stable random processes can be
approximated via a combination of C-SαS random processes,
the applicability of adaptive filtering techniques derived on this
basis is maintained.

In this work, a class of nonlinear adaptive filtering tech-
niques for real-time processing of C-SαS signals is derived.
This is achieved using the augmented statistical approach
for dealing with complex-valued signals in order to extend
the framework first proposed by the authors in [31,32] for
dealing with real-valued signals to the complex-valued setting.
In addition, performance of the derived filtering technique is
analyzed and its convergence criteria are established. Finally,
the introduced filtering framework is generalized so that a
mixture of the derived fractional-order filtering operators can
be used in unison for improved performance.
Mathematical Notations: The real-valued sign operator is
denoted by sign(·). The real and complex domains are denoted
by R and C. Scalars, column vectors, and matrices are denoted
respectively by lowercase, bold lowercase, and bold uppercase
letters, while I denotes an identity matrix of appropriate size.
The transpose, Hermitian transpose, and complex conjugate
operators are respectively denoted by (·)T, (·)H, and (·)∗. The
statistical expectation operator is denoted by E {·}, while the
operator vec {·} stacks the columns of a matrix transforming
it into a vector. Finally, <{x} and ={x} return the real and
imaginary components of x, while j2 = −1.

II. PRELIMINARIES AND PROBLEM FORMULATION

In the context of the CR-calculus [5,33], a complex-valued
function f(x) : C→ C is considered in terms of its real-valued
components, f(x) = <{f(x)} + j={f(x)}, and the conjugate
coordinate basis xa = [x, x∗]. Then, using the mapping[

x
x∗

]
=

[
1 j
1 −j

] [
<{x}
={x}

]
(1)
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a relation is established between the derivatives taken in R2

and those taken directly in C. This relation is subsequently
adopted to introduce a framework for calculating derivatives
and establishing gradients of complex-valued functions.

The approach of augmenting a complex-valued variable,
x, with its complex conjugate in order to form the so-
called augmented variable, xa = [xT,xH]T, has also been
instrumental in complex-valued statistics, where the relation
between xa and {<{x},={x}} is used to provide a framework
for the full statistical description of complex-valued random
processes [5]. For instance, the full second-order statistical
information of a complex-valued random vector, x, is only
describable through its augmented covariance matrix given by

Cxa = E
{
xaxaH

}
=

[
Cx Px

PH
x CH

x

]
where Cx = E

{
xxH

}
is the standard covariance, and Px =

E
{
xxT

}
is referred to as the pseudo-covariance [5].

The most fundamental problem in complex-valued filtering
and learning paradigms is the adaptive estimation of weighting
matrices {H,G} in the so-called widely-linear model

yn = Hxn + Gx∗n (2)

based on the input sequence {xn : n = 1, 2, . . .} and
observation sequence {yn : n = 1, 2, . . .} [5,34]. A number
of solutions to this problem have been developed in recent
years, among which the augmented complex least mean square
(ACLMS) [11,15,35] has found widespread acceptance. How-
ever, these solutions are based on the assumption that {yn,xn}
are jointly Gaussian signals.

The class of elliptically symmetric α-stable signals have
attracted a great deal of attention for modeling signals en-
countered in modern filtering applications [21,26,31,36]. A
complex-valued signal is referred to as C-SαS if its real and
imaginary components are jointly elliptically symmetric α-
stable [25]. The class of C-SαS signals admit characteristic
function of the form1 [25]

Φxa(s
a) = E

{
e

(
j saHxa

2

)}
= e

1
2 jS

aHζae−(
1
8 saHΣsa)

α/2

(3)

where the positive definite matrix, Σ, determines the elliptical
shape of the distribution of x which is centered at ζ. The tail
heaviness of the density is determined by the characteristic
exponent α ∈ (0, 2]. A small value of α indicates severe
impulsiveness, resulting in heavier tails, whereas when α→ 2
the distribution exhibits more Gaussian type behaviour. Indeed,
for the case of α = 2, the distribution is Gaussian. Given
that C-SαS signals only posses finite statistical moments
of orders strictly less than α, classical signal processing
techniques, based on minimizing second-order moments of
an error measure, do not perform well when applied to C-
SαS signals [19,26,28,31]. Moreover, another consequence of
this property is that for filtering purposes, in order to ensure
finite conditional expectations exist, hereafter it is assumed
that α ∈ (1, 2].

1For more information on characteristic function of complex-valued signals
the keen reader is referred to [5,37].

In this work, the adaptive filtering problem formulated in
(2) is considered, where the Gaussian assumption on the
input/output signal is extended to the generality of C-SαS
signals. This makes it possible to accommodate for modeling
signals encountered in modern filtering applications, e.g. [19]–
[24,26,31]. The proposed solution draws upon ideas from our
previous work dealing with real-valued signals in [31,32],
which was developed using concepts from fractional-order
calculus and statistics [38]–[41].

III. PROPOSED FILTERING APPROACH

In order to simplify the presentation, the widely-linear
model in (2) is rearranged into the augmented formulation

yan = Wxan with W =

[
H G
G∗ H∗

]
(4)

where the task at hand becomes that of estimating the weight
matrix W. To this end, consider the adaptive filter

ŷan = Ŵnxan (5)

where Ŵn is the estimate of desired weight matrix W at time
instant n. The estimates, {Ŵn : n = 1, 2, . . .} are selected to
iteratively minimize the cost function

Jn = εaHn gρ(ε
a
n) with

εan = yan − ŷan

ρ ∈ (0, α− 1)
(6)

where εan denotes the discrepancy between the output signal,
yan, and its predicted value, ŷan, while gρ(·) is a function,
hereafter referred to as the fractional-order operator, that
performs the transform

∀z ∈ C : z ← sign(<{z})|<{z}|ρ+jsign(={z})|={z}|ρ (7)

on each element of its augmented input vector.
Remark 1. After some mathematical manipulation, the cost
function in (6) can be reformulated in terms of the real and
imaginary components of εan to give

Jn = ‖<{εan}‖
ρ+1
ρ+1 + ‖={εan}‖

ρ+1
ρ+1.

This makes it clear that, the condition ρ ∈ (0, α−1) guarantees
Jn is convex and E {Jn} exists.

The weight matrix estimate, Ŵn, is updated at each time
instant using the gradient-descent principle so that

Ŵn+1 = Ŵn − µ∇ρJn (8)

where µ is a positive real-valued adaptation gain and ∇ρJn
denotes the ρ-order gradient of Jn, which is used to form the
direction of descent. Akin to the CR-calculus approach, the
cost function is considered in terms of the real-valued com-
ponents of its input. This allows for the use of conventional
real-valued techniques for calculating the gradient, which is
then mapped onto the complex domain. Thus, considering the
framework set in [38,39] and our previous work [31,32], from
(8) we have

Ŵn+1 = Ŵn + µεan
(
gρ(x

a
n)
)H

(9)

where all constant terms have been incorporated into the
adaptation gain µ.
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IV. PERFORMANCE ANALYSIS

From the error term defined in (6) and the adaptive filter
formulated in (5) we have

εan = yan − ŷan = Wxan − Ŵnxan = Υnxan (10)

where

Υn = W − Ŵn (11)

denotes the weight matrix estimation error. Subsequently,
replacing εan from (10) into (9) gives

Ŵn+1 = Ŵn + µΥnxan
(
gρ(x

a
n)
)H

(12)

which using (11) yields

Υn+1 =Υn − µΥnxan
(
gρ(x

a
n)
)H

=Υn

(
I− µxan

(
gρ(x

a
n)
)H )

= Υn (I− µΨn)
(13)

where Ψn = xan
(
gρ(x

a
n)
)H

.
The expression in (13) demonstrates the transformation of

weight matrix estimation error from one time instant to the
next and can be reformulated to give

vec
{

ΥT
n+1

}
= Tnvec

{
ΥT
n

}
(14)

where Tn is block diagonal matrix of appropriate size with
identical block diagonal elements, so that

Tn = block-diag{I− µΨT
n}.

From (14), it becomes clear that for β ∈ (1, α), ‖vec {Υn} ‖ββ
is convergent when

∀n : 0 < µ <
1

λmax(Ψn)
(15)

where λmax(Ψn) is the largest eigenvalue of Ψn.

Remark 2. Following the process in (10)-(15) and assuming
that {xan : n = 1, 2, . . .} is a zero-mean, stationary, and tempo-
rally independent sequence, it follows that E

{
‖vec {Υn} ‖ββ

}
converges if 0 < µ < 1/λmax(E {Ψn}). After some mathe-
matical manipulation it can be shown that

Ψ{l,k}n =xa{l}n sign(<{xa{k}n })|<{xa{k}n }|ρρ
− jxa{l}sign(={xa{k}n })|={xa{k}n }|ρρ

(16)

where Ψ{l,k}n denotes the element on the lth row and kth

column of Ψn, with x
a{k}
n representing the kth element of

xan. From (16) it is clear that the condition ρ ∈ (0, α− 1) set
in (6) guarantees that E {Ψn} exists.

Remark 3. For the Gaussian case, where α = 2, as ρ→ 1, the
proposed filtering technique simplifies into the conventional
ACLMS in [11,35]. The same statement follows for the derived
convergence criteria.

V. MIXED FRACTIONAL-ORDER OPERATOR APPROACH

Assume, without loss of generality, that Ŵ1 = 0. Then,
from the expression in (9) we have

Ŵn+1 = µ
n∑
l=1

εal
(
gρ(x

a
l )
)H
. (17)

The expression in (17) allows for the proposed approach to be
generalized to the case that admits m different fractional-order
operators to be used. In this setting, following the approach
introduced in Section III, we have

Ŵn+1 = µ
n∑
l=1

m∑
k=1

εal
(
gρk(x

a
l )
)H

(18)

where ∀k : ρk ∈ (0, α− 1).
From (18), the evolution of the weight matrix estimates can

be formulated as

Ŵn+1 − Ŵn =µεan

m∑
k=1

(
gρk(x

a
n)
)H

=µΥnxan

m∑
k=1

(
gρk(x

a
n)
)H
.

(19)

Subsequently, a substitution of (11) into (19) yields

Ŵn+1 − Ŵn = µ
(
W − Ŵn

)
xan

m∑
k=1

(
gρk(x

a
n)
)H

which can be rearranged to give

Ŵn+1 =µWxan

m∑
k=1

(
gρk(x

a
n)
)H

+ Ŵn

(
I− µxan

m∑
k=1

(
gρk(x

a
n)
)H)

.

(20)

Applying the statistical expectation of (20) and assuming that
{xan : n = 1, 2, . . .} is a zero-mean, stationary, and temporally
independent sequence; then, for n > 1, we have

E
{

Ŵn+1

}
= µWΓ

n+1∑
l=1

(I− µΓ)
l−1 (21)

where Γ = E
{

xan
∑m
k=1

(
gρk(x

a
n)
)H}

. From (21) it is clear

now that E
{

Ŵn+1

}
→W as n→∞ conditional on

0 < µ <
1

λmax(Γ)
·

Remark 4. In so-called mixed norm approaches, different
norms of an error measure are simultaneously minimized;
this, is typically achieved based on their first-order gradient.
However, this still does not describe the introduced mixed
fractional-order approach. The weight matrix estimate in (18)
represents the summation of m different fractional gradient
operators, which minimize their corresponding fractional-order
cost functions through the framework derived in Section III.
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VI. PERFORMANCE EVALUATION

In the first set of simulations, the adaptive filtering problem
defined in (4)-(5) was considered, where

H =
[
1.4 + j2.1 −0.52− j0.52

]
G =

[
−1.5 + j1.21 2 + j2.3

]
while the input sequence {xan : n = 1, 2, . . .} was a zero-mean
temporally independent C-SαS sequence with α = 1.6 and

Σ =


20 0 j16 0
0 20 0 j8
−j16 0 20 0
0 −j8 0 20

 .
The adaptation gain was µ = 4× 10−3 for this simulation.

Two metrics were used to measure performance of the
proposed filtering techniques, the mean absolute error (MAE)
given by E {|εan|}, and the mean absolute deviation (MAD)
given by E {|Υn|}. The mean-values were calculated empiri-
cally via averaging of results obtained from 103 independent
realizations of the experiment. Performances of the derived
adaptive filtering techniques are compared to that of the
traditional ACLMS in Figure 1. Observe that, in contrast to the
ACLMS, the class of derived filters converged. Moreover, a
decrease in the parameter ρ reduced jitters (sharp spikes) in the
MAD and MAE behaviour, while at the same time decreasing
convergence rates.2 Figure 1 also includes performance of
the mixed fractional-order operator with operators ρ1 = 1/2,
ρ2 = 1/8, and ρ3 = 1/16.

In the second set of simulations, a nonlinear complex-valued
Ikeda map signal was considered. The signal was generated
through the nonlinear recursive relation

<{xn+1} =1 + 0.65
(
={xn}cos (un)−={xn}sin (un)

)
={xn+1} =0.65

(
<{xn}sin (un) + ={xn}cos (un)

)
where un = 0.4− 6(1 + |xn|2)−1.

The past four samples of the Ikeda signal were used as
input to the widely-linear model in (2) in order to predict
the upcoming output. The ACLMS and the proposed filtering
technique, in the mixed fractional-order operator formula-
tion, were implemented to estimate the weighting matrix.
The fractional-order operators used for this simulation were
ρ1 = 1, ρ2 = 1/2, and ρ3 = 1/4. Thus, in essence, the
gradient of the ACLMS (that is for ρ1 = 1) is combined
with two of its fractional-order counterparts (that is ρ2 = 1/2
and ρ3 = 1/4). The adaptation gain, µ, was chosen so
that both methods achieved a similar steady-state MAE. The
MAE performance of the ACLMS and the proposed filtering
framework, calculated empirically via averaging of results
obtained from 103 independent realizations of the experiment,
are shown in Figure 2. Although both methods were able to
track the signal, the proposed filter outperformed the ACLMS
in terms of convergence rate.

2This indicates a trade-off in selection of ρ. However, a precise formulation
of the effect of ρ on the filtering performance remains an open problem.
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Figure 1. The MAE (top) and MAD (bottom) performance of the proposed
filtering technique. Performance of the proposed filtering technique is denoted
as Fractional-Order Filter, while the mixed fractional-order approach is
designated as Mixed Fractional-Order Filter. Performance of the standard
ACLMS is provided for comparison.
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Figure 2. Learning curves for the Ikeda map. The MAE performance of the
ACLMS and proposed filtering technique, designated as Mixed Fractional-
Order Filter, are shown.

VII. CONCLUSION

A class of nonlinear adaptive filtering techniques for pro-
cessing C-SαS signals has been derived. The proposed adap-
tive filter is based on the principle of gradient-descent and aug-
mented statistical approach to processing complex-valued sig-
nals. In essence, the derived approach represents an extension
of the ACLMS, where the first-order gradient is generalized
to fractional-order gradients in order to accommodate C-SαS
signals with α ∈ (1, 2]. Moreover, convergence criteria for
the derived filtering techniques have been established and the
introduced concepts have been verified using simulations. The
obtained results also indicate that when dealing with systems
exhibiting chaotic behaviour, the performance of the ACLMS
adaptive filter can benefit if the adaptation step is mixed with
the derived fractional-order filtering operators.
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