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Understanding the mechanisms of thermal conduction in graphene is a longstanding research topic due to
its high thermal conductivity. Studies based on the Peierls-Boltzmann transport equation (PBTE) have revealed
many unique phonon transport properties in graphene, but most previous works considered only three-phonon
scatterings and relied on interatomic force constants (IFCs) extracted at 0 K. Recently, the importance of four-
phonon scattering in graphene was revealed by Feng and Ruan [Phys. Rev. B 97, 045202 (2018)]. In this paper,
we explore the temperature-dependent IFCs with regard to phonon transport in graphene through our PBTE
calculations. We demonstrate that the strength of four-phonon scatterings was severely overestimated by previous
work that used the IFCs extracted at 0 K. By using IFCs at finite temperatures, we find that four-phonon scattering
is weakened but still significantly reduced the thermal conductivity of graphene by around 50%, even at room
temperature. Furthermore, in order to reproduce the prediction from molecular dynamics simulations, phonon
frequency broadening has to be taken into account when determining the phonon scattering rates. Our study
elucidates the phonon transport properties of graphene at finite temperatures and could be extended to other
crystalline materials.

DOI: 10.1103/PhysRevB.100.064306

I. INTRODUCTION

Inspired by the reported ultrahigh thermal conductivity
from measurements [1,2], the phonon transport properties of
graphene were intensively investigated due to its potential
for thermal management [3,4]. Quite a few theories have
originated from various pictures of phonons [5], such as
molecular dynamics (MD) simulations [6–11], the atomistic
Green’s function [12,13], and the Peierls-Boltzmann transport
equation (PBTE) methods [14–20], in order to study phonon
transport in graphene and related nanostructures. Since the
PBTE approach could be easily integrated with first prin-
ciples [21–24], enhancing the predictive power of thermal
conductivity and providing detailed information on phonon
scattering and the phonon mean free path, it has become a
routine method of exploring the thermal transport properties
of crystalline materials. Fruitful results from the PBTE ap-
proach have been obtained, which deepen our understanding
for thermal transport in graphene and other two-dimensional
materials [25,26].

Despite considerable progress having been made, there
are several concerns that might affect the use of the PBTE
approach in predicting the thermal properties of graphene.
First, in most previous studies on graphene, three-phonon
scatterings are treated as the main origin of inelastic phonon
scatterings, and higher-order phonon scatterings are ignored.
However, recent studies have shown that four-phonon scatter-
ings have to be taken into account in the PBTE calculations
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for some bulk materials such as cubic silicon [27], hexagonal
silicon [28], and boron arsenide [29], even at room temper-
ature; otherwise the predicted thermal conductivity would
be overestimated considerably. In addition, recent measure-
ments of the thermal conductivity of boron arsenides [30–32]
showed that three-phonon processes along with defect scatter-
ings cannot reproduce the measured temperature dependence
unless four-phonon processes are taken into account. These
findings stress the importance of going beyond the lowest per-
turbation theory, which relies on three-phonon processes only,
when exploring phonon transport. Very recently, Feng and
Ruan [33] calculated the thermal conductivity of graphene,
whose interatomic interaction is described by the optimized
Tersoff potential [34], by considering both three-phonon and
four-phonon scatterings. They reported that the thermal con-
ductivity of graphene is around 800 W/mK, far below the
previously reported simulation data (∼3500 W/mK) from
PBTE calculations where four-phonon scatterings are not
included [18,34]. This work seems to confirm the importance
of four-phonon scatterings in graphene, but the obtained ther-
mal conductivity value is substantially lower than the results
from MD simulations using the same empirical potential
[6–9,11], where the four-phonon scatterings are naturally
captured. The origins of the discrepancy of the two numerical
methods have not yet been fully understood. One possible
example explanation is that the phonons in MD simulations
do not follow the Bose-Einstein distribution but are fully
excited.

Second, interatomic force constants (IFCs) used in PBTE
studies on graphene were usually obtained at the static
limit (0 K), and the temperature effects on these IFCs
were not taken into account [14,16,18,20]. One example
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to stress the importance of the temperature-dependent IFCs
on phonon transport is crystalline materials with structural
phase transition at high temperatures. Imaginary frequen-
cies, a sign of instability, usually occur if using the in-
teratomic force constants extracted at 0 K to compute the
phonon dispersions of the high-temperature phases [35,36].
Only by taking the temperature dependence of IFCs into
account can the vibrational properties of high-temperature
phases be correctly captured [37]. Even if no structural
phase transition happens, the anharmonic interactions might
result in phonon shifts, which can be regarded as an out-
come of temperature-dependent force constants and might
have some impact on phonon scatterings as well as thermal
conductivity [38,39]. The effects of temperature-dependent
IFCs on thermal conduction in graphene have not been
reorganized.

Third, when calculating the phonon scattering rates ap-
pearing in the PBTE, one has to employ the Dirac δ function
to ensure the energy conservation condition before and after
phonon scattering [40]. Several numerical schemes have been
proposed to treat the Dirac δ function when integrating the
first Brillouin zone. The representative approaches include
analytical methods, in which the first Brillouin zone is divided
into tetrahedrons [41] or stripes [42] and the integration in
each small region is analytically computed, and the finite-
breath function method, where the Dirac δ function is re-
placed by a Gaussian/Lorentzian function with either fixed
[43] or adaptive smearing parameters [23,44]. For the finite-
breath function method with adaptive smearing parameters,
Li et al. [23] suggested to connect the smearing parame-
ters with the group velocities of phonons that take part in
the scattering, while Turney et al. [44] linked those with
phonon linewidths. A more detailed analysis to clarify the
distinction among these approaches is very much needed in
order to accurately predict phonon transport using the PBTE
formalism.

In this paper, we perform PBTE calculations to deter-
mine the thermal conductivity of graphene modeled by the
optimized Tersoff potential. Three-phonon scatterings, four-
phonon scatterings, and phonon-boundary scatterings are
fully taken into account in the phonon transport modeling.
While most PBTE studies used IFCs from first principles as
inputs and tried to match the measured experimental data,
we employ the empirical potential to generate the interatomic
force constants. This is because the thermal conductivity mea-
surements on two-dimensional materials are still quite chal-
lenging, and there is still no consensus on the accuracy of the
existing measurement methods [45]. Instead, using the empiri-
cal potential, we could compare the results from PBTE studies
with the thermal conductivity predictions made by MD simu-
lations directly and identify the influence of four-phonon scat-
terings and temperature-dependent IFCs on phonon transport
in graphene. In addition, we also employ different schemes to
approximate the Dirac δ function for energy conservation, and
the validity of these methods is discussed. To fairly compare
the results from the MD and PBTE calculations, both classical
and quantum phonon population functions are used in our
calculations.

II. THEORETICAL METHODS

A. Interatomic force constants

The vibrational properties of a material are determined by
the Hamiltonian, which is expressed as [46]

H = T + V,

T =
∑

i

Ti,

V = E0 + 1

2!

∑
i j

∑
αβ

φ
αβ
i j uα

i uβ
j + 1

3!

∑
i jk

∑
αβγ

ψ
αβγ

i jk uα
i uβ

j uγ

k

+ 1

4!

∑
i jkl

∑
αβγ θ

χ
αβγ θ

i jkl uα
i uβ

j uγ

k uθ
l + . . . , (1)

where T and V are the kinetic and potential energies; the pair
(i, α) means the degree of freedom in the material correspond-
ing to the α direction of atom i; u is the atomic displacement
away from the equilibrium position; φ, ψ , and χ are the so-
called second-order harmonic, third-order, and fourth-order
anharmonic force constants; and E0 is the potential energy
when u = 0. The concept of phonons is based on the harmonic
oscillators, which assumes the anharmonic terms (the last
two terms) in Eq. (1) are much smaller than the harmonic
term (the second term on the right-hand side) of Eq. (1).
The second-order harmonic force constants determine many
phonon properties, such as the phonon dispersion, phonon
group velocity, and the heat capacity of a specific mode.
Based on the perturbation theory [46], the anharmonic terms
lead to phonon scatterings, which results in the resistance
to the heat flow. The strength of phonon-phonon scatterings
could be calculated using the information of anharmonic force
constants. The atomic forces are also related to the IFCs
through [47]

Fα
i = − ∂V

∂uα
i

= −
∑

j

∑
β

φ
αβ
i j uβ

j − 1

2!

∑
jk
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βγ

ψ
αβγ

i jk uβ
j uγ
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− 1

3!

∑
jkl

∑
βγ θ

χ
αβγ θ

i jkl uβ
j uγ

k uθ
l + . . . . (2)

Mathematically, φ, ψ, and χ are regarded as the negative
first-order, second-order, and third-order derivatives of atomic
force with respect to atomic displacements. To obtain the
IFCs, one, two, or three atoms are usually displaced away
from their equilibrium positions by a small distance along the
Cartesian directions. The IFCs were then determined by either
a finite-difference scheme on the atomic forces [48] or fitting
the atomic displacement-force relations, Eq. (2) [47]. Since
most atoms in the supercell are staying in their equilibrium
positions, the IFCs calculated from such small-displacement
approaches correspond to 0 K. Here, we extract the 0 K IFCs
using the fitting method.

As the temperatures increases, the amplitudes of atom
displacements become larger so that the anharmonic terms
in Eq. (1) cannot be treated as perturbations to the harmonic
Hamiltonian. In order to apply the phonon scattering theories
to determine the thermal conductivity, one possible approach
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is to use the harmonic Hamiltonian,

Ĥ = T + V̂ = T + Ê0 + 1

2!

∑
i j

∑
αβ

φ̂
αβ
i j uα

i uβ
j , (3)

where φ̂ is the effective second-order harmonic force constant
and Ê0 is the effective equilibrium potential energy, to approx-
imate the Hamiltonian, Eq. (1). Goldman et al. [49] pointed
out that the effective harmonic Hamiltonian is insufficient to
calculate the free energy, and the cubic terms should be added
to the expression of free energy. Hellman et al. [37] refined the
free energy computed by the effective harmonic Hamiltonian
by including the temperature-dependent anharmonic contri-
bution of the potential energy to the expression of the free
energy. They showed that the effective phonon concept could
help to obtain the phonon dispersion of high-temperature
phases. We also consider the anharmonic Hamiltonian by
decomposing the residue between the real Hamiltonian and
the effective harmonic one into the contributions from the
third-order and fourth-order terms through

H − Ĥ = V − V̂

= E0 − Ê0 + 1

3!
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i jkl uα
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j uγ

k uθ
l + . . . , (4)

where ψ̂ and χ̂ are the effective anharmonic IFCs. Since
the temperature determines the range of atomic displace-
ments, the effective harmonic Hamiltonian is temperature
dependent. Correspondingly, the effective harmonic and an-
harmonic force constants should be temperature dependent
as well.

To obtain the temperature-dependent (effective) IFCs, we
employ a stochastic sampling technique [39] to generate
several different configurations corresponding to a certain
temperature T . In each configuration, 1800 carbon atoms,
or equivalently, 30 × 30 primitive unit cells of graphene, are
included. Following Shulumba et al. [39], in classical system
the displacements of atoms in a cell of Na atoms at T should
follow the distribution

uα
i =

3Na∑
s=1

εs
iα

〈
As

iα

〉√−2 ln ξ1 sin 2πξ2, (5)

where εs
iα is a component that corresponds to the α direction

of atom i of the sth eigenvector in the system, and ξ1 and
ξ2 are uniform random variables between (0, 1), which are
used to generate normally distributed numbers. 〈As

ia〉 is the
thermal amplitude of normal mode from Boltzmann statistics,
written as 〈As

ia〉 = √
kbT/mi/ωs, where mi is the mass of atom

i, ωs is the frequency of mode s, and kB is the Boltzmann
constant. With the randomly generated atomic displacements,
the atomic forces can be computed based on the interatomic
potential, after which the second-order effective harmonic
force constants are extracted first by fitting the obtained
displacement-force data through

Fα
i = − ∂V̂

∂uα
i

= −
∑

j

∑
β

φ̂
αβ
i j uβ

j . (6)

Then, we fit the displacement–residual force data to obtain
the third-order and four-order anharmonic force constants
using the relation

Fα
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∑
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αβγ θ

i jkl uβ
j uγ

k uθ
l .

(7)

During the fitting processes, the translational invariances
of the interatomic force constants are imposed using the
singular-value decomposition technique, which is docu-
mented in Ref. [50].

It is noted that one has to know the mode frequencies
and eigenvectors at temperature T , which are not available
in advance, in order to go through the procedures mentioned
above. Here we use the harmonic force constants at 0 K as
an initial guess to compute the frequencies and eigenvectors.
With the displacement-force dataset generated based on the
initial set of harmonic force constants, the new harmonic force
constants are calculated, which are in turn to generate a newer
displacement-force dataset until convergence. In each round,
50 different configurations are generated. We find that using
more configurations does not lead to a significant change on
phonon dispersion. Since the supercell we employ includes
1800 atoms, much more than those in many previous calcu-
lations on extracting ab initio force constants (in the order
of 100 atoms), we can use fewer configurations to generate
enough data for force constant fitting (50 configurations with
1800 atoms could generate 270 000 force data in total for IFC
fitting, 3 orders of magnitude larger than the number of IFCs).

B. Lattice thermal conductivity from the Peierls-Boltzmann
transport equation

To calculate the thermal conductivity, an isotopically pure
single-layer graphene sheet is placed in the x-y plane. The
graphene sample is sandwiched between two heat reservoirs
with a distance L apart in the x direction, and the temperatures
of the two reservoirs are kept at T + �T/2 and T − �T/2,
respectively, with an average temperature of the sample T and
an infinitely small temperature difference �T . The tempera-
ture gradient in the sample is dT

dx = �T/L. Due to the driving
of the temperature gradient, the phonon populations do not
follow the equilibrium function (Bose-Einstein distribution
for phonons in realistic materials and classical distribution
for phonons in classical MD simulations) but are perturbed.
We can write the nonequilibrium phonon populations as
nλ = n0

λ + n0
λ(n0

λ + 1) dT
dx F x

λ , where λ (≡ qs) denotes the sth
phonon mode with a momentum q, n0

λ is equilibrium phonon
population, and F x

λ is the so-called deviation function for
mode λ, which can be calculated by solving the steady-state
linearized PBTE. With the solved deviation functions, the
thermal conductivity along the x direction is expressed by the
contribution from each phonon mode,

Kxx = 1

B

∑
λ

h̄ωλv
x
λn0

λ

(
n0

λ + 1
)
F x

λ , (8)
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where h̄ is the Planck constant, B represents the volume of the
unit cell, and ωλ and vλ are the phonon frequency and group
velocity of mode λ, respectively, which are determined by the
phonon dispersion of graphene. For a defect-free graphene,
the PBTE can be written as [27,33]

vx
λ

∂n0
λ

∂T

∂T

∂x
= W 3ph

λ + W 4ph
λ + W boundary

λ , (9)

where the left-hand-side term represents the phonon diffusion
driven by the temperature gradient, and the right-hand side
represents the collision terms originating from three-phonon,
four-phonon, and phonon-boundary scatterings.

The phonon-phonon scattering terms on the left-hand side
of Eq. (9) are expressed as [33]

W 3ph
λ =

∑
λ′

∑
λ′′

∂T

∂x

[
W +

λ,λ′,λ′′
(
F x

λ′′ − F x
λ′ − F x

λ

)

+ 1

2
W −

λ,λ′,λ′′
(
F x

λ′′ + F x
λ′ − F x

λ

)]
, (10)

W 4ph
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[
1

2
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(
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λ

)
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2
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(
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6
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(
F x

λ′ + F x
λ′′ + F x

λ′′′ − F x
λ

)]
. (11)

While W ±
λ,λ′,λ′′ in Eq. (10) is the transition probability for

the three-phonon processes qs ± q′s′ → q′′s′′, W ± ±
λ,λ′,λ′′,λ′′′ in

Eq. (11) is the counterpart for the four-phonon scattering
events qs ± q′s′ ± q′′s′′ → q′′s′′. Usually, the expressions of
the transition probability for these phonon-phonon scatterings
derived according to the Fermi golden rule are used, which are
expressed as [27]

W ±
λ,λ′,λ′′ = 2πn0

λ

(
n0

λ′ + 1
2 ∓ 1

2

)(
n0

λ′′ + 1
)|V3(−λ,∓λ′, λ′′)|2

× δ(ωλ ± ωλ′ − ωλ′′ )�(q ± q′ − q′′ + G), (12)

W ±±
λ,λ′,λ′′,λ′′′ = 2πn0

λ

(
n0

λ′ + 1
2 ∓ 1

2

)(
n0

λ′ + 1
2 ∓ 1

2

)
× (

n0
λ′′′ + 1

)|V4(−λ,∓λ′,∓λ′′, λ′′′)|2
×δ(ωλ ± ωλ′ ± ωλ′′ − ωλ′′′ )

×�(q ± q′ ± q′′ − q′′′ + G). (13)

V3 and V4 in the above equations are three-phonon and four-
phonon scattering matrix elements, quantifying the strength
of the scattering events. The expressions for V3 and V4 can be
found in Ref. [27]. The momentum conservation conditions
during the scattering events, i.e.,

q ± q′ − q′′ + G = 0 (14)

and

q ± q′ ± q′′ − q′′′ + G = 0, (15)

with a reciprocal vector G, are ensured by the � function.
Depending on whether G equals 0 or not, the scattering is a
normal process or a Umklapp process. The Dirac δ function in
Eqs. (12) and (13) means conservation of energy before and

after the phonon scatterings, that is,

ωλ ± ωλ′ − ωλ′′ = 0 (16)

and

ωλ ± ωλ′ ± ωλ′′ − ωλ′′′ = 0, (17)

for the three-phonon and four-phonon processes, respectively.
The phonon-boundary scattering term depends on the

phonon lifetime due to phonon-boundary scattering, which is
written as [51]

W boundary
λ = − nλ − n0

λ

τ
boundary
λ

= −1

a

n0
λ

(
n0

λ + 1
)
F x

λ

L
/∣∣vx

λ

∣∣
∂T

∂x
. (18)

The phonon lifetime is usually assumed to be proportional
to the ratio between the sample size and the phonon group
velocity. The constant number a in Eq. (18) is the scaling
parameter. When L → ∞, W boundary

λ approaches zero and
phonons in the sample experience only the phonon-phonon
scatterings.

C. Numerical solution of PBTE

To calculate the thermal conductivity through Eq. (8),
the first Brillouin zone of graphene is first discretized to
an N × N q-point grid, and then the frequency and group
velocity of phonon modes on the grid are calculated through
the phonon dispersion relation. In order to obtain the mode-
specific deviation functions, one has to solve the PBTE, a set
of linear equations with respect to {F x}. The coefficients of the
linear equations are relevant to the summation of the transition
probabilities of all possible phonon scattering events.

For a given mode λ (qs) and the other two (three) phonon
branches, s′ and s′′ (s′, s′′ and s′′′), fixed, there is a four-
dimensional (six-dimensional) space of q′ and q′′ (q′, q′′ and
q′′′) that can form a three-phonon (four-phonon) scattering
event. Taking the advantage of the momentum conservation
condition in Eqs. (14) and (15) to eliminate q′′, the summa-
tions become over q′ for three-phonon scatterings and become
over q′ and q′′′ for four-phonon scatterings.

If one treats q′ and q′′′ as continuous variables, the sum-
mation over q′ and q′′′ in Eqs. (10) and (11) is converted
to the integral through

∑
q′ = 1

�
∫� dq′ and

∑
q′

∑
q′′′ =

1
�2 ∫� dq′ ∫� dq′′′, where � denotes the first Brillouin zone.
Using the q-point grid as the quadrature grid for q′ and q′′′, the
above multiple integral could be determined straightforwardly
through numerical integration if the integrands are continuous
functions. However, additional attention should be paid to
perform the above integrations when the Dirac δ function
appears in the integrands. For the integration over q′ and q′′′,
one can always perform the numerical integration over q′ first
by fixing q′′′. Without loss of generality, the integrals over q′
in Eqs. (9) and (10) have the form

I (W ) =
∫

�

φ(q′)δ(ωq′s′ − W )dq′, (19)

where φ(q′) is a function with respect to q′.
We employ the so-called tetrahedron method to calculate

the integration with the Dirac δ function [52]. In this method,
the first Brillouin zone is decomposed into a few nonover-
lapped tetrahedrons or triangles with the same volume or
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area, depending on whether the crystal is three-dimensional or
two-dimensional, and both ω and φ are assumed to be linear
with respect to the wave vector q′. When dealing with two-
dimensional graphene, the integral over q′, Eq. (19), could be
turned to a one-dimensional line integral,

I (W ) =
∫

ωq′s′=W
φ(q′)|∇ωq′s′ |dl. (20)

As a result, the integral over this triangle is nonzero if the line
of q′ that satisfies the energy conservation condition intersects
with a specific triangle. The contribution of the line integral
from each triangle can be evaluated by the values of ω and φ

at the three corners of the triangle through interpolation, and
the integral is written as

I (W ) =
∑

n

3∑
m=1

rn
m(W )φn(q′

m), (21)

where n and m denote the nth triangle and mth corner point in
a triangle, a is the area of each triangle, and φn(q′

m) indicates
the function value of φ at the mth corner point of the nth
triangle. rn

m(W ) is a weight factor and is related to W and the
corner frequency of the s′th band, ωn

q′
ms′ . The expressions for

rn
m(W ) are provided in the Appendix.

For a crystal with finite size, the phonon frequencies are
also discrete values, and summations in Eqs. (10) and (11)
are over a discrete set of wave vectors. For such a discrete
system, it has been suggested to broaden the Dirac δ function
by approximating it with a Lorentzian function [44,53],

δ(ω) = 1

π

ε

ω2 + ε2
, (22)

where ε is a small number. Turney et al. [44] proposed to let

ε = 2(�qs + �q′s′ + �q′′s′′ ), (23)

where 2� is phonon linewidth (� is also interpreted as phonon
scattering rate and 1/� phonon lifetime), for all three-phonon
processes. Similarly, we express ε as

ε = 2(�qs + �q′s′ + �q′′s′′ + �q′′′s′′′ ) (24)

for all four-phonon processes.
Although the strict justification for the substitution of

the phonon-linewidth-dependent Lorentzian function for the
Dirac δ is not mentioned in the references [44], such a
treatment is not uncommon when studying impact ionization
with high scattering rates [54]. The Dirac δ function is the
outcome of the Fermi golden rule, which is expected to be
valid for low collision rates. When the scattering is strong,
the state energies are always changing due to the self-energy
shift during the process [55]. Thus, phonons whose energies
do not obey Eqs. (16) and (17) still have the chance to make
transitions occur. In Ref. [55], the expression for the scattering
rates that the broadening effects are included are derived,
where the so-called joint spectral density function replaces the

Dirac δ. The joint spectral density function has the form [54]

A(E , E ′)

= h̄

π

�(E ) + �
(
E ′)

[E + �(E ) − E ′ − �(E ′)]2 + [�(E ) + �(E ′)]2 ,

(25)

where E and E ′ are the initial and final states, and � is
the energy shift. In the limit of small �, the golden rule is
recovered.

Once the coefficients in Eqs. (10) and (11) are numeri-
cally calculated, we use an iterative method, the biconjugate
gradient stabilized method [56], to self-consistently solve the
set of linear equations with respect to {F x}. Typically, 10–
20 iterations are sufficient to obtain the converged results.
Using the solved {F x} as well as the phonon frequencies and
group velocities, at the points in the q-point grid, the thermal
conductivity of graphene is obtained through Eq. (8).

D. Homogeneous nonequilibrium molecular dynamics method

Although the focus of this work is the PBTE method,
we will closely compare the results from it against those
from classical MD simulations. Among the various MD-based
methods, the homogeneous nonequilibrium MD (HNEMD)
method [57,58] is the most efficient one in the diffusive
transport regime. This method was first proposed in terms
of two-body potentials [57] and was recently generalized to
general many-body potentials [58]. It is physically equivalent
to the Green-Kubo method but is more efficient due to the
fact that the thermal conductivity is calculated directly from
the heat current instead of the heat current autocorrelation
function. In the HNEMD method, one adds a driving force on
top of the interatomic force for each particle and controls the
system temperature during the time integration. The thermal
conductivity is then simply calculated from the nonequilib-
rium ensemble average of the heat current. For details on
this method as applied to systems described by many-body
empirical potentials, see Ref. [58]. The HNEMD calculations
were performed using the graphics processing units molecular
dynamics (GPUMD) package [59]. The same Tersoff potential
[34] as used in the PBTE calculations was adopted here. We
used a time step of 1 fs in all the calculations.

III. RESULTS AND DISCUSSION

A. Temperature-dependent interatomic force constants

Figure 1 shows the phonon dispersion of graphene along
the high-symmetry lines, �-M-K- �, calculated using the har-
monic force constants at 0 and 300 K. Overall, the two sets of
force constants lead to similar phonon dispersion curves, but
two noticeable differences could be identified from Fig. 1(a).
First, the finite temperature leads to a downshift of the phonon
spectrum. For example, the obtained maximum frequency at
the � point is reduced from 1690 to 1685 cm−1 if one uses
the IFCs at 300 K to replace those at 0 K. Second, as shown
in Fig. 1(b), the flexural out-of-plane acoustic (ZA) phonon
branch follows ωZA ∝ q2 near the center of the Brillouin
zone (the � point) if using the force constants at 0 K, but
the ZA branch computed by the force constants at 300 K
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FIG. 1. (a) Phonon dispersion of graphene along the high-symmetry lines, �-M-K- �. (b) Phonon dispersion curve of graphene for the ZA
modes around the � point in the direction from � to M.

becomes linearized. This observation is consistent with a
theoretical analysis [60] that predicts the dispersion should
follow ωZA(q) = α(T, q)q2 with α(T, q) = α0[1 + q2

c/q2]1/4

and a temperature-dependent cut-off wave vector qc.
The phonon shifts are originated from two sources. One

is due to the thermal expansion, which is usually modeled
through the quasiharmonic approximation. The thermal ex-
pansion coefficient of graphene is known to be a negative
value at room temperature [61,62], and the lattice constant
of graphene that is free of stress at 300 K in MD simulation
is 0.4% smaller than that corresponding to the minimum
energy at 0 K. The deformation of the crystal could either
downshift or upshift the phonon frequency depending on the
mode-specific Gruneisen parameters, which are defined as
γλ = −(�ωλ/�V )/(ωλ/V ), with the crystal volume V . For
graphene, the Gruneisen parameters for out-of-plane acoustic
modes are negative but positive for in-plane modes [63].
Thus, the span of the whole phonon spectrum is slightly
increased, but the ZA modes are softened, leading to imag-
inary frequencies around the � point when the temperature
is 0 K [see Fig. 1(b)]. The other source for phonon shifts
is the explicit anharmonicity [64]. At high temperatures, the
atoms move far away from their equilibrium positions and
the anharmonicity tends to make the effective potential energy
surface under the harmonic approximation different from the
potential energy surface near the equilibrium positions of
atoms, so that the phonon dispersion becomes temperature
dependent. Such a temperature effect helps to linearize the
long-wavelength ZA phonons. Mariani and von Oppen [60]
applied renormalization group analysis to derive the effec-
tive Hamiltonian of graphene under high temperatures and
showed that the linearized ZA dispersion is related to the
anharmonic coupling of the flexural modes with the in-plane
modes. Since the linearizing of the ZA phonons due to the
explicit anharmonicity overcomes the phonon softening due to
compressive strain, the frequencies of ZA modes are positive
and the phonon dispersion is linear near the � point.

In addition to the second-order harmonic force constants,
third- and fourth-order anharmonic force constants are also
affected by the temperature. Tables S1 and S2 of the Sup-
plemental Material [65] list the values of the anharmonic
IFCs estimated at 0 and 300 K. Since the magnitude of
the anharmonic IFCs decays rapidly with the interatomic
distance, we list only ψ

αβγ

112 and χ
αβγ θ

1112 , where 1 and 2 refer
to two neighboring carbon atoms, as examples. The change
of anharmonic IFCs due to temperature could be understood
by the fact that at high temperatures the anharmonic terms in
the Hamiltonian go into the harmonic terms and the effective
anharmonic terms are altered. From Table S1, the temperature
dependence of the third-order anharmonic force constants
is found to be weak, as the change of the values of force
constants is less than 10% when the temperature is elevated
from 0 to 300 K. In contrast, the fourth-order force constants,
which are listed in Table S2, are heavily affected by the
temperature, as seen from the two sets of data corresponding
to 0 and 300 K.

B. Thermal conductivity of graphene

Since in MD simulations all phonon modes are fully ex-
cited and the phonon population does not follow the Bose-
Einstein distribution {n0

λ = 1/[exp( h̄ωλ

kBT ) − 1]} but the clas-

sical one (n0, C
λ = kBT/h̄ωλ), the thermal conductivity pre-

diction from MD simulations should deviate from the con-
ventional PBTE results where the quantum effects are cor-
rectly captured. Considering that the Debye temperature of
graphene (∼2000 K) is much higher than room temperature,
the difference of the thermal conductivity calculated based on
different statistics might be large. To obtain the classical ther-
mal conductivity of graphene through the PBTE calculations,
one might substitute the classical distribution for the quan-
tum one directly in the PBTE. However, such a substitution
leads to the breakdown of the equilibrium phonon population
balance before and after the scattering. For example, the
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FIG. 2. The computed classical thermal conductivity of graphene
as a function of the number of atoms or q points. “3ph” means
that only three-phonon scatterings are considered in the PBTE
calculations, while “3ph + 4ph” indicates both three-phonon and
four-phonon scatterings are included. The EMD data from Fan et al.
[9], Gill-Comeau and Lewis [10], and additional HNEMD results are
also shown for comparison.

three-phonon annihilation scattering process, λ + λ′ → λ′′,
requires nλnλ′ (nλ′′ + 1) = (nλ + 1)(nλ′ + 1)nλ′′ , which does
not hold when using the classical distribution. Instead of using
the simple substitution, we artificially decease the value of
the Planck’s constant to approach the classical limit [66],
which not only makes the Bose-Einstein statistics approach
the classical one but also keeps the population balance of
each phonon scattering event hold. In our calculations, the
Planck’s constant used is 1/100 of the original value, and
we find that the thermal conductivity value of graphene at
room temperature converges, with less than 1% difference if
the Planck’s constant is further reduced. For simplicity, we
use classical and quantum thermal conductivity to refer to
the thermal conductivity calculated based on the classical and
Bose-Einstein distributions.

Figure 2 shows the thermal conductivity of graphene at
300 K calculated through the PBTE as a function of the
number of q points in the first Brillouin zone, along with the
thermal conductivity prediction from equilibrium molecular
dynamics (EMD) simulations with different numbers of unit
cells [9,10]. We additionally performed HNEMD simulations
to compute the thermal conductivity of graphene, which is
also plotted in Fig. 2. More detailed HNEMD results can
be found in the Appendix. If the number of q points in the
PBTE calculation is similar to that of the unit cells in MD
simulation, the calculated thermal conductivity values from
these two methods are expected to be similar, since the same
resolution of the phonon wave vectors is considered.

As most previous PBTE studies did, we first calculate the
thermal conductivity using the IFCs extracted at 0 K and con-
sider the three-phonon processes as the only phonon-phonon
scattering mechanism. The analytical tetrahedron method is
employed to impose the energy conservation before and after

the scattering. The computed thermal conductivity is around
3100 W/mK and was found to be weakly dependent on
the number of q points. Our results based on three-phonon
scatterings are close to the classical thermal conductivity
of graphene described by the optimized Tersoff potential
from a similar three-phonon PBTE study by Singh et al.
[19], as well as the EMD predictions from previous works
[9,10] and the HNEMD results. To understand the roles of
four-phonon scatterings in graphene, we include four-phonon
scattering terms in the PBTE. The obtained classical thermal
conductivity is around 1200 W/mK, much smaller compared
with the calculations without four-phonon scatterings. The
results suggest that four-phonon scatterings should be crucial
in graphene even at 300 K, but the disagreement with the
EMD and HNEMD results is quite considerable. We should
note that up to now the IFCs at 0 K are used in the calculations,
without taking into account the effects of temperature on the
IFCs and the corresponding phonon properties.

To incorporate the temperature effects on the IFCs, we
compute the phonon dispersion and phonon scattering rates
using the force constants extracted at 300 K. The temperature-
dependent IFCs influence the thermal conductivity in two
aspects: (1) the phonon heat capacity and group velocities,
which are quantities that are not primarily anharmonic in
nature but are still affected by the anharmonicity through
the temperature-dependent harmonic force constants; (2) the
strength of phonon scatterings. We find that the first aspect
is minor as the thermal conductivity only changes by 2% if
the temperature-dependent harmonic force constants are used
to compute the mode heat capacities and group velocities
while retaining the phonon scattering rates that are calculated
by the (harmonic and anharmonic) force constants at 0 K.
Therefore, we focus on how the scattering rates are affected
by the temperature-dependent IFCs. The scattering rate of a
specific mode is related to the transition probability through

�
3ph
λ =

∑
λ′

∑
λ′′

(
W +

λ,λ′,λ′′ + 1
2W −

λ,λ′,λ′′
)
/n0

λ

(
n0

λ + 1
)
, (26)

�
4ph
λ =

∑
λ′

∑
λ′′

(
1
2W ++

λ,λ′,λ′′,λ′′′ + 1
2W +−

λ,λ′,λ′′,λ′′′ + 1
6W −−

λ,λ′,λ′′,λ′′′
)

/
n0

λ

(
n0

λ + 1
)
. (27)

Figure 3(a) shows that the four-phonon scattering rates com-
puted from the IFCs at 300 K are roughly lower by an order
of magnitude compared to those obtained by using the IFCs
at 0 K. However, as shown in Fig. 3(b), the three-phonon
scattering rates are less affected, which could be understood
by the fact that third-order anharmonic force constants do
not change much with the increase of temperature from 0 to
300 K, as discussed in Sec. III A. Plugging these three-phonon
and four-phonon scattering rates into the PBTE, we find that
the obtained thermal conductivity becomes 50% larger than
that based on 0-K interatomic force constants, as expected,
but still lower than the MD results.

According to the discussion on the temperature-dependent
IFCs in Sec. III A, the temperature would lead to the change of
harmonic force constants, which results in phonon frequency
shifts as well as the change of anharmonic force constants,
which are related to the rates of phonon scatterings as they
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FIG. 3. (a) Four-phonon and (b) three-phonon scattering rates of acoustic modes of graphene along �-M direction.

appear in |V3|2 and |V4|2 of Eqs. (13) and (14). In order
to figure out how these two different mechanisms affect
phonon transport in graphene, we perform two additional
PBTE calculations (the q grid with 36 × 36 points is used)
with different combinations of IFCs. The thermal conductivity
is enhanced from 1180 to 1530 W/mK when the temperature-
dependent harmonic force constants are employed but using
the anharmonic force constants corresponding to 0 K. Using
temperature-dependent anharmonic and 0-K harmonic force
constants leads to a thermal conductivity of 1470 W/mK.
Hence, both temperature dependencies on the harmonic and
anharmonic force constants are equally crucial to predict
the thermal conductivity of graphene. As discussed above,
three-phonon scattering rates are not significantly affected by
the temperature-dependent IFCs; the change of the fourth-
order IFCs should be responsible for the enhanced thermal
conductivity when using the temperature-dependent anhar-
monic IFCs. To further elucidate the roles of the temperature-
dependent harmonic and fourth-order IFCs on the strength
of four-phonon scatterings, the four-phonon scattering rates
of the ZA modes computed by using different combinations
of IFCs are plotted in Fig. 4. When the fourth-order IFCs
become temperature dependent, the percentage of phonon-
scattering-rate downshift for different modes is roughly of the
same value. Using the temperature-dependent harmonic force
constants also suppresses the phonon scattering rates, but the
low-frequency phonons are found more likely to be affected
than the high-frequency phonons. This could be attributed
to the fact that the change of the anharmonic IFCs will
alter the phonon scattering matrix elements, which causes the
reduction of phonon scattering rates for all phonons, while
the harmonic force constants are more relevant to the phonon
scattering phase space, which is distinct for different modes.

C. Comparison with molecular dynamics simulations

To clarify the discrepancy between the results from PBTE
calculations and EMD and HNEMD simulations on graphene,
one has to be aware of the discrete nature of molecular
dynamics. In a periodic system whose size is finite, the

available wave vectors have to be q = n1
N1

b1 + n2
N2

b2 + n3
N3

b3

due to Bloch’s theorem, where bi is the reciprocal vector,
Ni is the number of unit cells along the direction of the ith
translational vector of the crystal, and ni is a non-negative
integer that is smaller than Ni. Thus the wave vectors and
phonon frequencies are discretized in such a periodic system,
and phonons have less chance to find other phonons that
are of proper wave vectors and frequencies to strictly fulfill
the momentum and energy conservation conditions to let the
phonon scattering happen. Hence, the phonon scattering could
be weaker in a finite-size system compared with a larger
system where more phonon modes are available. Due to the
anharmonicity, phonon frequencies are broadened, which is
characterized by the phonon linewidth, making the phonon
scatterings happen even if the phonon frequencies do not
exactly satisfy the energy conservation condition. As we show
below, the phonon broadening is crucial to correctly compute
phonon scattering rates in a finite system. The justification of

FIG. 4. Phonon scattering rates of ZA modes along the �-M di-
rection calculated by using different combinations of the interatomic
force constants.
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FIG. 5. The calculated phonon scattering rates of the ZA modes
along the �-M direction. “3ph” and “4ph” in the legend present the
three-phonon and four-phonon scattering rates, respectively. “3ph
PBTE” and “3ph + 4ph PBTE” represent whether or not four-
phonon scatterings are included in the PBTE calculations.

neglecting the phonon broadening in PBTE calculations on
large crystalline materials will be discussed at the end of this
section.

To take the effects of phonon broadening into account, we
employ Eq. (22) to replace the Dirac δ function. Since the
smearing parameter ε in Eq. (22) is not known before phonon
linewidths are determined, we provide an initial guess for
the phonon linewidths and compute them iteratively until the
calculated thermal conductivity is converged to within 1%.
The obtained thermal conductivity data is plotted in Fig. 3
as red diamonds. When the number of q points are 10 × 10,
corresponding to a cell with Na = 200 atoms, the thermal
conductivity is around 3300 W/mK. With more q points
are included in the calculations, the thermal conductivity is
slightly reduced to 2800–2900 W/mK. Both thermal conduc-
tivity values and the Na dependence satisfactorily agree with
the recent EMD simulations [9,10] and our HNEMD results.

We also compute the thermal conductivity of graphene
without including four-phonon scatterings, and extremely
high values (∼30 000 W/mK) are obtained with 36 × 36
q points. To explore the role of three-phonon and four-
phonon scatterings in a relatively small finite system, we
show the phonon scattering rates (one half of the phonon
linewidths) of the ZA modes in Fig. 5. The extremely small
three-phonon scattering rates for the low-frequency (long-
wavelength) ZA modes in the finite system can be clearly
identified. As is known, the main three-phonon scattering
channel for the long-wavelength ZA modes is the annihilation
process ZA+ZA→TA/LA [15], but typically the wavelength
of the in-plane acoustic modes that participate in the scattering
should be longer than that of the ZA modes. Since the size of
the finite system is fixed, the modes whose wavelengths are
larger than the dimension do not exist, making the annihilation
scatterings ineffective. Compared with the phonon scattering
rates of a relatively small finite system, the scattering rates
in a larger system, where the energy conservation condition

FIG. 6. Classical thermal conductivity of graphene at 300 K as
a function of sample size. The data from NEMD simulations in
which the temperature gradient is determined by fitting the linear
temperature profile in the sample are represented by open symbols:
Qiu et al. [8], Xu et al. [6], and Fan et al. [7]. The results of
NEMD simulations by Li et al. [69], where the temperature gradient
is determined by the temperature difference of the two reservoirs, are
shown as red diamonds.

is applied through the analytical tetrahedron method, are
much larger, especially for the low-frequency modes, due
to the fact that the scattering events that involve the long-
wavelength in-plane mode could occur. In addition, as seen
in Fig. 5, the phonon linewidths of the finite system in the
three-phonon calculation is found to be smaller than those
due to three-phonon scatterings in the calculations where both
three- and four-phonon scatterings are included, implying
that four-phonon processes not only are one of the origins
of phonon scatterings but also help to increase the phonon
linewidth and thus to enhance three-phonon scatterings by
enlarging the phonon-phonon scattering phase space. Another
observation from Fig. 5 is that the four-phonon scattering
rates do not change much for the finite or large graphene
sheet. This is because the four-phonon scattering phase space
is much larger than the three-phonon counterparts. In other
words, the four-phonon scattering events that include long-
wavelength modes occupy only a small portion of the entire
four-phonon processes; thus the wavelength cutoff in the finite
system does not alter the total four-phonon scattering rates
much. Therefore, four-phonon scatterings become the main
scattering channel in finite systems.

To further confirm that the PBTE calculations with a
phonon-linewidth-dependent Lorentzian function as the Dirac
δ could well reproduce MD predictions, we shows the length-
dependent (classical) thermal conductivity of graphene at
300 K calculated through the PBTE in Fig. 6, along with the
thermal conductivity prediction from nonequilibrium molec-
ular dynamics (NEMD) simulations [6–8]. The length L for
both PBTE and NEMD data is the distance between the
hot and cold reservoirs. Following Mingo and Broido [51],
the constant a in the phonon-boundary term, Eq. (17), is
chosen to be 2.0. The choice has been widely employed
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in PBTE calculations to model phonon-boundary scatterings
[16,67,68], since it is expected to recover the ballistic phonon
transport regime automatically in the small L limit. On the
one hand, plugging Eq. (17) into Eq. (8) and neglecting the
phonon-phonon scattering terms in the small L limit, one can
easily solve the PBTE and obtain

nλ = n0
λ + vx

qs∣∣vx
qs

∣∣
�T

2

dn0
qs

dT
. (28)

One the other hand, in the ballistic limit the population
function of phonons traveling to the right (left) equals the
equilibrium population function of phonons emitted by the
left (right) thermal reservoir. At the middle of the sample, x =
L/2, for a right-going (left-going) mode λ, one has nλ = n0

λ +
(−) dn0

λ

dT
�T

2 , which is identical to the solution of the PBTE,
Eq. (8). When the sample size is smaller than 30 nm, the clas-
sical thermal conductivity from our PBTE calculations, which
is shown as the black solid line, agrees well with the NEMD
data (hollow symbols), as well as the results from atomistic
Green’s function simulations [13], where phonon transport
is assumed to be ballistic and the thermal conductance of
graphene, G = K/L, is found to be around 10 GW/m2 K
when the phonon population distribution approaches classical
at the high-temperature limit.

However, with the increase of the sample length, the PBTE
results become smaller than the prediction from NEMD sim-
ulations. This observation is in accordance with the study
by Tadano et al. [41], where they found that the PBTE
calculations with a = 2.0 tend to severely underestimate the
thermal conductivity of silicon compared with the NEMD
data. They identified that a = 1.0 could well reproduce the
size dependence of the thermal conductivity of bulk silicon but
did not further explain the success of a = 1.0. Inspired by the
finding from Tadano et al. [41], we also perform calculations
using a = 1.0 in the phonon-boundary scattering term, and the
results are shown as a red solid line in Fig. 6. In the sample
length range from 50 nm to 10 μm, the thermal conductivity
from the PBTE calculations becomes larger than the results
corresponding to a = 2.0 and close to the prediction from the
NEMD simulations.

A possible explanation for the failure of a = 2.0 for large
L to reproduce the NEMD data is as follows. In these NEMD
simulations, the thermal conductivity is computed through
K = −J/(∂T/∂x), where J is the heat flux and ∂T/∂x is the
temperature gradient determined by fitting the linear temper-
ature profile in the middle region of the sample, so that the
effects of phonon-boundary scatterings on phonon transport
between the two reservoirs are not correctly considered. To
recognize this issue, one might think about a purely har-
monic crystalline material sandwiched between two reser-
voirs. There is no temperature gradient within the sample,
but the thermal resistance occurs at the edges between the
sample and the reservoirs. Using the linear temperature region
to calculate the temperature gradient, the thermal conductivity
becomes infinitely large. However, since phonons experience
ballistic transport, the thermal conductivity is not infinite
but a sample-size-dependent value. Therefore, the reported
thermal conductivity from most NEMD studies should be
overestimated and one has to use a weaker phonon-boundary

scattering (a = 1.0) in PBTE calculations to match the NEMD
results. Very recently, some researchers suggested to use
∂T
∂x = �T/L to determine the temperature gradient in NEMD
calculations [69], which is expected to reproduce the ballistic
thermal conductivity in weak anharmonic materials. In Fig. 6
we plot the thermal conductivity data from their NEMD
simulations as red diamonds. This treatment makes the length-
dependent thermal conductivity from NEMD simulations ex-
cellently agree with our PBTE calculations.

Despite the good agreement between PBTE calculations
and MD simulations, one may ask whether the thermal con-
ductivity as well as phonon scattering rates computed using
the two different methods of treating the energy conservation
are converged when the number of q points is sufficiently
large. To explain this, let us consider a one-dimensional
system and assume that the q-point grid is so dense that the
phonon dispersion can be treated as quasicontinuous. The
integral involving the δ function, Eq. (18), can be written as

I (W ) =
∫

�

φ(q′)
η

(ωq′s′ − W )2 + η2
dq′, (29)

I (W ) =
∫

�

φ(q′)
ε

(ωq′s′ − W )2 + ε2
dq′, (30)

where η is an infinitely small number and ε a finite num-
ber that is determined through Eqs. (23) and (24), for the
Dirac δ and Lorentzian functions, respectively. For a region
near q′

0 where ωq′
0s′ = W , its contribution to the integral

is φ(q′
0)/|∂ωq′

0s′/∂q′| for the Dirac δ. Meanwhile, for the
Lorentzian function, one could find a neighboring region near
q′

0 out of which the contribution to the integral is negligible.
The size of the region positively depends on ε, or corre-
spondingly, the phonon linewidths of the material. If ε is
small, the variation of φ(q′) in the small region would be
negligible as well, resulting in the same results as in Eq. (29).
In contrast, if the phonon linewidths are large, which occurs
at high temperatures and highly anharmonic crystals, the two
approaches dealing with the δ function should give different
results. Since the phonon linewidths of graphene are short due
to the weak anharmonicity in graphene, one should expect
that converged thermal conductivity is achieved when using
a dense q-point grid.

D. Temperature-dependent thermal conductivity

Figure 7 shows the temperature-dependent thermal con-
ductivity of graphene. With the inclusion of four-phonon
scatterings and the phonon-linewidth-dependent Lorentzian
function as the Dirac δ function, the calculated classical ther-
mal conductivity of graphene using temperature-dependent
IFCs again agrees decently with our HNEMD simulations.

We also compute both classical and quantum thermal con-
ductivity using the tetrahedron method in which the wave
vectors of graphene are assumed continuous. When both
three-phonon and four-phonon scatterings are considered, the
difference between classical and quantum thermal conduc-
tivity is found to be less than 10%, even at 300 K. Al-
though 300 K is still much lower than the Debye tempera-
ture, the small difference is expected due to a cancellation
between two competing factors: (1) the mode heat capacity of
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FIG. 7. Thermal conductivity of graphene as a function of
temperature.

high-frequency phonons is overestimated in the classical sys-
tem; (2) the phonons become more likely to be scattered since
more high-frequency phonons are available to take part in the
phonon-phonon scatterings in the classical system. In the full
temperature range we explored, the classical thermal conduc-
tivity is slightly lower than the quantum thermal conductivity,
suggesting that compared with the Bose-Einstein statistics the
reduction of the thermal conductivity due to stronger phonon
scatterings in the classical system outweighs the enhancement
due to the change of heat capacity.

To quantify the importance of four-phonon scatterings, we
examine the ratio (K3ph − K4ph )/K4ph. At 300 K, neglecting
four-phonon scatterings would lead to a 90% overestimation
of the quantum thermal conductivity. With the elevation of the
temperature to 900 K, the ratio increases to 115%, confirming
that four-phonon processes are more significant at higher tem-
peratures [27,29]. The crucial role of four-phonon scatterings
at high temperatures is due to the fact that the four-phonon
scattering rates roughly follow the scaling relation T 2 while
the three-phonon counterparts exhibit a T dependence.

IV. SUMMARY AND CONCLUSIONS

In summary, we study the phonon scattering mechanisms
and thermal conductivity in single-layer graphene, whose
interatomic interaction is described by the optimized Tersoff
potential, using the PBTE formalism. Two different methods
are applied to determine the IFCs of graphene. The IFCs
corresponding to 0 K are extracted by the widely used small-
displacement method, and temperature-dependent IFCs are
obtained through fitting the displacement-force data from MD
simulations. The 0-K IFCs are found to substantially under-
estimate the thermal conductivity of graphene by predicting
much stronger four-phonon scatterings compared with the cal-
culations based on temperature-dependent IFCs. Furthermore,
we show that in order to reproduce the thermal conductivity
of graphene from MD simulations, the discrete nature of
phonon modes in the system and phonon broadening due
to anharmonicity have to be considered when determining

the phonon scattering rates. By using the phonon-linewidth-
dependent Lorentzian function to approximate the Dirac δ

function, which represents the energy conservation condition
before and after phonon scatterings, satisfactory agreement
between MD simulations and PBTE calculations is achieved.
The PBTE formalism employed here could also be applied
to explore phonon transport in other two-dimensional and
high-temperature functional materials.
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(f) Averaged thermal conductivity

FIG. 8. (a)–(e) Distribution (number of counts) of the thermal
conductivity values from the HNEMD method. From (a) to (e), the
numbers of atoms in the simulation cell are, respectively, 960, 3840,
8640, 24 000, and 96 000, the numbers of independent simulations
(each with a production time of 18 ns in steady state) are 9, 8, 4,
2, and 1, and each thermal conductivity value is calculated from
a time interval of 1.8, 1.6, 0.8, 0.4, and 0.2 ns. Therefore, there
are 90 thermal conductivity values for each simulation cell size. (f)
The averaged thermal conductivity, with the error bar calculated as
the standard error of the distribution, as a function of the number
of atoms in the simulation cell. One can see that in the HNEMD
method, a larger system requires a shorter simulation time to achieve
a given statistical accuracy. This is another advantage of the HNEMD
method over the Green-Kubo method.
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APPENDIX

Weight coefficients of tetrahedron methods for two-
dimensional crystal. Suppose ωn
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When ωn
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3s′ , the expressions become
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Thermal conductivity results from HNEMD calculations.
Figure 8 shows detailed thermal conductivity results from
HNEMD calculations.
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