
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Lee, Injung; Kim, Sunjun; Lee, Byungjoo
Geometrically compensating effect of end-to-end latency in moving-target selection games

Published in:
CHI 2019 - Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems

DOI:
10.1145/3290605.3300790

Published: 02/05/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Lee, I., Kim, S., & Lee, B. (2019). Geometrically compensating effect of end-to-end latency in moving-target
selection games. In CHI 2019 - Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems Article 560 ACM. https://doi.org/10.1145/3290605.3300790

https://doi.org/10.1145/3290605.3300790
https://doi.org/10.1145/3290605.3300790

Geometrically Compensating Effect of End-to-End
Latency in Moving-Target Selection Games

Injung Lee
KAIST, Republic of Korea

edndn@kaist.ac.kr

Sunjun Kim
Aalto University, Finland
sunjun.kim@aalto.fi

Byungjoo Lee*
KAIST, Republic of Korea
byungjoo.lee@kaist.ac.kr

ABSTRACT
Effects of unintended latency on gamer performance have
been reported. End-to-end latency can be corrected by post-
input manipulation of activation times, but this gives the
player unnatural gameplay experience. For moving-target
selection games such as Flappy Bird, the paper presents a
predictive model of latency on error rate and a novel com-
pensation method for the latency effects by adjusting the
game’s geometry design – e.g., by modifying the size of the
selection region. Without manipulation of the game clock,
this can keep the user’s error rate constant even if the end-
to-end latency of the system changes. The approach extends
the current model of moving-target selection with two addi-
tional assumptions about the effects of latency: (1) latency
reduces players’ cue-viewing time and (2) pushes the mean
of the input distribution backward. The model and method
proposed have been validated through precise experiments.

CCS CONCEPTS
•Human-centered computing→HCI theory, concepts
and models;

KEYWORDS
Latency compensation; moving-target selection

ACM Reference Format:
Injung Lee, Sunjun Kim, and Byungjoo Lee*. 2019. Geometrically
Compensating Effect of End-to-End Latency in Moving-Target Se-
lection Games. In CHI Conference on Human Factors in Computing
Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland
UK. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3290605.3300790

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300790

Figure 1: Geometric compensation overview

1 INTRODUCTION
Minimizing a discordance between user input and system
response is crucial to producing seamless human–computer
interaction [11, 41]. The temporal gap between the input and
the response, which is called latency, lag or delay, is among
the factors that create this discordance. The cumulative ef-
fect, referred to as end-to-end latency, has various sources
including device delay, network delay, and processing delay
[22]. Latency has an especially strong unintended effect on
user experience when accurate time management is critical:
in applications such as real-time games. Addressing such
situations, this paper has two goals: (1) to provide a clear un-
derstanding of how latency changes the user experience and
(2) to suggest a novel method of compensating for latency
effects.

Latency, which is not intentionally created or considered,
has always existed in typical computing environments. The
amount of end-to-end latency varies from computing plat-
forms and their conditions, ranging from 21–277 ms for desk-
top to over 50 ms for touchscreen environments [10, 34, 52].
Latency is often inevitable, not controllable, and vary among
devices. According to previous research, the effects of latency
on performance aremostly negative [5, 32]. In fact, even near-
zero latency may have a negative impact on users, at least

*Corresponding author.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 1

in theory [44]. Also, positive effects of latency on usability
have been reported in several recent works [24, 27, 29].
Various studies have been conducted to compensate the

unintended effects of latency, especially in real-time network
games, such as an online first-person shooter (FPS) games.
The most widely used method is to rewind the timeframe
by the amount of latency and then determine the feedback
on the basis of that point [30, 39]. At this point, all game
elements, except local input feedback, are rendered in keep-
ing with the rewound game timeframe. Hence, the player
experiences a discrepancy between the perceived situation
stemming from the local feedback and the feedback given by
the compensated system (e.g., an apparent success getting
deemed a failure, or vice versa). This can create a serious
hindrance to user engagement in real-time games [40].
However, if the latency mechanisms that influence game

performance can be clearly explained, geometric compen-
sation could be attempted. For example, if 50 ms system
latency exists in an FPS game and the player’s number of hit
points is reduced by 15% relative to a zero-latency situation,
an enemy’s size can be increased (making it easier to hit)
to compensate for the drop in hit rate. For determining the
amount of the target’s size increase, a predictive model is
more effective than tedious trial-and-errors.

To demonstrate the potential of geometric compensation
for latency, we focus on one type of task, we call moving-
target selection task, which is widely encountered with to-
day’s mobile games. In this task, players must activate a
button within a short time window when a moving target is
placed within a certain selection region. The time window is
often shorter than typical human reaction times (from 200 to
300 ms depending on the stimulus modality) [17, 18, 45, 50].
Therefore, the player must plan the input in advance for
successful trial. Moving-target selection games are popular
these days, e.g., Flappy Bird, Dancing Line, etc (see Figure 2).
Our survey1 of the Google Play market revealed that 16 of
“the 100 most popular” free games employ a moving-target
selection task as their central component.
For a moving-target selection task with zero latency, a

model for predicting the user’s error rate already exists [28,
29]. We complement the model with the following two as-
sumptions: (1) latency reduces the player’s cue-viewing time,
and (2) latency pushes the player’s implicit aim point back-
wards. The new model built on these assumptions accurately
predicts the effect of end-to-end latency on user error rate for
the task.When geometric compensation is applied, themodel
can predict the corresponding error rate, thereby facilitating
control of game difficulty level when latency exists.

Contributions of this research can be summarized thus:

1 Data retrieval date: September 12, 2018

Figure 2: Moving-target selection games: (from upper left)
Jelly Jump!, Beatmania, Rollercoaster Dash, Stack, Cook-
ieRun forKakao, KnifeHit, PianoMagic Tiles, Dancing Line,
Taiko no Tatsujin, Helix Jump, and Rolling Sky

• We constructed a predictive model that explains the effect
of end-to-end latency on user error rate in moving-target
selection games.

• We verified the proposed model (R2=0.94) by using a cus-
tomized experimental apparatus that can precisely control
the latency (<0.5 ms accuracy, <1.5 ms precision).

• We demonstrated that geometric compensation can offset
the unintended effects of end-to-end latency.

2 RELATEDWORK
Latency and its Measurement
Latency, lag or delay is the time span between a input and
its corresponding response [8, 32, 38, 46]. End-to-end latency
generally refers to the total time elapsed between a user’s
initiation act and the system’s visual, auditory, or other re-
sponses [10, 21]. Several components contribute to end-to-
end latency in an interactive system. In online mobile games,
there are three types of latency: device delays, network de-
lays, and processing delays [22]. For nowadays touchscreen
mobile games, device latency (capacitive touch sensor and
display) and processing latency (logic in game software) ex-
ist as a baseline [34]. Network communication latency may
added for online games. All kinds of delays (device, process-
ing, and network) increase user reaction time [41].

Often, measuring end-to-end latency entails using a cam-
era, in most cases a high-speed one, to capture the input
motion and the associated feedback [6, 16, 21, 31, 34, 49]. La-
tency is calculated by manually counting the frames between
them. Automated tools such as a mechanical relay [13], opti-
cal sensor [13], or accelerometer [8] have been employed to
capture the exact input and output moments. The automa-
tion allows repeated measure for better precision. Depending
on the devices and applications, the amount of end-to-end
latency ranges from 21 to 277 ms, composed of input laten-
cies of 2–30 ms and output latencies between 19 ms and
247 ms [10]. Latencies in touchscreen devices such as smart-
phones or tablet PCs range from 50 to 200 ms [15, 21, 52].

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 2

Effects of Latency on Human Performance
Latency influences user experience in interactive systems.
Firstly, even a small amount of latency is perceivable. Interac-
tive display delays start to be detectable at 40ms to 90ms [41].
According to Ng et al., people have been able to visually de-
tect even latency as low as 2.38 ms when performing direct-
touch dragging [34]. Latencies that are greater than “barely
perceptible” start to impair user experience [20, 40]. Prac-
tically, delays more than 180 ms in FPS game have tended
to frustrate users, which lead them to eventually stop play-
ing [3]. Latency of 600 ms for tap actions and 450 ms for drag
actions annoyed people using touchscreens [1, 43].

In addition disturbed user interaction, higher latency hin-
der human performance [2] also. With general tasks such as
programming and problem-solving, it has been found that
latency impairs work efficiency [4, 33, 46, 48]. For target-
acquisition tasks specifically, movement times and error rates
have risen as the amount of latency grew [12, 32]. More pre-
cisely, latencies over 100 ms have strong negative effects
on human performance [12, 32]. FPS game players exposed
to 200 ms latency exhibited a performance deduction of 1
kills-per-minute2 compared to players experiencing 45 ms
latency [3]. Human performance degrades more with targets
that are smaller or further away [19].

Effects of Latency on Anticipated-Input Tasks
Obviously, latency negatively affects users’ performance of
reaction tasks (responding as quickly as possible to a given
unexpected stimulus). However, in real-time games, there
are often anticipation tasks: a user can anticipate the mo-
ment of input before the actual stimulus. Imagine a target
that briefly blinks periodically or that moves toward a par-
ticular selection region at constant speed. The time window
for successful trial is set to shorter than a person’s typical
visual reaction time (up to 250 ms) [18, 50]. The player must
anticipate and plan the input so as to acquire the target
successfully. A series of models for predicting user error
rates in such anticipated input tasks has recently been pub-
lished [24, 27–29, 35–37]. The moving-target selection model
extended in this paper [28] is the latest of these.

In a task that requires anticipation for input, the moment
the system responds may lag behind or jump ahead of the
timing anticipated by the user. If the system response is
faster than the user’s anticipation, a non-intuitive conclusion
follows: that latency must be increased for minimizing the
discordance. This effect has recently been reported by several
authors [24, 27–29]. In their studies, delaying the system
response of the button-pressing reduced the user’s error rate
by 5–94%. The effect of latency is more complicated in an
anticipatory task than in a reactive task, and, to the best of

2The number of kills that a player made in average one minute.

our knowledge, there remains no decent model to explain
and predict it.

Reducing Effects of Latency
Reducing the amount of end-to-end latency is the most direct
way to decrease the effect of latency [44]. Researchers have
been improving hardware and software to minimize the total
latency, by such means as considering the best locations for
game servers [3] and developing software that eliminates
delays from synchrony [52]. The main goal with these has
been to reduce latency to an imperceivable level [34].

Trajectory prediction, such as dead reckoning, is another
way to reduce perceived latency by predicting the best pos-
sible current movement from the history of tracked move-
ments. To reduce the perceived delays in an head-mounted
display environment, researchers have implemented a “look-
ahead” algorithm to predict the head-tracking data [47, 51].
Using prediction, Knibbe et al. improved high-speed motion-
projector–camera systems by such means as projecting im-
ages onto moving objects [25]. Recently, some researchers
have applied trajectory prediction in combination with ad-
ditional sensors such as accelerometers or inertial measure-
ment units (IMUs) [2, 26]. Their approach is effective with
ballistic motion but cannot be directly applied to a moving-
target selection task, which is performed based on a user’s
small movement with a single button.
In FPS games, wherein real-time operation is crucial to

player performance, “favoring the shooter” is a widely used
latency-compensation method [30]. This method makes deci-
sions on events in line with the game world that the shooter
sees when shooting [30]. Although keeping players from
aiming ahead of the targets, this has “shot around a corner”
inconsistency issues [7, 30]. To eliminate the oddity wherein
players get shot even though they hid behind walls, some
games, such as Battlefield 4 and Overwatch [39], impose a
250 ms maximum for their lag-compensation [30].3 Rolling
back the game clock is deemed unfair and not playable from
the point of view of players who have been shot [40].

Summary
The effect of latency on usability has been considered pri-
marily negative. However, for anticipated input tasks, which
occur frequently in real-time games, latency exhibits a more
complicated effect on user performance than is seen in reac-
tive input tasks. Nonetheless, relatively simple approaches
have been taken to compensate for latency in real-time
games. We have complemented existing models for antici-
pated inputs, and the discussion below presents geometric

3 Lagged players with a round-trip time (RTT) of 250 ms or more
do not receive compensation via this method

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 3

compensation, a novel way to eliminate or control the effects
of latency, accordingly.

3 MOVING-TARGET SELECTION TASK OVERVIEW
Moving-target selection is one of the most representative
tasks in real-time games: players must activate the button
input within a particular time window – for example, while
a moving target is passing over a particular selection region.
Since the time window is usually shorter than human reac-
tion time, the player must anticipate the timing of the input
before the target reaches that region. With multiple trials,
player’s input points can be approximated to be Gaussian dis-
tributionN(µ, σ 2) in time. The error rate is then obtained by
integrating the input point distribution outside the selection
region as depicted in the figure below:

In the most recent model for moving-target selection [28],
multiple factors influence µ and σ (see the Table below). The
signs in parentheses in the table indicate whether σ or µ
increases or decreases as the corresponding factor increases.
The model proposed in this study adds the effect of end-
to-end latency (L) to the table. The following section first
introduces known factors in the existing model that affect µ
and σ of the input point distribution. The section after that
introduces new factors (marked in red) related to latency.

Affecting σ Affecting µ
Task factor tc (−), P(+), L(+) Wt (+), L(+)
Player factor cσ (+), ν (−), δ (+) cµ (+) , cL(+)

Factors Affecting the Standard Deviation (σ)
Task design has a huge impact on the standard deviation
(σ) of the user-input distribution. The following two factors
exist in this regard:
• Period of input repetition (P): If the inputs are repeated
with a period of P , the player can anticipate the moment
of the upcoming input. The longer the period of input
repetition is, the larger the standard deviation (σ) of the
input distribution for the player becomes. This phenome-
non is connected with the scalar property of the internal
clock [9, 14]. Recall that clapping once every five seconds
is much harder than clapping once every second.

• Cue-viewing time (tc): This is the time from when the
moving target starts to become visible until it reaches the

selection region. The shorter tc is, the more difficult it
is for the user to anticipate timing information from the
target’s motion, and the standard deviation (σ) of the input
distribution increases.

Also, player-side factors influence the σ :
• Precision of the player’s internal clock (cσ): Evenwith
the same amount of information, anticipation performance
vary by individual. The parameter cσ aggregates such
user-side factors. The higher its value, the less precise
the player’s internal clock is and, thereby, the higher the
σ of the input distribution.

• Drift rate (ν): The rate at which the player encodes timing
information visually from a moving target varies too. A
player with high ν produces an input distribution with a
lower σ for the same cue-viewing time tc .

• Precision limits in motion decoding (δ): No matter
how long the cue-viewing time (tc) given, the timing preci-
sion that a user can obtain from a moving target is limited.
δ represents the limit. A player with a lower δ produces
an input distribution with a lower σ for the same given tc .

Factors Affecting the Mean (µ)
The input distribution’s mean value, µ, is known to vary
with the following factors:
• Target-selectable duration (Wt): This is the duration of
the time window where a moving target is on the selection
region. It can be obtained by dividing the spatial size of
the selection region by the speed of the target.

• Implicit aim point (cµ): This is the user’s implicit aim
point within the selection region, which is known to a
constant ratio of aim point to the size of the selection
region [29], (µ=cµ ·Wt). That is, if cµ is 0.5, the player
always aims at the center of the given selection region.

Error Rates in Moving-Target Selection
Let’s define t = 0 as the time at which the target contacts the
selection region for the first time. The time window where
the target stays in the selection region can be expressed as
[0,Wt]. The error rate (E) is then obtained by integrating the
input distribution of the playerN(µ, σ 2) over the time inter-
val outside the selection region. According to the previous
study [28], this results in the following equation:

E = 1 −
1
2

[
er f (

(1 − cµ)

cσ
√
2

·
Wt

Dt
) + er f (

cµ

cσ
√
2
·
Wt

Dt
)

]
(1)

Dt is used in the denominator in line with this equation:

Dt = P/
√
1 + (P/(1/(eν tc − 1) + δ))2 (2)

erf (error function) is a special function that often appears in
the integration process of the Gaussian distribution. Refer to
the original paper [28] for the detailed derivation process.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 4

Figure 3: Effects of latency on moving-target selection task

4 THE NEWMODEL REGARDING THE EFFECT OF
END-TO-END LATENCY

On top of the existing model above, we derived an advanced
model that accounts for the effects of latency on player’s
input distribution. The new model assumes that latency has
two effects on the moving-target selection (see Figure 3).
Firstly, a player experiences a decrease in cue-viewing

time. With a certain amount of latency, the player must
prepare and execute the input earlier compared to a no-
latency condition. This preparation reduces the amount of
time for the player to observe the target’s movement. The
assumption can be expressed as:

teff = MAX [(tc − L), 0] (3)

Here, tc is the original cue-viewing time and teff is the newly
calculated effective cue-viewing time under the influence of
latency L.MAX function is applied because teff should never
be negative even with a great latency.

Secondly, latency shift the input distribution backward in
time. However, the extent of this may vary from player to
player, so the assumption can be expressed as follows:

µeff = µ + cL · L (4)

Here, µ is the average from the player input distribution
when no latency is present and µeff is the mean of the dis-
tribution under latency L. cL is a player-specific parameter
that indicates how much the mean is affected by latency.
Substituting the above formula into Equation 1 yields the
new moving-target selection model that considers latency:

E = 1 −
1
2

[
erf(

(1 − cµ)Wt − cLL

cσ
√
2Dt

) + erf(
cµWt + cLL

cσ
√
2Dt

)

]
(5)

The Dt with latency effect included is expressed thus:

Dt = P/

√
1 + (P/(1/(eν (teff−L) − 1) + δ))2 (6)

Geometric Compensation of Latency Effect
We propose a geometric compensationmethodwhen varying
latency exists in the system. It controls the error rate by
slightly changing the geometric design of the game.
The full process has four steps (see Figure 4). (1) Obtain

the player-side factors of the model (cσ , cµ ,ν ,δ , cL) for the
target game. This can be achieved by playing the game under
various conditions, finding the case-specific error rates, and
fitting them to the model (Equation 5). In order for fitting

to be successful, the model must observe error rates for at
least four to six task conditions. Assuming that 50 trials for
each condition, about 300 button inputs are required. This
can be done individually for each player or at a population-
level for a particular game. This study focuses on showing
the possibility of compensation at the population-level. (2)
Identify the model’s task factors (P , tc ,Wt , L) in the current
game design. P ,Wt , tc are set by a designer. L of a system
could be measured or estimated. (3) Set the game’s difficulty
in terms of desired players’ error rate (target error rate). (4)
Using Equation 5, derive newWt and tc that minimizes the
difference between the current error rate and the target error
rate. This can be completed with any nonlinear optimization
toolbox. Those values alter the game’s post-compensation
geometric appearance. For example,Wt can be adjusted by
changing the size of the selection region. Also, tc can be
adjusted by changing the size of the area that makes the
target invisible (e.g., wall or curtain). Note that P and L are
temporal factors and not altered.

5 STUDY 1: MODEL VALIDATION
In this experiment, the proposed moving-target selection
model was verified via a custom-built device with precise
control of latency. A point target moves at constant speed
toward a one-dimensional selection region. Participants were
asked to catch the target by pressing a button.

Method
Participants: Sixteen participants (3 female and 13male) were
recruited from a local university. Their average age was 24.9
years (SD=3.5). Each was paid $10 for 50 minutes of partic-
ipation. Participants were informed and signed a consent
form before the experiment.

Experimental Design: The experiment was a 2×2×5×2 within-
subject design with four independent variables: Period of
input repetition (P), Target-Selectable Duration (Wt), end-to-
end Latency (L), and Cue-Viewing Time (tc):
• Period (P): 1,250 and 1,800 ms

Figure 4: Flow of geometric compensation process

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 5

Figure 5: The task in Study 1, to select amoving targetwithin
the selection region by clicking a button, as the targetmoved
from left to right.

• Target-Selectable Duration (Wt): 80 and 150 ms
• Latency (L): 0, 60, 80, 130, and 200 ms (+1.5 ms baseline)
• Cue-Viewing Time (tc): 0 and 200 ms

Task: Participants were asked to complete the task of ac-
tivating a button when a moving target point was in the
one-dimensional selection region. The target moved in a
straight line, on an LED strip attached horizontally to a wall.
The speed of the target was fixed at 1.39 m/s (200 LED/s). If
the button was activated while the target was in the selec-
tion region, the trial was considered successful; otherwise,
a failure was recorded. With a given Period, the target re-
peatedly appeared from the left. Cue-Viewing Time, tc , was
the time for which the target was visible before reaching
the selection region. The physical length of the selection re-
gion and cue-viewing region were calculated from the given
Wt , tc , and target speed (i.e., length of selection region =
Wt × target speed). When the participant pressed the but-
ton, the activation event was delayed by the given Latency.
Feedback for each button press came as blinking green or red
lights along both sides of the selection region, for success or
failure, respectively (see Figure 5).

Apparatus: We implemented a one-dimensionalmoving-target
selection device with precisely controlled latency (check the
supplement material for the detail). To minimize default la-
tency, a commercial LED strip (Adafruit DotStar4, 3 meters,
144 LED/m) was used as the display. A dedicated LED strip
driver board (Arduino Uno using the Adafruit DotStar Li-
brary5) drove 300 LEDs on the strip at 333.3 Hz. The moving
target was moderate yellow in color (#202000), and the color
value of the selection region was dark blue (#000001). Our
feedback colors were bright green (#002001) for success and
bright red (#200000) for failure.
An experiment board (Arduino 101) sets experimental

conditions for the LED strip driver board through UART se-
rial communication. It also monitored the following events

4https://learn.adafruit.com/adafruit-dotstar-leds/overview
5https://github.com/adafruit/Adafruit_DotStar

through digital interconnection wires: LED target appear-
ing/disappearing, LED target entering/exiting the selection
region, and button press/release. For user input, the left but-
ton of a dummymouse (activated at 0.4 mmwith 55 cN force)
was directly connected to the experiment board. The board
recorded timestamps of all events internally. The board trans-
mitted the events (with timestamps, to 0.1 ms precision) to a
PC (Mac mini Late 2014, 2.6 GHz Intel Core i5) for logging.
The device exhibited 1.5 ms of mean latency.

To implement latency, the experiment driver board main-
tained a circular queue. Switch state (opened or closed) of
the mouse button was enqueued every 0.5 ms with times-
tamp. If items in the queue exceed the Latency time, they
were dequeued and triggered the press/release events. By
this method, all sequences of the button events were pre-
cisely delayed. The baseline latency was not considered, so
1.5 ms should be added to the experimental latency values.

Setup and Procedure: Participants were asked to sit on a
regular office chair 2.8 meters away from the LED strip. The
LED strip was installed horizontally at subjects’ eye level.
The dummy mouse was on a desk in front of the chair. After
completing the pre-experiment questionnaire, participants
were given a practice session to familiarize themselves with
the task. Participants were instructed to try not to skip any
of the repeating targets. Forty task conditions (2×2×5×2)
were randomly assigned to the participants. There were 40
trials for each condition, and a minimum of one-minute
breakwas given between conditions. Accordingly, there were
1,600 trials per participant, taking 50 minutes. The apparatus
logged the result of each trial and the timing of every events.

Results
In total, 25,600 trials were logged from 16 participants. The
overall error ratemeasured for participants in the experiment
was 45% (SD=23%). For statistical testing, we used repeated-
measure ANOVA with an alpha level of 0.05. Greenhouse–
Geisser correction was used for violation of sphericity. As
forty task conditions were progressed, no increase in error
rate due to fatigue was observed (F (1,15)=0.838, p=0.374).

Normality of the Response Distribution: Before analyzing the
results, we consider whether the timing distribution obtained
in this experiment shows a Gaussian distribution as expected.
We tested the normality of each task condition block. A one-
sample Kolmogorov–Smirnov test was performed for 640
blocks (40 conditions × 16 participants) in total (α = .05).
Of the 640 distributions obtained (one per condition per

user), 70.3% were statistically normal distributions. This is
similar to the level observed in typical timing tasks [29]. For
the participants who met the normality condition at the low-
est rate, 60% of the conditions were found to be statistically

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 6

Figure 6: Results of Study 1

normal. Since this is not a particularly problematic level, all
subsequent analyses included data from all participants.

Effect of ‘P ,Wt , and tc ’ on Error Rates: Their effect on the
error rate of the moving-target selection task have been
reported in detail in previous studies [28, 29]. Below, we
replicate each effect once again and report on it briefly.
Firstly, all factors had statistically significant effects on

the error rate: P (F (1,15)=106.4, p < 0.001), tc (F (1,15)=485.1,
p < 0.001), andWt (F (1,15)=750.1,p < 0.001).We replicated the
tendency for error rates to rise as Period (P) increases, Cue-
Viewing Time (tc) decreases, and Target-Selectable Duration
(Wt) decreases.

Effect of Latency on Error Rates: End-to-end latency too had
a significant impact on the error rate (F (2.205,33.079)=53.975,
p < 0.001). Contrary to the conventional belief that error
rate will increase when latency rises, a slight latency seems
to benefit performance of tasks involving anticipation by
the user, such as moving-target selection (see Figure 6). The
condition with 60–80 ms latency added showed an error rate
that was 15.7% lower (mean=35.3%, SD=27.2%) than that in
the zero-latency condition (mean=51%, SD=26.4%).

Model Fitting
Testing Assumptions about Effect of Latency on σ and µ: We
validated Section 4’s assumptions related to latency for input-
distribution σ and µ (expressed as equations 3, 6, and 7) by
fitting the equations to the data obtained. All the curve fit-
tings were carried out with the patternsearch function
provided by MATLAB Global Optimization Toolbox. Fit-
ting was performed at the population-level by averaging all
participant data for each condition.
As a result, the predicted σ value and the actually mea-

sured σ are fitted with a high correlation (R2=0.77; see Figure
6). Also, the phenomenon of input-distribution mean µ shift-
ing with latency is explained by the model with a moderate
coefficient of determination (R2=0.70; see Figure 6).

Error Rates: The proposed model is ultimately aimed at pre-
dicting the error rate displayed by users in the given task

condition. This is achieved by plugging the independent
variables and the observed error rate into Equation 5.

Hence, the model was fitted with the observed error rate
and showing a high coefficient of determination (R2=0.94; see
Figure 6). If the effect of latency is not considered, the earlier
model for moving-target selection [28] provides a low fit
(R2=0.65). The five free parameters obtained from the fitting
are summarized in Table 1. For reference, individual-level
fitting was attempted for each participant, and the results
are as follows: cµ=0.056 (SD=0.099), cσ=0.091 (SD=0.017),
ν=19.54 (SD=21.77), δ=0.243 (SD=0.202), cL=0.53 (SD=0.16),
R2=0.81 (SD=0.051).

Discussion
In the moving-target selection task with latency added, the
proposed model faithfully predicted the empirical error rate
of the user. In particular, in the study we observed a decline
in participants’ error rate with latency increases up to a
certain level. To achieve the lowest error rate in the timing
task, players must aim at the center of the selection region
as the Gaussian distribution is symmetric about the mean.
However, users are generally known to aim at the front of
the selection region (note that cµ values in Table 1 are lower
than 0.5). This is called the negative mean asynchrony (NMA)
phenomenon [42]. The increase in latency allows the user’s
aim point to move closer to the center of the selection re-
gion. So, while not intuitive, an increase in latency can lead
to a reduction in the error rate. This illustration that the
system’s response can sometimes be too fast in a task involv-
ing participant anticipation of input timing replicates and
theoretically extends the results of some studies previously
reported upon [24, 27–29].

Table 1: Summary of empirical parameters

Studies cµ cσ ν δ cL R2

Study 1 with our model 0.061 0.089 10.59 0.18 0.50 0.94
Study 1 with CHI’18 model [28] 0.35 0.095 49.48 0.91 N/A 0.65

2016 Flappy Bird data [29]
our model assuming 30 ms latency 0.089 0.071 66.53 0.23 0.14 0.98

Study 2 with our model 0.087 0.027 5.97 0.49 0.0091 0.94

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 7

The model’s assumptions about the effects of latency on
the input distribution’s µ and σ values were verified. Thus,
we can report that the model succeeded in predicting partic-
ipants’ empirical error rates with high accuracy (R2=0.94).

We now turn to the empirical parameters obtained through
fitting. The previous model for moving-target selection [28]
failed to capture the tendency of latency to push back the
mean of the input distribution, µ. The effect was reflected
instead in the measurement of the user’s implicit aim point
(cµ). For the same dataset, the prior model produces a large
cµ value, about 0.35 (see Table 1), which results from misin-
terpreting the latency-induced shift in input distribution to
be a shift in the user’s intended aim point.

We attempted to further analyze whether the phenomenon
of shifting the input distribution backward is a passive effect
of latency vs. intended by the user. If we assume that cµ is
directly affected by latency, the µ of the input distribution
can be expressed thus:

µ = cµ ·Wt = (cµ0 + cL · L) ·Wt (7)

Fitting this equation to the µ of the empirically measured in-
put distribution yields a worse fit (R2=0.47) than our model’s
(R2=0.70). This supports the view that the input-distribution
shift represents not user intention but a passive effect of
latency.
However, there are hypotheses that cannot be answered

by this analysis alone. For example, to achieve a lower error
rate, the user may tolerate the input being delayed without
actively correcting the aim point. In contrast, under exper-
imental conditions wherein the error rate can be critically
increased via latency (i.e., by latency above 200 ms), the user
may actively modify the implicit aim point. In fact, it has
been observed that as the latency value approaches 200 ms,
the change in µ value saturates (see the third graph in Figure
6). A definitive answer is beyond the scope of this study and
requires further investigation.

6 STUDY 2: GEOMETRIC COMPENSATION OF
LATENCY

For the famous moving-target selection game Flappy Bird,
Study 2 demonstrates the geometric compensation of the
latency effect.

Moving-Target Selection in Flappy Bird
In Flappy Bird, the player must control the flight of a small
bird and pass it through pillars that each have a narrow gap.
The player must activate a button occasionally to control the
bird’s flight: when this is pressed, the bird starts rising at a
constant speed, but if there is no further input it then falls
to the ground under gravity. The game ends when the bird
hits the ground or a pillar.

Figure 7: Two selection regions in the Flappy Bird game
(left), the result of the geometric compensation performed
by adjusting the pillar spacing (right)

Keeping the bird from falling to the ground is easy, so
this task was not considered in our study. However, the
player must perform a moving-target selection task to pass
through a pillar without bumping into it. At this time, the
player encounters two selection regions in the game scene,
of different shapes (see Figure 7).

Geometric Compensation in Flappy Bird
The difficulty level in Flappy Bird is determined by the speed
of the bird, the vertical spacing between pillar sections, and
the magnitude of the gravity. Of these variables, the one that
determines the look of the game geometry is the spacing
between the pillars. Other variables must be kept constant
to maintain the temporal dynamics of the game.
When the vertical spacing for a pillar is changed, target-

selectable durationWt , which determines the user’s error
rate, is changed. Input period P and cue-viewing time tc do
not change when the bird’s speed and gravity are constant.
In Study 2, we controlled the player’s error rate by adjusting
the vertical spacing of pillar segments to changeWt .
How vertical gaps determine theWt value is calculated

from an equation obtained in previous work [29] (not re-
peated here). The change in the player’s error rate due to the
change inWt can be predicted via Equation 5. This enabled
geometric compensation to be applied for Flappy Bird in line
with Figure 4. Changing the pillar gaps alters theWt values
in selection regions A and B both (see Figure 7).

Obtaining Empirical Parameters
The 10 participants in the aforementioned study [29] played
the Flappy Bird game under variousWt , P , and tc conditions.
Using their dataset, we fitted our model to obtain empirical
parameters. Since we did not know the end-to-end latency
of the apparatus used in the earlier experiments (MacBook
Pro late 2012, 2.2 GHz Intel Core i7, Intel Iris Pro 1536 MB
graphics card). Therefore, it was assumed that the typical
latency of a MacBook Pro keyboard, 30 ms, was present
in those experiments. Our model showed a high fit with
their data (R2=0.98). The resulting empirical parameters were

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 8

used for geometric compensation in Study 2 (see Table 1).
When the latency changes from 30 ms to 200 ms, the spacing
between the pillars varies by compensation from -34.85% to
3.57% as shown in the figure below (the shading indicates
the 95% confidence interval):

Method
Participants: Twelve participants, four of them female and
eight male, were recruited from a local university. Their
average age was 23.61 (SD=4.4), and each was rewarded
with $10 for completing the experiment. Participants were
informed and signed a consent form before the experiment.

Task: Participants were asked to play Flappy Bird imple-
mented in Java (see Figure 8). They made the bird jump by
pressing the spacebar. We asked the participants to do their
best to avoid colliding with the pillars and make the bird fly
as far as they could. The horizontal velocity of the bird was
3 pixels/frame, and the speed at which the bird rose upon
pressing of the spacebar was 5 pixels/frame. The temporal
dynamics of the final application were similar to those of the
original Flappy Bird.

Apparatus: The game was implemented on a desktop com-
puter (Intel Core(TM) i7-7700 CPU @3.60 GHz, Windows
10) and was constantly driven at a frame rate of 60Hz. A
24-inch monitor (ASUS ROG Swift PG248Q 180 Hz) and a
gaming keyboard (ASUS ROG Claymore) were used. We mea-
sured the end-to-end latency of the systemwith a high-speed
camera (960 fps, SONY DSC–RX100M5). The resulting la-
tency was approximately 40 ms between when the keyboard
button was pressed and feedback appeared on the screen.

Experimental Design: The experiment had a 4×3within-subject
design with two independent variables: Game Condition, and
Latency. The levels were the following:
• GameCondition:Condition 1 (Gravityд1–0.11 pixels2/frame,
Pillar WidthWp1–272 pixels, Pillar Spacing Hp1–190 pix-
els), Condition 2 (д2–0.22 pixels2/frame,Wp2–136 pixels,
Hp2 132– pixels), Condition 3 (д3–0.22 pixels2/frame,Wp3–
136 pixels,Hp3–94 pixels),Condition 4 (д4–0.22 pixels2/frame,
Wp4–136 pixels, Hp4–84 pixels)

• Latency: Latency 1 (40ms, default latency), Latency 1 (80ms,
40 ms added), Latency 3 (120 ms, 80 ms added)

The additional latency was implemented through software
and was applied from the moment of the keyPressed event.
For each Latency–Game Condition pair except with default

Figure 8: On successful compensation, error rates of Latency
1, 2 and 3 should be similar for each Condition.

latency, the following geometric compensation was applied
to Hp : ∆H 80

p1 = −17 pixels, ∆H 80
p2 = −12 pixels, ∆H 80

p3 = −11
pixels, ∆H 80

p4 = −4 pixels, ∆H 120
p1 = −35 pixels, ∆H 120

p2 = −26
pixels, ∆H 120

p3 = −11 pixels, ∆H 120
p4 = −4 pixels. Since the la-

tency usedwas expected to lower the participants’ error rates,
the pillar gaps had to be reduced overall after the geometric
compensation was performed. After this compensation, the
error rate for each Game Condition would be expected to
remain the same across Latency conditions.

Setup and Procedure: Participants were instructed to sit on a
gaming chair in front of the PC. During an experimenter’s
brief explanation of the experiment, it was verified that each
subject understood the tasks. None of the participants were
familiar with the original Flappy Bird game. The order of the
three Latency conditions was counterbalanced via a Latin
square design. In each Latency condition, the order of Game
Condition assignments was random. To keep trial counts
similar irrespective of Game Condition, participants played
for six minutes with a gravity of 0.11 pixels2/frame and three
minutes with a gravity of 0.22 pixels2/frame. All received
$10 as compensation for participating.

Results
Let E1 be the error rate in the default latency condition (La-
tency 1), E2 be the error rate in the presence of 40 ms added
latency (Latency 2), and E3 be the error rate when additional
latency of 80 ms is present (Latency 3). With the geomet-
ric compensation, the following relationship between these
three error rates should be observed: E0 ≈ E40 and E0 ≈ E80.
The result is shown on the right in Figure 7. The x-axis

of the graph represents the error rate measured under the
Latency 1 condition for each Game Condition setting. On
the y-axis is the error rate obtained in the measurements
when participants were exposed to the latency-compensation
conditions (Latency 2 and Latency 3). The graph illustrates
that geometric compensation allows participants to maintain
error rates similar to those with the default latency and

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 9

geometry conditions (R2 = 0.80 and root mean square error
(RMSE)=7.8%).

Discussion
By means of empirical parameters obtained via Flappy Bird
data published in 2016 [29], geometric compensation for ad-
ditional latency was attempted. This was successful in terms
of linearity (R2=0.80) and RMSE (7.8%). Note that the com-
pensation was performed at the population-level and did not
take into account the effect of each player’s difference. We
discuss other factors that affected the compensation accuracy
in Study 2.

Simultaneous Compensation of Multiple Selection Regions:
As mentioned earlier in Figure 7, the game Flappy Bird fea-
tures two types of selection region, and the change in intra-
pillar spacing affects both shapes simultaneously. That is, if
compensation for the error rate is applied for one kind of
selection area, the error rate for the other may not reach the
level targeted. In Study 2, we computed post-compensation
pillar gaps for each of the two region types and averaged
these to obtain a single compensation-inclusive spacing. This
compromises the accuracy of the compensation. In fact, as
Figure 7 shows, the post-compensation error rate for selec-
tion region A is slightly lower than the post-compensation
error rate for selection region B.
If the speed of the bird too were adjusted, it would have

been possible to compensate for the error rate from both
selection regions simultaneously. However, this could affect
the game’s temporal dynamics; game designers should apply
it only selectively.

Inaccurate Estimation of Empirical Parameters: For perform-
ing geometric compensation, the empirical parameters of
the moving-target selection model ‘cµ , cσ ,ν ,δ ,and cL’ must
be known in advance. In our experiment, these parameters’
values were obtained by fitting the model to the Flappy Bird
dataset from the earlier paper [29]. Again, since the authors
did not report the end-to-end latency of the system from
which the data were obtained, we made a rough estimate
for our paper that puts the latency of the system in the 2016
Flappy Bird experiment at about 30 ms. If errors in this as-
sumption led to the empirical parameters not being obtained
correctly, the accuracy of the geometric compensation per-
formed in Study 2 may have suffered.
For confirmation, we fitted the model with only the data

obtained in Study 2 and acquired empirical parameters again.
Since the latency in the newer user study is clearly known
(40 ms, 80 ms, 120 ms), the empirical parameters obtained
from the Study 2 dataset can be regarded as ground truth.
Thus, we can conclude that our model successfully explained
the error rate of the participants in Study 2 (R2 = 0.94).

The resulting parameters differed from the set used to
design the geometrical compensation in Study 2 (see Table
1). There are two possible causes for this difference: (1) the
end-to-end latency in the 2016 experiment may not have
been 30 ms, and (2) subjects’ demographic differences may
be relevant. However, no significant demographic differences
were found between the participants in the 2016 experiment
[29] and those in Study 2, so we conjecture that error ex-
ists in our assumption that the system latency in the 2016
experiment was 30 ms.

Inverse Modeling of Latency in 2016 Paper: Assuming that
the empirical parameters obtained from the Study 2 dataset
are ground truth, we can estimate the end-to-end latency
in the 2016 Flappy Bird experiment [29] through inverse
modeling [23]. The end-to-end latency in the earlier study
was regarded as an unknown variable and fitted to our model
via ground-truth empirical parameters. As a result, the model
described the data well (R2 = 0.96), and the 2016 system’s
latency was found to be 122 ms, a much larger value than
we expected. This may be the reason for our geometrical
compensation not being perfect.

7 LIMITATION AND CONCLUSION
Our research yielded a novel model and method that can
compensate for the effects of latency by geometrically trans-
forming the shape of the game scene. The idea could be fur-
ther generalizable to other games. For example, followings
are applicable geometric compensation methods on existing
popular games: increase/decrease a route width in Dancing
Line, enlarge/reduce a size of enemy in a FPS game, and ad-
just a ball size in Rolling Sky. The method does not interfere
with the time progress of the game, so it can enhance the
player’s immersion unlike prior time rewinding methods.
That said, our work was confined to games based on rel-
atively simple tasks (i.e., moving-target selection) and did
not test how geometric compensation actually benefits the
player. Also, this study did not address how the geometric
compensation of latency affects the quality of experience
(QoE) of players. Nonetheless, the model proposed in this
paper represents a low-level mechanism for the effects of
latency and was derived on that basis, so follow-up studies
should be able to easily extend the model to more complex
tasks. Finally, our non-intuitive finding that the error rate
may decrease with some latency increases is an important
take-away, one with implications for future game design.

8 ACKNOWLEDGEMENTS
This research was supported by the National Research Foun-
dation of Korea (2017R1C1B2002101, 2018R1A5A7025409).
SK’s research was funded by the Aalto University Seed Fund-
ing Grant GamerLab.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 10

REFERENCES
[1] Glen Anderson, Rina Doherty, and Subhashini Ganapathy. 2011. User

Perception of Touch Screen Latency. In Design, User Experience, and
Usability. Theory, Methods, Tools and Practice, Aaron Marcus (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 195–202.

[2] Axel Antoine, Sylvain Malacria, and Géry Casiez. 2018. Using High Fre-
quency Accelerometer and Mouse to Compensate for End-to-end La-
tency in Indirect Interaction. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). ACM, New York, NY,
USA, Article 609, 11 pages. https://doi.org/10.1145/3173574.3174183

[3] G. Armitage. 2003. An experimental estimation of latency sensitivity
in multiplayer Quake 3. In The 11th IEEE International Conference on
Networks, 2003. ICON2003. 137–141. https://doi.org/10.1109/ICON.
2003.1266180

[4] Raymond E. Barber and Henry C. Lucas, Jr. 1983. System Response
Time Operator Productivity, and Job Satisfaction. Commun. ACM 26,
11 (Nov. 1983), 972–986. https://doi.org/10.1145/182.358464

[5] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Em-
manuel Agu, and Mark Claypool. 2004. The Effects of Loss and Latency
on User Performance in Unreal Tournament 2003®. (2004), 144–151.
https://doi.org/10.1145/1016540.1016556

[6] François Bérard and Renaud Blanch. 2013. Two Touch System Latency
Estimators: High Accuracy and Low Overhead. In Proceedings of the
2013 ACM International Conference on Interactive Tabletops and Surfaces
(ITS ’13). ACM, New York, NY, USA, 241–250. https://doi.org/10.1145/
2512349.2512796

[7] Yahn W Bernier. 2001. Latency compensating methods in client/server
in-game protocol design and optimization. In Game Developers Confer-
ence, Vol. 98033.

[8] Florian Bockes, Raphael Wimmer, and Andreas Schmid. 2018. LagBox
– Measuring the Latency of USB-Connected Input Devices. , Article
LBW115 (2018), 6 pages. https://doi.org/10.1145/3170427.3188632

[9] Catalin V Buhusi and Warren H Meck. 2005. What makes us tick?
Functional and neural mechanisms of interval timing. Nature Reviews
Neuroscience 6, 10 (2005), 755.

[10] Géry Casiez, Thomas Pietrzak, Damien Marchal, Sébastien Poulmane,
Matthieu Falce, and Nicolas Roussel. 2017. Characterizing Latency
in Touch and Button-Equipped Interactive Systems. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and
Technology (UIST ’17). ACM, New York, NY, USA, 29–39. https://doi.
org/10.1145/3126594.3126606

[11] Irina Ceaparu, Jonathan Lazar, Katie Bessiere, John Robinson, and Ben
Shneiderman. 2004. Determining Causes and Severity of End-User
Frustration. International Journal of Human-Computer Interaction 17,
3 (2004), 333–356. https://doi.org/10.1207/s15327590ijhc1703_3

[12] Mark Claypool, Ragnhild Eg, and Kjetil Raaen. 2017. Modeling user
performance for moving target selection with a delayed mouse. In
International Conference on Multimedia Modeling. Springer, 226–237.

[13] Jonathan Deber, Bruno Araujo, Ricardo Jota, Clifton Forlines, Darren
Leigh, Steven Sanders, and Daniel Wigdor. 2016. Hammer Time!: A
Low-Cost, High Precision, High Accuracy Tool to Measure the Latency
of Touchscreen Devices. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI ’16). ACM, New York, NY,
USA, 2857–2868. https://doi.org/10.1145/2858036.2858394

[14] John Gibbon, Russell M Church, and Warren H Meck. 1984. Scalar
timing in memory. Annals of the New York Academy of sciences 423, 1
(1984), 52–77.

[15] Niels Henze and Benjamin Poppinga. 2012. Measuring latency of touch
and tactile feedback in touchscreen interaction using a mobile game.
In Proceedings of the 3rd International Workshop on Research in the
Large. New York: ACM. S. 23–26.

[16] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven Sutcliffe. 2015.
Quantifying and Mitigating the Negative Effects of Local Latencies on
Aiming in 3D Shooter Games. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI ’15). ACM,
NewYork, NY, USA, 135–144. https://doi.org/10.1145/2702123.2702432

[17] Aditya Jain, Ramta Bansal, Avnish Kumar, and KD Singh. 2015. A
comparative study of visual and auditory reaction times on the basis
of gender and physical activity levels of medical first year students.
International Journal of Applied and Basic Medical Research 5, 2 (2015),
124.

[18] Arthur R. Jensen and Ella Munro. 1979. Reaction time, movement time,
and intelligence. Intelligence 3, 2 (1979), 121 – 126. https://doi.org/10.
1016/0160-2896(79)90010-2

[19] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How
Fast is Fast Enough?: A Study of the Effects of Latency in Direct-touch
Pointing Tasks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA,
2291–2300. https://doi.org/10.1145/2470654.2481317

[20] T. Kaaresoja, E. Anttila, and E. Hoggan. 2011. The effect of tactile
feedback latency in touchscreen interaction. In 2011 IEEEWorld Haptics
Conference. 65–70. https://doi.org/10.1109/WHC.2011.5945463

[21] Topi Kaaresoja and Stephen Brewster. 2010. Feedback is... Late: Mea-
suring Multimodal Delays in Mobile Device Touchscreen Interac-
tion. In International Conference on Multimodal Interfaces and the
Workshop on Machine Learning for Multimodal Interaction (ICMI-
MLMI ’10). ACM, New York, NY, USA, Article 2, 8 pages. https:
//doi.org/10.1145/1891903.1891907

[22] Teemu Kämäräinen, Matti Siekkinen, Antti Ylä-Jääski, Wenxiao Zhang,
and Pan Hui. 2017. A Measurement Study on Achieving Imperceptible
Latency in Mobile Cloud Gaming. In Proceedings of the 8th ACM on
Multimedia Systems Conference (MMSys’17). ACM, New York, NY, USA,
88–99. https://doi.org/10.1145/3083187.3083191

[23] Antti Kangasrääsiö, Kumaripaba Athukorala, Andrew Howes, Jukka
Corander, Samuel Kaski, and Antti Oulasvirta. 2017. Inferring cogni-
tive models from data using approximate Bayesian computation. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, 1295–1306.

[24] Sunjun Kim, Byungjoo Lee, and Antti Oulasvirta. 2018. Impact Activa-
tion Improves Rapid Button Pressing. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA, Article 571, 8 pages. https://doi.org/10.1145/
3173574.3174145

[25] Jarrod Knibbe, Hrvoje Benko, and Andrew D. Wilson. 2015. Juggling
the Effects of Latency: Software Approaches to Minimizing Latency in
Dynamic Projector-Camera Systems. (2015), 93–94. https://doi.org/
10.1145/2815585.2815735

[26] Huy Viet Le, Valentin Schwind, Philipp Göttlich, and Niels Henze.
2017. PredicTouch: A System to Reduce Touchscreen Latency Using
Neural Networks and Inertial Measurement Units. In Proceedings of the
2017 ACM International Conference on Interactive Surfaces and Spaces
(ISS ’17). ACM, New York, NY, USA, 230–239. https://doi.org/10.1145/
3132272.3134138

[27] Byungjoo Lee, Qiao Deng, Eve Hoggan, and Antti Oulasvirta. 2017.
Boxer: A Multimodal Collision Technique for Virtual Objects. In Pro-
ceedings of the 19th ACM International Conference on Multimodal In-
teraction (ICMI 2017). ACM, New York, NY, USA, 252–260. https:
//doi.org/10.1145/3136755.3136761

[28] Byungjoo Lee, Sunjun Kim, Antti Oulasvirta, Jong-In Lee, and Eunji
Park. 2018. Moving Target Selection: A Cue Integration Model. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA, Article 230, 12 pages.
https://doi.org/10.1145/3173574.3173804

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 11

[29] Byungjoo Lee and Antti Oulasvirta. 2016. Modelling Error Rates in
Temporal Pointing. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA,
1857–1868. https://doi.org/10.1145/2858036.2858143

[30] Steven W. K. Lee and Rocky K. C. Chang. 2017. On "shot around a
corner" in first-person shooter games. In 2017 15th Annual Workshop
on Network and Systems Support for Games (NetGames). 1–6. https:
//doi.org/10.1109/NetGames.2017.7991545

[31] Jiandong Liang, Chris Shaw, and Mark Green. 1991. On Temporal-
spatial Realism in the Virtual Reality Environment. In Proceedings of the
4th Annual ACM Symposium on User Interface Software and Technology
(UIST ’91). ACM, New York, NY, USA, 19–25. https://doi.org/10.1145/
120782.120784

[32] I. Scott MacKenzie and Colin Ware. 1993. Lag As a Determinant
of Human Performance in Interactive Systems. In Proceedings of the
INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing
Systems (CHI ’93). ACM, New York, NY, USA, 488–493. https://doi.
org/10.1145/169059.169431

[33] Gale L. Martin and Kenneth G. Corl. 1986. System response time effects
on user productivity. Behaviour & Information Technology 5, 1 (1986),
3–13. https://doi.org/10.1080/01449298608914494

[34] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders, and Paul
Dietz. 2012. Designing for Low-latency Direct-touch Input. (2012),
453–464. https://doi.org/10.1145/2380116.2380174

[35] Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018. Neuromechan-
ics of a Button Press. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI ’18). ACM, New York, NY,
USA, Article 508, 13 pages. https://doi.org/10.1145/3173574.3174082

[36] Eunji Park, Hyunju Kim, and Byungjoo Lee. 2018. Button++: Design-
ing Risk-aware Smart Buttons. In Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, LBW116.

[37] Eunji Park and Byungjoo Lee. 2018. Predicting Error Rates in Pointing
Regardless of Target Motion. arXiv preprint arXiv:1806.02973 (2018).

[38] Andriy Pavlovych and Wolfgang Stuerzlinger. 2009. The Tradeoff
Between Spatial Jitter and Latency in Pointing Tasks. In Proceedings of
the 1st ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS ’09). ACM, New York, NY, USA, 187–196. https://doi.
org/10.1145/1570433.1570469

[39] PlayOverwatch. 2016. Developer Update | Let’s Talk Netcode | Over-
watch. https://www.youtube.com/watch?v=vTH2ZPgYujQ

[40] Peter Quax, PatrickMonsieurs,Wim Lamotte, DannyDeVleeschauwer,
and Natalie Degrande. 2004. Objective and Subjective Evaluation of
the Influence of Small Amounts of Delay and Jitter on a Recent First
Person Shooter Game. In Proceedings of 3rd ACM SIGCOMMWorkshop

on Network and System Support for Games (NetGames ’04). ACM, New
York, NY, USA, 152–156. https://doi.org/10.1145/1016540.1016557

[41] K. Raaen, R. Eg, and C. Griwodz. 2014. Can gamers detect cloud delay?.
In 2014 13th Annual Workshop on Network and Systems Support for
Games. 1–3. https://doi.org/10.1109/NetGames.2014.7008962

[42] Bruno H Repp. 2005. Sensorimotor synchronization: a review of the
tapping literature. Psychonomic bulletin & review 12, 6 (2005), 969–992.
https://doi.org/10.3758/bf03206433

[43] Walter Ritter, Guido Kempter, and Tobias Werner. 2015. User-
Acceptance of Latency in Touch Interactions. In Universal Access in
Human-Computer Interaction. Access to Interaction, Margherita Antona
and Constantine Stephanidis (Eds.). Springer International Publishing,
Cham, 139–147. https://doi.org/10.1007/978-3-319-20681-3_13

[44] Steven C Seow. 2008. Designing and engineering time: The psychology
of time perception in software. Addison-Wesley Professional.

[45] Jose Shelton and Gideon Praveen Kumar. 2010. Comparison between
auditory and visual simple reaction times. Neuroscience & Medicine 1,
1 (2010), 30–32.

[46] Ben Shneiderman. 1984. Response Time and Display Rate in Human
Performance with Computers. ACM Comput. Surv. 16, 3 (Sept. 1984),
265–285. https://doi.org/10.1145/2514.2517

[47] Richard H.Y. So andMichael J Griffin. 1992. Compensating lags in head-
coupled displays using head position prediction and image deflection.
Journal of Aircraft 29, 6 (1992), 1064–1068.

[48] Steven L. Teal and Alexander I. Rudnicky. 1992. A Performance Model
of System Delay and User Strategy Selection. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’92).
ACM, New York, NY, USA, 295–305. https://doi.org/10.1145/142750.
142818

[49] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and I. S. MacKenzie. 2009.
Effects of tracking technology, latency, and spatial jitter on object
movement. In 2009 IEEE Symposium on 3D User Interfaces. 43–50. https:
//doi.org/10.1109/3DUI.2009.4811204

[50] Simon Thorpe, Denis Fize, and Catherine Marlot. 1996. Speed of
processing in the human visual system. nature 381, 6582 (1996), 520.
https://doi.org/10.1038/381520a0

[51] Jiann-Rong Wu and Ming Ouhyoung. 2000. On latency compensation
and its effects on head-motion trajectories in virtual environments.
The Visual Computer 16, 2 (01 Mar 2000), 79–90. https://doi.org/10.
1007/s003710050198

[52] Min Hong Yun, Songtao He, and Lin Zhong. 2017. Reducing Latency
by Eliminating Synchrony. In Proceedings of the 26th International
Conference on World Wide Web (WWW ’17). International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland, 331–340. https://doi.org/10.1145/3038912.3052557

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 560 Page 12

