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ABSTRACT The ever-increasing population of India accompanied by the recent concerns regarding
fossil fuel depletion and environmental pollution has made it indispensable to develop alternate mode of
transportation. Electric vehicle (EV) market in India is expanding. For acceptance of EVs among the masses,
development of charging infrastructure is of paramount importance. This paper formulates and solves the
charging infrastructure-planning problem for Guwahati, India, that will develop as a smart city soon. The
allocation of charging station problem was framed in a multi-objective framework considering the economic
factors, power grid characteristics, such as voltage stability, reliability, power loss, as well as EV user’s
convenience, and random road traffic. The placement problem was solved by using a Pareto dominance-
based hybrid algorithm amalgamating chicken swarm optimization (CSO) and the teaching learning-
based optimization (TLBO) algorithm. Finally, the Pareto optimal solutions were compared by fuzzy
decision-making.

INDEX TERMS City, cost, charging station, electric vehicle, optimization, traffic.

NOMENCLATURE
Constant Parameters

PR Congestion probability of residential area
PO Congestion probability of office area
Cfast Installation cost of fast charging stations
Cslow Installation cost of slow charging stations
CPfast Power consumption of fast charging stations
CPslow Power consumption of slow charging stations
Pelec Per unit cost of electricity
m Maximum number of locations in which charg-

ing station will be placed
q Total number of charging demand points
w1 Weight assigned to V
w2 Weight assigned to R
w21 Weight assigned to SAIFI
w22 Weight assigned to SAIDI
w23 Weight assigned to CAIDI
w3 Weight assigned to Power loss

The associate editor coordinating the review of this manuscript and
approving it for publication was Vigna K. Ramachandaramurthy.

VSIbase Base value of Voltage Stability Index
SAIFIbase Base value of SAIFI
SAIDIbase Base value of SAIDI
CAIDIbase Base value of CAIDI
Pbaseloss Base value of power loss
ND Total number of buses of the distribution

network
Fmax , fmax Maximum number of fast charging stations

and charging points
Smax , smax Maximum number of slow charging stations

and charging points
Qmin
i Lower limit of reactive power of bus i

Qmax
i Upper limit of reactive power of bus i

Pmin
i Lower limit of active power of bus i
Pmax
i Upper limit of active power of bus i
λf , λs Arrival rate of EVs in fast and slow charging

stations
ρf ,ρs Utilization rate of fast and slow charging

stations
Pf0, P

s
0 Probability of no EVs waiting in fast & slow

charging stations
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Variables

Cinstallation Net installation cost associated with place-
ment of charging stations

Coperation Net operation cost associated with place-
ment of charging stations

VSI ibase Base value of VSI of the ith bus
VSI il VSI of the ith bus after the placement of the

charging stations
VSIl VSI after after the placement of EV charging

stations
Plloss Power loss after the placement of EV charg-

ing stations
SAIFIl SAIFI after the placement of charging

stations in the distribution network
SAIDIl SAIDI after the placement of charging

stations in the distribution network
CAIDIl CAIDI after the placement of charging

stations in the distribution network
Vi Voltage of ith bus for base case
Vi+1 Voltage of (i+ 1)th bus for base case
V ′i Voltage of ith bus after the placement of

charging station
V ′i+1 Voltage of (i + 1)th bus after the placement

of charging station
Pi Active power at the ith bus
Pi+1 Active power at (i+ 1)th bus
P′i Active power at ith bus after the placement

of charging stations
P′i+1 Active power at (i+ 1)th bus after the place-

ment of charging stations
Qi Reactive power at the ith bus
Qi+1 Reactive power at (i+ 1)th bus
Q′i Reactive power at ith bus after the placement

of charging stations
Q′i+1 Reactive power at (i + 1)th bus after the

placement of charging stations
Pp Active power at bus p
P′p Active power at bus p after the placement of

charging station
ri Resistance of the branch between bus i and

i+ 1
xi Reactance of the branch between bus i and

i+ 1
Z Impedance of the branch between bus i and

i+ 1
λi Failure rate of ith bus
Ni Number of consumers connected at ith bus
Ui Outage duration of ith bus
λ′i Failure rate of ith bus after the placement of

charging station
NDS Non Dominated Solution
U ′i Outage duration of ith bus after the place-

ment of the charging station
λp Failure rate of bus p

λ′p Failure rate of bus p after the placement of charg-
ing station

Up Outage duration of bus p
U ′p Outage duration of bus p after the placement of

charging station
Ii Current through branch i
I ′i Current through branch i after the placement of

charging station
dicj Distance between ith charging demand point and

jth charging station where i=1,2,...q and j=1,2,...m
Pgi Active power generation of ith bus
Pdi Active power demand of ith bus
Qgi Reactive power generation of ith bus
Qdi Reactive power demand of ith bus
Vj Voltage of jth bus
Yij Magnitude of (i, j)th term of bus admittance

matrix
θij Angle of Yij
δi Voltage angle of ith bus
δj Voltage angle of jth bus

I. INTRODUCTION
EVs have emerged as a transportation mode free from local
emissions. India being a signatory of the Paris agreement is
planning to be an EV nation by 2030 [1]. However, absence of
easily accessible charging stations is one of the encumbrances
affecting the EV market in India. Therefore, the govern-
ment of India has recently started taking many initiatives for
development of sustainable and easily accessible charging
stations [1]. Inappropriate positioning of charging stations
may affect smooth operation of the power grid causing volt-
age instability, increased power loss, harmonics and lower
reliability indices [2], [3]. Additionally, charging stations
should be easily accessible to EV drivers preferably causing
no extra congestion. The complex and haphazard nature of
the power grid and road network of India makes the charging
infrastructure-planning problem a tedious and challenging
task. Motivated by the recent concerns related to environ-
mental pollution and energy crisis, we make an attempt to
formulate and solve the charging station allocation problem
in the context of Guwahati city, India. Guwahati is one of the
upcoming smart cities [1]. Hence, it is expected that in future,
a large number of EVs will ply on the roads of Guwahati
resulting in necessity of charging stations.

Charging station placement problem concerns researchers
across the world. Deb et al. [1] reviewed various aspects of
charging infrastructure planning like global scenario, model-
ing approaches, objective functions, and constraints.

The charging station placement problem is formulated
considering only transport network in [4]–[6]. Liu et al. [4]
considered construction cost and running cost as the objec-
tive functions along with the charging need as a constraint
in their formulation. They applied Adaptive Particle Swarm
optimization (APSO) for solving the complex problem.
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The aforesaid approach was tested on a road network of
Beijing. Bendiabdellah et al. [5] formulated the charging
station allotment problem for the city of Cologne in Germany.
They considered installation cost and cost of commuting
the distance between charging demand point and charging
stations as objective functions. The allocation problem was
solved by a hybrid method amalgamating k means of cluster-
ing and Genetic Algorithm (GA). Tu et al. [6] formulated the
charging infrastructure planning problem for a road network
of Shenzhen city in China. They considered maximization
of travel time of EVs and minimization of waiting time in
the charging stations as the objective functions. The range of
EV, capacity of charging stations, time required for charging
were considered as constraints in the planning model. The
allocation problem was solved by applying GA.

References [7]–[9] have formulated the charging station
placement problem by considering only distribution network.
Liu et al. [7] have presented an approach for placing the
charging stations considering cost as the objective function
for IEEE 123 bus test network. Modified Primal Dual Inte-
rior Point Algorithm (MPDIPA) was utilized for solving
the placement problem. Zheng et al. [8] presented a unique
scheme for charging and battery swapping station placement
considering cost as the objective function and power con-
sumption limit, voltage limit, current limit as constraints.
A modified version of Differential Evolution (DE) was uti-
lized for solving the placement problem. The authors tested
the proposed approach on IEEE 15 and IEEE 43 bus distri-
bution network. Simorgh et al. [9] considered the cost and
demand response as the objective functions and solved the
placement problem by applying PSO. Further, they showed
that demand response program can reduce grid losses and the
total cost.

On the contrary, references [10]–[12] modeled the place-
ment problem in a multi-disciplinary approach by giving
consideration to both transport and distribution network.
Wang et al. [10] used a multi-objective EV charging station
planning model ensuring charging service and simultane-
ously considering power loss and voltage deviation of the
distribution network. The placement problem was solved by
using Data Envelopment Analysis (DEA) as well as by a
Cross-Entropy based method (CE). The authors validated the
proposed approach on superimposed IEEE 33 bus distribution
network and 25 node road network. Rajabi-Ghahnavieh and
Sadeghi-Barzani [11] modeled the charging station place-
ment problem for northwest Tehran, Iran. They considered
zonal traffic circulation in the formulation of charging sta-
tion placement along with station development cost and grid
operator cost. Subsequently, the problemwas solved by using
GA. Deb et al. [12] modeled the charging station allotment
problem with cost as the objective function where the charac-
teristics of the distribution network such as voltage deviation,
reliability and power losses were also taken into account in
the planning model by enforcing penalty for infringing the
safe limits of these factors. Further, a novel CSO TLBO
algorithm was applied for obtaining the apposite sites of the

charging stations. The proposed approach was validated on
superimposed IEEE 33 bus distribution network and 25 node
road network.

References [4]–[12] highlight the contributions of contem-
porary researches in the arena of charging station placement.
However, the existing studies on charging station planning
fail to take into account some of the key factors such as
resiliency of distribution network, waiting time in the charg-
ing stations, and traffic intensity. Moreover, only few studies
formulate the placement problem in the context of an Indian
city. Compared with the existing research works related to
charging infrastructure planning, the main contributions of
the present work are:

1. The present work models the charging station place-
ment problem in the context of Guwahati, India. Guwa-
hati is one of the upcoming smart cities of India.
In future, a large number of EVs will ply on the roads of
Guwahati. Hence, there will be necessity of sustainable
charging infrastructure.

2. High traffic density along with low grid stiffness make
it a challenging problem to find charger locations Our
work presents the approach, tools, and performance
indicators to find optimal charger locations taking into
account both the traffic and electric grid.

3. The work proposes a two stage-planning model for the
charging station allotment. In the first stage, the candi-
date locations for placing the charging stations are iden-
tified by a novel methodology of Bayesian network.
In the second stage, optimization is performed to select
the best locations, type of charging stations and number
of charging points at the charging stations.

II. CHARGING STATION PLACEMENT PROBLEM
Solving the charging station placement problem requires the
positioning of the charging stations in the road network
considering economic factors, operating parameters of the
power grid, and EV users’ ease. The present work utilizes a
two-stage modeling of the charging station placement prob-
lem as illustrated in the subsequent sub-sections. It is
expected that the two-stage planning model will reduce
the computational time and effectively locate the charging
stations.

A. SCREENING OF THE CANDIDATE LOCATIONS FOR
CHARGING STATION PLACEMENT
In the first stage, the potential locations for the placement
of charging stations is determined by using a probabilistic
approach based on Bayesian network [13]–[17]. It seems to
be a common practice to situate the charging stations at the
meeting points of distribution and road network [10], [12].
Thus, we can say that the superimposed nodes or the nodes
of the road network adjacent to the buses of the distribution
network are the candidate sites for the assignment of charging
stations. However, some of these nodes can be crammed with
high traffic intensity. Also, the chance of some of these nodes
being vulnerable points of the grid in terms of voltage stability
cannot be disregarded. In the present work, distance of the
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road network nodes from the nearest bus of the distribution
network, traffic intensity and grid stability are considered
as key factors for finding the candidate sites for placing the
charging stations. The potential of Bayesian network to deal
with uncertainty and interaction among different events is
used in the present work The Bayesian network utilized in the
present work to find the candidate locations for the placement
of charging stations is as shown in Fig.1.

FIGURE 1. Bayesian Network for finding candidate sites for charging
station placement.

The Bayesian network has three parent nodes [13] named
‘Congestion’, ‘Voltage Sensitivity Factor (VSF)’ and ‘Dis-
tance’. As shown in Fig.1 ‘Candidate’ is the child node [13]
of ‘Congestion’, ‘Voltage Sensitivity Factor (VSF)’ and ‘Dis-
tance’. The states of ‘Congestion’ are {Low, High}, states
of ‘VSF’ are {Low, Medium, High}, states of ‘Distance are
{Low, Medium, High} and the states of the child node ‘Can-
didate’ are {Yes, No}. The probability that a particular node
is a candidate location is computed by bucket elimination
algorithm [14]–[17] as given by Eq. (1).

P(candidate = yes)

=P(candidate|VSF, congestion, distance)

×P(VSF)× P(congestion)× P(distance) (1)

The distance of the node of the road network from the nearest
bus of the distribution network is calculated graphically. The
computational procedures for finding VSF, congestion prob-
ability are elaborated as follows:

1. VSF- The present work uses VSF for analyzing the
stability of the distribution network. VSF is defined as the
ratio of variation in voltage and variation in load [18].

VSF =

∣∣∣∣dVdP
∣∣∣∣ ∀P < Pmax (2)

The forward and backward sweep algorithm [19] is
used for determining the voltage of the buses of the
distribution network. The maximum value of load for which
the load flow converges is called realistic loading margin of
the system. The computation of realistic loading margin is
necessary to ascertain how vulnerable the system is to change
of load. The flowchart illustrating the procedure to compute
VSF and realistic loading margin is shown in Fig.2.

2. Congestion Probability- A probabilistic approach based
on Bayesian network is utilized in the present work for
finding the probability of congestion of the nodes of the
road network. The Bayesian network model used for finding
congestion probability is shown in Fig.3. The probability of

FIGURE 2. Flowchart for computation of VSF [2].

FIGURE 3. Bayesian Network for computation of congestion probability.

a road network being congested depends on the traffic flow
that in turn depends on day of the week, time of the day, and
area covered by the road. Thus, ‘Day’, ‘Time’, and ‘Area’, are
the parent nodes [13] of the Bayesian network. And, ‘Traffic
Flow’ is the child node [13] of the nodes ‘Day’, ‘Time’, and
‘Area’. Similarly, ‘Congestion’ is the child node of ‘Traffic
Flow’. The probability of congestion being high or low is
computed by bucket elimination algorithm [13]–[17]. The
states of the root nodes ‘Day’, ‘Time’, and ‘Area’ are
{Weekday, Weekend},{AM Peak, Work, PM Peak, Leisure,
Rest}, {Residential(R), Office (O), Market (M), School (Sc)}
respectively. The states of the child node ‘Traffic flow’ are
{Low (L), Medium (M), High (H)}. The states of the node
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‘Congestion’ are {Low (L), High (H)}.The congestion prob-
abilities of residential and Office areasare:

PR = P(Area = R)|P(congestion = H) (3)

PO = P(Area = O)|P(congestion = H) (4)

The congestion probabilities of other areas can be found by
replacing the numerator of Eq. (3) and Eq. (4) accordingly
based on area.

B. OPTIMIZATION
The second stage of the proposed planning model involves
finding the best or optimal locations for the placement of
charging stations(p) from the set of candidate locations(pc),
number of fast/ slow charging stations (Fp, SP) and the num-
ber of fast/ slow charging points or servers(fp, sp). Thus,
the decision variables of the optimization problem are-

p = {p1, p2, . . . pm}

Fp = {F1,F2 . . .Fm}

Sp = {S1, S2 . . . Sm}

fp = {f1, f2 . . . fm}

sp = {s1, s2 . . . sm}

where m is the maximum number of locations for the
placement of charging stations.

The placement problem is formulated as a multi-objective
optimization problem with cost, VRP index, accessibility
index and waiting time in the charging stations as objective
functions. An overview of the multi-objective formulation
with objective functions and constraints is presented in this
section.

The objective functions and constraints of the placement
problem are elaborated as follows:

1. Cost-The optimization concerns the curtailment of the
installation and operation cost

Cost = Cinstallation + Coperation (5)

Cinstallation = {(
m∑
i=1

Fi × fi)× Cfast }

+{(
m∑
i=1

Si × si)× Cslow} (6)

Coperation = {(
m∑
i=1

Fi × fi)× CPfast }

+{(
m∑
i=1

Si × si)× CPslow} × Pelec (7)

From Eq. (6) it can be inferred that the installation cost
depends on the cost of installing fast and slow chargers,
number of fast and slow charging stations, as well as number
of fast and slow charging points. Similarly, from Eq. (7)
it can be inferred that the operation cost depends on the
power consumption of fast and slow chargers, per unit cost of
electricity, number of fast and slow charging stations, as well
as number of fast and slow charging points. The installation
and operation cost is a function of number of fast and slow

charging stations as well as number of fast and slow charging
points.

2. VRP index-The second objective function is the mini-
mization of VRP index [1]. VRP index is a composite index
formulated by Deb et al. [1] that takes into account distribu-
tion network operating parameters such as voltage stability,
reliability, and power loss together under a single frame. One
more salient feature of the VRP index is that it takes into
account both frequency and duration based reliability indices.
The suitable value, such as minimum or maximum of the
VRP index cannot be generalized and is dependent on the
test network. A low value of VRP index is desirable. Ideally,
the minimum value of VRP index is 1 when there is no
increase in the load. VRP index is mathematically expressed
as in Eq. (8)

VRP = f (p,Fp, Sp, fp, sp)=w1V + w2R+ w3P

(8)

where V =
VSIl
VSIbase

P =
Plloss
Pbaseloss

R = w21
SAIFIl
SAIFIbase

+ w22
SAIDIl
SAIDIbase

+w23
CAIDIl
CAIDIbase

VSIbase =
ND∑
i=1

2V 2
i V

2
i+1−2V

2
i+1(Pi+1ri + Qi+1xi)

− |z|2 (P2i+1 + Q
2
i+1) (9)

P′p = Pp + {(Fp × fp)× CPfast }

+ {(Sp × sp)× CPslow} (10)

VSIl =
ND∑
i=1

2V
′2
i V

′2
i+1 − 2V

′2
i+1(P

′

i+1ri + Q
′

i+1xi)

− |z|2 (P
′2
i+1 + Q

′2
i+1) (11)

SAIFIbase =

ND∑
i=1
λiNi

ND∑
i=1

Ni

SAIDIbase =

ND∑
i=1

UiNi

ND∑
i=1

Ni

and CAIDIbase =

ND∑
i=1

UiNi

ND∑
i=1
λiNi

(12)

SAIFIl =

ND∑
i=1
λ′iNi

ND∑
i=1

Ni

SAIDIl =

ND∑
i=1

U ′iNi

ND∑
i=1

Ni

and CAIDIl =

ND∑
i=1

U ′iNi

ND∑
i=1
λ′iNi

(13)
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λ′p =
λp

Pp
× P′p U ′p =

Up
Pp
× P′p (14)

Pbaseloss =

ND∑
i=1

I2i ri Plloss =
ND∑
i=1

I
′2
i ri (15)

From Eq. (8) it is seen that VRP index is a function of the
position where charging stations are placed, type of charging
stations, number of charging stations and charging points.
Eq. (9) and Eq. (11) mathematically describes the voltage
stability index before and after the placement of charging
stations. Eq. (10) is used for computing the increase in load
due to EV charging stations. Eq. (12) and Eq. (13) is used
to compute the reliability indices such as SAIFI, SAIDI,
and CAIDI before and after the placement of charging sta-
tions. From Eq. (12) and Eq. (13) it is seen that SAIFI is
a frequency based reliability index and it depends on the
frequency of interruption. On the other hand, SAIDI is a
duration based reliability index and it depends on the duration
of interruption. The frequency and duration of interruption
after the placement of charging stations is calculated by
unitary method as shown in Eq. (14). Eq. (15) explains the
computation of power loss before and after the placement of
charging stations.

3. Accessibility index-The Accessibility of the charging
stations is chosen as the third objective function. For com-
putation of accessibility (A) the distance matrix (D) and
reduced distance matrix (DD) first need to be computed. The
distance matrix, D gives the distance between the charging
point demand and charging stations. And, reduced distance
matrix, DD identifies the nearest charging stations for each
of the charging point demand and gives the distance between
the charging point demand and its nearest charging station.
D, DD, d and Aaret computed as follows:

D =


d1c1 d1c2 . . . d1cm
d2c1 d2c2 . . . d2cm
. . . .

. . . .

dqc1 dqc2 . . . dqcm



DD =


min(d1c1, d1c2, . . . d1cm)
min(d2c1, d2c2, . . . d2cm)

.

.

.

min(dqc1, dqc2, . . . dqcm)

 d =
q∑
i=1

DDi

A =
1
|d |

(16)

4. Waiting time
The waiting time (Wt ) in the charging stations cause incon-

venience to the EV drivers. Hence, the optimization aims to
minimize the waiting time. In the present work, the waiting
time in the charging stations is modeled by M/M/c queuing
theory [20]–[22]. The waiting times in the fast and slow

charging stations are:

Wf =

m∑
i=1

ρ
fi+1
f

(fi−1)!×(fi−ρf )2
× Pf0

λf
(17)

Ws =

m∑
i=1

ρ
si+1
s

(si−1)!×(si−ρs)2
× Ps0

λs
(18)

From Eq. (17) and Eq. (18) it can be inferred that the
waiting time in the charging stations depends on the
number of charging points or servers in the charging
stations.

5. Constraints
The different constraints of the charging station placement

problem are as follows:

0 < Fp ≤ Fmax and 0 < fp ≤ fmax (19)

0 < Sp ≤ Smax and 0 < sp ≤ smax (20)

Qmin
i ≤ Qi ≤ Qmax

i (21)

Pmin
i ≤ Pi ≤ Pmax

i (22)

Pgi − Pdi − Vi
ND∑
j=1

VjYij cos(δi − δj − θij) = 0 (23)

Qgi − Qdi − Vi
ND∑
j=1

VjYij cos(δi − δj − θij) = 0 (24)

Eq. (19) and Eq. (20) takes into account the maximum and
minimum number of fast as well as slow charging stations
and charging points that can be placed. Eq. (21) and Eq. (22)
takes into account the upper and lower limits of active and
reactive power respectively. Eq. (23) and Eq. (24) considers
the power balance equation.

III. OPTIMIZATION ALGORITHMS
A multi-objective hybrid CSO-TLBO algorithm presented
in [23] was harnessed to solve the optimisation problem.
CSO is a swarm intelligence inspired algorithm that mimics
the behaviour of chicken swarm. TLBO is a Nature Inspired
Optimization (NIO) algorithm that mimics the teaching
and learning process. The implementation of CSO and
TLBO for solving the optimization problem is explained by
Algorithm 1 and Algorithm 2 respectively. The grading
mechanism of CSO is amalgamated with TLBO to improve
the utilization rate of population and convergence speed of
the algorithm. It is expected that amalgamation of CSO with
TLBO reduces the chances for premature convergence of
CSO in computationally expensive problems. Being hybrid
algorithm, TLBO is activated for all the generation and
CSO is invoked periodically depending on the value of
an algorithm-specific control parameter named INV. The
flowchart for implementing multi-objective CSO TLBO is
shown in Fig. 4. The computation of rank and crowding
distance can be found in [23].
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Algorithm 1 Pseudo Code of Multi-Objective CSO [23]
Initialize the population of chicken having size PN and
define other algorithm specific parameters such as G, size
of rooster, hen, chicken and mother hen;
Evaluate the rank of PN chicken, t = 0, establish the
hierarchal order in the swarm based on rank and form
mother child relationship;
While (t < gen)
t = t + 1;
If (t%G == 0)
Establish the hierarchal order in the swarm as well as
mother child relationship;
Else
For i = 1:PN
If i == rooster
Update its solution by:
x t+1i,j = x ti,j × (1+ randn(0, σ 2));
% where randn (0, σ 2) is a Gaussian distribution function
with mean 0 and standard deviation σ 2

End if
If i == hen
Update its solution by:
x t+1i,j = x ti,j+S1×rand×(x

t
r1,j−x

t
i,j)+S2×rand×(x

t
r2,j−

x ti,j)

% where S1 = exp( fi−fr1
abs(fi)+ε

) S2 = exp(fr2 − fi)
rand is a randomly generated number between 0 and
1. r1 ∈ [1,N ] is an index of the rooster which is ith

hen’s group mate. And r2 ∈ [1,N ] is an index of the
rooster or hen which is randomly chosen such that r1 is not
equal to r2, f denotes fitness function, ε is a small number
End if
If i == chick
Update its solution by x t+1i,j = x ti,j + FL × (x tm,j − x

t
i,j);

% where x tm,j represents the position of the ith chick’s
mother. FL is a parameter signifying that the chick would
follow its mother. FL is generally chosen in between 0 and 2
End if
Compute the rank of all the individual of the population
If rank(t)< rank(t− 1)
Update the solution
If rank(t) = rank(t− 1)
Compute crowding distance of all the individual of the
population
If crowding distance(t) > crowding distance(t− 1)
Update the solution
Else
Retain the existing solution
End if else
Else
Retain the existing solution
End if else
End for
End if else
End while

Algorithm 2 Pseudo Code of Multi-Objective TLBO [23]
Set k = 1;
Initialize the population size(PN) and generate the initial
population of students randomly;
Compute the rank for all the individuals of the population;
while(k < gen)
{Teacher Phase}
Assign the teacher (Tk ) based on the rank;
for i = 1:PN
Update each learner by: Znew = Zold+ rand× (Tk−Rtmk )
% where rand is a random number, Rt is random number
between 0 and 2, mk is mean of the decision variable vector
Compute the rank of all the individual of the population;
If rank(t) < rank(t− 1)
Update the solution;
If rank(t) = rank(t− 1)
Compute crowding distance of all the individual of the
population
If crowding distance(t) > crowding distance(t− 1)
Update the solution
Else
Retain the existing solution
End if else
Else
Retain the existing solution
End if else
{End of teacher phase}
{Learner Phase}
Choose two learners Zi and Zj, i6= j;
if(fitness of Zi better than Zj)
Replace ith learner by Znew = Zold + rand × (Zi − Zj); %
rand is a random number
Else
Replace ith learner by Znew = Zold + rand × (Zj − Zi);
End if else
End for
Compute the rank of all the individual of the population
If rank(t) < rank (t− 1)
Update the solution
If rank(t) = rank (t− 1)
Compute crowding distance of all the individual of the
population
If crowding distance(t) > crowding distance (t− 1)
Update the solution
Else
Retain the existing solution
End if else
Else
Retain the existing solution
End if else
k = k + 1
End while
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FIGURE 4. Flowchart of CSO TLBO.

IV. SOLUTION PROCEDURE
The procedure for solution of the charging station placement
problem is as follows- Step 1: Initialization
Step 1.1: Input data. Input the road network, distribution

network data, upper and lower limits of different constraints
and set the different algorithm specific parameters of CSO
TLBO
Step 1.2: Generate feasible initial population randomly.
The initial feasible population is of the form

popintl = [ApopBpopCpop DpopEpop]

where Apop =


p11 p12 p13 . . . p1m
p21 p22 p23 . . . p2m
p31 p32 p33 . . . p3m
. . . . . . .

pPN1 pPN2 pPN3 . . . pPNm



Bpop =


Fp11 Fp12 Fp13 . . . Fp1m
Fp21 Fp22 Fp23 . . . Fp2m
Fp31 Fp32 Fp33 . . . Fp3m
. . . . . . .

FpPN1
FpPN2

FpPN3
. . . FpPNm



Cpop =


Sp11 Sp12 Sp13 . . . Sp1m
Sp21 Sp22 Sp23 . . . Sp2m
Sp31 Sp32 Sp33 . . . Sp3m
. . . . . . .

SpPN1
SpPN2

SpPN3
. . . SpPNm



Dpop =


fp11 fp12 fp13 . . . fp1m
fp21 fp22 fp23 . . . fp2m
fp31 fp32 fp33 . . . fp3m
. . . . . . .

fpPN1
fpPN2

fpPN3
. . . fpPNm



Epop =


sp11 sp12 sp13 . . . sp1m
sp21 sp22 sp23 . . . sp2m
sp31 sp32 sp33 . . . sp3m
. . . . . . .

spPN1
spPN2

spPN3
. . . spPNm


A randomly generated initial solution is feasible if it satisfy
all the constraints of charging station placement problem
explained in section II (B)
Step 1.3: Evaluate the four objective functions cost, VRP

index, accessibility and waiting time for the initial popu-
lation. The rank and crowding distance were computed as
in [23].The first Pareto front with rank one is designated as Tk
Step 2: Run TLBO
Step 2.1: Run TLBO and update the solution based on rank

and crowding distance [23]
Step 2.2: If the elements Bpop exceed Fmax,if the elements

of Cpop exceed Smax then those elements are made equal
to Fmax and Smax respectively. Similarly, if the elements of
Dpop exceed fmax , if elements of Epop exceed smax then those
elements are made equal to fmax and smax respectively.
Step 2.3: Else, check feasibility of the solution. If the

solution is infeasible repeat step 2.1 and 2.2 until feasible
solution is obtained.
Step 3: Check whether the iteration count, t is divisible by

INV. If yes go to step 3.1. Else, go to step 3.5.
Step 3.1: If t is divisible by INV run CSO
Step 3.2: Run CSO and update the solution based on rank-

ing and crowding distance
Step 3.3: Repeat step 2.2.
Step 3.4: Else, check feasibility of the solution. If the

solution is infeasible repeat step 3.2 and 3.3 until feasible
solution is obtained.
Step 3.5: Update the iteration count
Step 4: Check whether maximum generation count is

reached. If maximum generation count is reached print the
Pareto front. Else, repeat step 2 to step 4.
Step 5: Selection of the best compromise solution from the

set of non-dominated solution is made by using the fuzzy
decision making [24]–[26].

V. RESULTS
A. TEST SYSTEMS AND INPUT PARAMETERS
The present work solved the charging infrastructure plan-
ning problem for the city of Guwahati, India. Fig.5 shows
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FIGURE 5. Highway network of Guwahati.

FIGURE 6. Superimposed road and distribution network of Guwahati.

the highway network of Guwahati connecting Jalukbari with
Narangi. Fig.6 shows the superimposed road and distribu-
tion network for the Guwahati city. The bus and line data
of the distribution network are available in Ref [27]–[30]
and the outage data of the distribution network were taken
from the log book of the substations. The road network
data were recorded from Google maps. The recorded traffic
data from Google API was used for computing congestion
probability of the road network nodes. The distance between
the different nodes of the road network that was required for
computing the Accessibility index (third objective function
of the optimization problem) was also recorded from the
Google maps. 24 hour traffic data was recorded for both
weekdays and weekends. The characteristics of the nodes of
the road network are reported in Table 1. Table 2 presents
the different input parameters required for optimization.
Table 3 presents the algorithm- specific control parameters of
CSO TLBO.

B. CANDIDATE LOCATIONS
At the first stage, the candidate locations for placement of
the charging stations were screened by the methodology
reported in section II (A). The VSF of the buses of the
distribution network are reported in Table 4. The VSF of
bus 19 was highest indicating that it was the weakest point
of the power distribution network. The congestion proba-

TABLE 1. Types of nodes of the road network.

TABLE 2. Input parameters.

TABLE 3. Algorithm specific parameters of CSO TLBO.

bilities of different types of the nodes of the road network
computed by Bayesian network are reported in Table 5. The
nodes sprawling market areas are heavily congested with
congestion probability of 0.643. Table 6 reports the probabil-
ity of being a candidate location for placement of charging
stations for all the buses of the distribution network. The
buses for which the probability of being candidate location
was high were selected as the candidate locations for charg-
ing station placement as reported in Table 7. Assuming EV
driving range of 150 km [31] and EVs completing 10 round
trips from Jalukbari to Narangi, the charging demand nodes
were computed as reported in Table 7. It should be noted
that this work does not consider stochastic driving cycles
reported in [32].

C. OPTIMAL ALLOCATION OF CHARGING STATIONS
At the second stage, the optimal locations for the charging
stations placement were selected from the set of candidate
locations by solving the optimization problem reported in
section II (B). The optimization problem was solved by using
CSO TLBO algorithm. In this case, the optimization yielded
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FIGURE 7. Impact of charging station placement on voltage profile of distribution network.

TABLE 4. VSF of the buses of distribution network.

TABLE 5. Congestion probability of road network.

TABLE 6. Probability of being candidate location.

six non-dominated solution or planning schemes as shown
in Table 8. Table 9 reports the values of the four objective
functions for the six plans. From Table 9, it is clear that all
the six plans were unique and it was tricky to select the best
plan.

TABLE 7. Candidate locations and charging demand nodes.

TABLE 8. Optimal allocation of charging stations.

TABLE 9. Objective function values for the planning schemes.

D. EFFECT OF CHARGING STATION PLACEMENT
ON DISTRIBUTION NETWORK
The charging stations affect the operating parameters of the
distribution network such as voltage deviation, reliability, and
power loss. However, the voltage profiles of all the buses
(Fig. 7) were within acceptable limit for all the six plans
reported in Table 8. Fig. 8, Fig. 9 and Fig. 10 show the
impact of charging station placement on the three reliabil-
ity indices named SAIFI, SAIDI, and CAIDI respectively.
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FIGURE 8. Impact of charging station placement on SAIFI.

FIGURE 9. Impact of charging station placement on SAIDI.

FIGURE 10. Impact of charging station placement on CAIDI.

The reliability indices degraded due to increased charging
load. However, the degraded values were less than the crit-
ical values of these reliability indices reported in [33], [34].
The power losses of the distribution network after position-
ing the charging stations was also within acceptable limit
as shown in Fig. 11. Thus, the two-stage planning model
of charging station placement was capable of allocating
charging stations with least harm to the distribution network
of Guwahati.

E. DECIDING BETWEEN PARETO OPTIMAL SOLUTIONS
The final step was the selection among the plans. Selection
of the best plan among the six plans was a tricky task due to
involvement of opposing objectives. In real world, some cri-
teria cannot be measured by crisp values due to indistinctness
arising from human qualitative judgment [26]. Hence, a fuzzy
evaluation system was used for the final decision mak-
ing [26]. Cost, VRP index, accessibility index, and waiting
time were chosen as the four aspects of decision making in
the charging station placement problem. In the fuzzy decision

FIGURE 11. Impact of charging station placement on power loss.

FIGURE 12. Radar charts of all the planning schemes.

FIGURE 13. The charging station locations obtained according to plan 6.

making, low cost, VRP index, and waiting time received a
higher evaluation. And, high accessibility received a higher
evaluation. Table 10 lists the scale of the three objective
functions based on the aforementioned criteria. The scores of
each plan obtained by fuzzy evaluation system are reported
in Table 11. Fig. 12 shows the radar charts for all the six
planning schemes. The area occupied by plan 6 is highest
indicating that it is the most beneficial plan. The area occu-
pied by plan 2 and plan 3 is least indicating that they are
the least convenient plan. Fig.13 shows the optimal locations
of charging stations obtained by the best planning scheme
(plan 6) and the charging demand points. In Fig. 13, the red

100280 VOLUME 7, 2019



S. Deb et al.: Charging Station Placement for EVs: A Case Study of Guwahati City, India

TABLE 10. Scale of fuzzy evaluation.

TABLE 11. Score of the planning schemes.

triangles denote the charging stations and the black circles
denote the charging demand points.

VI. CONCLUSION
Sustainable development of charging infrastructure is must to
promote EVs. This work solved the charging station place-
ment problem in the context of Guwahati city, an upcom-
ing smart city. The charging station placement problem was
modeled in a multi-objective framework considering cost,
operating parameters of distribution network such as voltage
stability, reliability, power loss, factors affecting EV driver’s
convenience like accessibility to the charging stations, wait-
ing time in the charging stations. A novel CSO TLBO algo-
rithmwas harnessed to solve the optimization problem. Fuzzy
decision making was utilized to choose between various
Pareto-optimal solutions. The results showed that the pro-
posed approach is capable of allocating the charging sta-
tions with least harm to the operating parameters of the
power distribution network and simultaneously considering
EV drivers’ convenience. Moreover, the authors will try to
reach the concerned authorities and implement the planning
model on the entire Guwahati city as well as other Indian
cities in future. Our future work will also address some of
the critical issues related to charging infrastructure planning
like pricing strategies in the charging stations, planning of
Vehicle to Grid (V2G) enabled charging stations and planning
of charging stations powered by renewable resources.
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