
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Hopsu, Alexander; Atmojo, Udayanto Dwi; Vyatkin, Valeriy
On Portability of IEC 61499 Compliant Structures and Systems

Published in:
Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics, ISIE 2019

DOI:
10.1109/ISIE.2019.8781290

Published: 01/06/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Hopsu, A., Atmojo, U. D., & Vyatkin, V. (2019). On Portability of IEC 61499 Compliant Structures and Systems.
In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics, ISIE 2019 (pp. 1306-
1311). Article 8781290 (Proceedings of the IEEE International Symposium on Industrial Electronics). IEEE.
https://doi.org/10.1109/ISIE.2019.8781290

https://doi.org/10.1109/ISIE.2019.8781290
https://doi.org/10.1109/ISIE.2019.8781290

© 2019 IEEE. This is the author’s version of an article that has been published by IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

On Portability of IEC 61499 Compliant Structures
and Systems

Alexander Hopsu1, Udayanto Dwi Atmojo1, Valeriy Vyatkin1,2
1 Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

2 Dept. of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden

alexander.hopsu(at)aalto.fi, udayanto.atmojo(at)ieee.org, vyatkin(at)ieee.org

Abstract—This paper investigates the portability features of
three different IEC 61499 standard compliant tools. The study
focuses on migrating the basic and composite function block types
and system architecture with application networks and device
configurations from one tool to another. A converter program is
subsequently created using Python programming language to
automate the required modification process, thus enabling the files
to migrate between the compliant tools. The study takes into
consideration NxtStudio, FBDK and 4DIAC software tools. In
every tool, similar function blocks and system structures are
created. The portability of these created elements is examined
between the tools, resulting in a table that numerically evaluates
the portability from one tool to another.

Keywords— IEC 61499 standard, portability, compliant
tool, converter program, NxtStudio, FBDK, 4DIAC

I. INTRODUCTION

Automation is the heart of automated assembly lines which
reduces costs while keeping quality of the products within
acceptable level. Modern manufacturing utilize Programmable
Logic Controllers (PLCs), which are the key elements for
enabling the operation of automated factories. Production is at
the most effective level when the machines are constantly
running without any disturbances. However, failures and
reconfigurations of the assembly lines are inevitable at some
point, due to the deteriorating condition of the controllers and
machineries over the time and the changing demand from
customers (e.g., product customization). These lead to down-
time which costs money and resources to the company.

The IEC 61131-3 standard is one of the most used
programming technologies for PLCs [1]. IEC 61131-3 [2] is
aimed for centralized control architecture. Thus, systems based
on IEC 61131-3 are prone to single-point of failure. In addition,
the IEC 61131-3 standard does not offer an easy and
comprehensive method for reconfiguration of the system in
different situations [3]. The IEC 61499 standard [4] resolves
these issues with the concept of application-centric, distributed
control design. With decentralized control, single point of
failure is no longer an issue, where in case of failures,
production may still progress to some extent without a complete
halt. In IEC 61499, software control logic can be easily
redeployed in different hardware controllers in case one of them
fails. Meanwhile, the IEC 61499 standard is based on event
driven execution model, where the parts of the software are
executed only when they are invoked. The standard differs from
the cyclic execution model of IEC 61131-3. The event-driven
approach of IEC 61499 allows the execution of only certain

control logic which is triggered by incoming events, thus
allowing computational resources to be effectively utilized, i.e.,
only for control logic “activated” by incoming events. The base
element of the standard is a function block (FB), which has
event and data inputs and outputs. Each FB is activated by
triggering one of its event inputs, followed usually by one or
more event outputs for triggering the next FBs. An IEC 61499
systems are usually composed of a network of FBs, which can
be mapped to one or more devices.

One of the main aims of the IEC 61499 standard is to make
the control software easily portable and reconfigurable between
devices of different vendors. To achieve this, vendors are
expected to follow the compliance profile rule strictly.
However, this doesn’t seem to be the case, as this work will
demonstrate. This paper investigates the portability of IEC
61499 systems among different IEC 61499-compliant software
tools. The paper concentrates particularly on three different IEC
61499 compliant tools and tries to address issues relating to
portability between them. Based on the investigation, a Python-
based converter program is created to automate the required
modifications on the source files to enable and increase the
portability between the compliant tools.

II. RELATED WORKS

A. IEC 61499 standard

The IEC 61499 standard has been developed to solve the
limitations of the IEC 61131-3 standard. It enables the design
of distributed, control in industrial automation. The standard
uses function blocks (FBs), which are event-driven [5]. In IEC
61499, each FB consists of event and data interfaces for both
inputs and outputs (see Figure 1, upper left). A basic FB has
Execution Control Chart (ECC), which consists of a set of finite
state machines (See Fig. 1, lower). The initial state of ECC is
the “START” state, and at any given time, the current state can
change with respect to the conditions defined in the transition
branches between the states. Each state (except START) can
perform certain operations defined as algorithms, which can be
implemented in various different programming languages (See
Fig. 1, upper right), e.g., Structured Text. During execution, a
FB can be monitored to show the value of its input and output.
In Fig.1 (top left), a FB named “Calculate” is monitored and the
snapshot of its current values is shown. In this example, the
event CALC is invoked once with data values OPER = ‘+’,
VALUE1 = 3 and VALUE2 = 5, which triggers the transition
of the ECC from START into SUM state. In SUM state, the
associated algorithm SUM is executed, which outputs data
through the RESULT output data interface and event output

2

CNF associated to the data, then the FB returns to START state.
If any output event is generated, the event output can be
transferred to the next FB connected to the output event.

Fig. 1. IEC 61499 basic function block, internal ECC state machine and ST-
language algorithm SUM implemented in NxtStudio.

In addition to the basic FB, there are also composite and
service interface FBs. Composite function block encapsulates a
network of FBs and also has inputs and outputs. The use of
composite FBs enables hierarchical software design, which
simplifies the structure of FB applications. On the other hand,
service interface FBs are considered as “black boxes”, whose
internal structure is not very strictly defined. They can
implement, e.g., different communication interfaces/protocols.

The design process of an IEC 61499 system consists of two
parts: application and system configuration. The application
contains the network of the function blocks and their
connections, which capture the overall software logic of the
program. The system configuration defines how FBs in the
application are mapped to control device(s). This allows for
flexibility in managing computational resource allocation. For
example, FBs which have computationally demanding
algorithms should naturally be mapped to the device which is
computationally capable compared to other devices. To
optimize this mapping of the FBs on devices, the project
TORERO [9] has created an automatic mechanism to define the
system configuration. It takes into account, for example, the
computational power required for steps of function blocks,
application real-time constraints, available device memories
and communication protocols of the application. Based on
these, the TORERO software automatically creates the required
communication function blocks based on the system
configuration [6].

B. Software portability

Software portability enables (at least part of) the software to
be reused in other software tools or operation environments
(“Write Once Run Anywhere/Everywhere”). By porting the
same software from one environment to another, the effort for
modification or adaptation of the software for the new
environment is reduced (even annulled), therefore reducing cost
[7] [8] [9]. The IEC 61499 standard itself aims to make control
software portable. In the first edition of the standard, this was
not quite achieved because the execution semantics of the
function blocks were not defined accurately enough
(ambiguous) [10] . For example, the lifetime of an input event
was not defined, which caused difference in execution

behaviours between different software tools. Due to such
difference, one IEC 61499 system designed by one IEC 61499
compliant tool may not be ported to other tools without certain
modifications.

Software tool FBDK 4DIAC NxtStudio ISaGRAF

FBDK Full Full Partial Not applicable

4DIAC Full Full Partial Not applicable

NxtStudio Partial Partial Full Not applicable

ISaGRAF Not
applicable

Not
applicable

Not applicable Full

Table 1. Portability of the library elements between different IEC 61499
compliant tools [11].

In the second edition of the IEC 61499 standard, the

execution semantics have been better defined. However, there
are still existing portability issues between different IEC 61499
tools, e.g., Function Development Kit (FBDK) [12], ISaGRAF
Workbench [13], 4DIAC [14], and NxtStudio [15], just to name
a few. According to the standard, the storing format of the
library elements in IEC 61499 is XML. FBDK and 4DIAC are
following this guideline very strictly, thus FB library developed
using the two are portable with each other. NxtStudio has some
own additional library features, such as Composite Automation
Type (CAT) function blocks, which include the control,
visualization and plant model parts in one function block. These
special FBs and other NxtStudio have specific attributes in the
XML structure which are not defined in other tools. In contrast,
ISaGRAF Workbench has a different format for storing FB
library elements, which makes them totally non-portable to
other IEC 61499 compliant tools.

Currently, only few studies regarding the portability of IEC
61499 tools have been done. Some examples are [11], which
presents a summary shown in Table 1 and [16] demonstrates
some extent of provisions to port IEC 61499 FBs on different
tool environment in a case study. However they focused mostly
on the FB aspect. This paper investigates the portability of IEC
61499 tools beyond the scope of the FB itself, which includes
the IEC 61499 system configuration. The paper also presents
some metric of portability between the IEC 61499 tools and
proposes a new software solution to ease the programmers’
effort to port IEC 61499 system between different IEC 61499-
compliant software environments.

III. PORTABILITY OF IEC 61499 SYSTEMS BETWEEN TOOLS

In this work, a traffic light example was developed using
different IEC 61499 tools, i.e., FBDK, NxtStudio, and 4DIAC,
to investigate the exact causes leading to portability issues of
IEC 61499 tools (see Fig. 2). It’s important to note that in this
paper, we consider only NxtStudio version 2.1, FBDK version
2.6, and 4DIAC version 1.8.4 in Windows 10 operating system.
The example consists of four traffic light units, whose control
software are distributed on four different devices, in this case,
simulated/”soft” controllers. A “master control” function runs
on the fifth device, which determines the current mode of all
traffic lights. Each traffic light can be in either of the following
modes: set to run on 2 or 4 phase cycle mode, set to red, turned
completely off, or set to blinking mode.

3

In NxtStudio, when FBs of the application are mapped to
multiple devices, NxtStudio automatically establishes the
needed communication interfaces between these distributed
FBs. This is not the case with FBDK and 4DIAC, where the
tools do not automatically create the communication interfaces,
and thus the programmers need to add communication FBs
themselves. In FBDK, communication interface is
automatically created by the tool when the PUBL and SUBL
type function blocks have the same name in different resources.
However, by merely connecting the event and data interfaces of
the mapped elements (in different devices) in the application
level does not make the tool to automatically create the
communication interface, as in the case of NxtStudio and
4DIAC. In 4DIAC, the example has five more devices in order
to deploy graphical (e.g., HMI) application for each traffic light
unit and master controller. The traffic light control logic runs on
five FORTE devices, while the graphical applications utilize
FBRT (Function Block Runtime) [12] and execute on the other
five devices. Thus, the 4DIAC example is distributed over ten
devices.

Fig. 2. Traffic light application implemented in NxtStudio.

Because of the relatively high occurrence of event
transmissions instead of data in this case study, each event
requires its own publisher and subscriber FB in FBDK and
4DIAC, which need to be created manually, whereas NxtStudio
handles the communication between different devices
automatically. Therefore, the use of the communication blocks
especially in 4DIAC with 10 devices requires major effort, as
the IEC 61499 standard’s library does not offer simple solution
to handle large number of transmittable events with only one or
few communication blocks. Additionally, the inability to
modify and compile the “FB network” inside composite
function block in FBDK causes unnecessary extra number of
FBs to be shown in the application / device resource.

To investigate the portability between tools, this work
makes use of the following approach. The traffic light example
is implemented using each software tool, then we attempt to
open and run the implementation (which includes the FB
application and system configuration) without any
modifications using different tools. When problems are
encountered, we examine to find the underlying causes, and
then come up with the way to mitigate. The portability study in
this work is limited only ”simulated/soft” devices which runs
on PC. Portability between tools in different setting (e.g.,
deployment on “real” hardware control devices) is out of the
scope of this work. The following describes our findings and
solutions to mitigate the problems we faced during the
portability investigation.

A. Portability from NxtStudio to FBDK

Importing the [SystemName].sys file, which is the IEC
61499 system configuration, can be done by drag-and-dropping
the file from the “[NxtStudio’s project
folder]/IEC61499/System” folder into the editor area of FBDK.
Before FBDK can open the file, some elements in the file which
are not supported by NxtStudio (such as AvoidsNodes and
Points) need to be removed. We found that FBDK can
automatically remove NxtStudio specific XML attributes the
system configuration file (e.g., “NameSpace”). In order for
correct mapping of the FBs to the devices, the name (identifier)
of the FB has to be included in the mapping element after the
resource name in the attribute “To”.

In NxtStudio, the device type of simulated device (SoftPLC)
is NXT_RMTDEV, which has a resource named
EMB_RES_ENH that can run FBs for HMI. Meanwhile in
FBDK, simulated device is named FRAME_DEVICE, and it
comes with resource called PANEL_RESOURCE that can run
FBs for HMI. Implementation of HMI in NxtStudio and FBDK
is different, thus all software elements for HMI in both tools are
not compatible/portable with each other. Meanwhile, the system
configuration file generated by NxtStudio can be opened in
FBDK by removing unsupported elements in the file. NxtStudio
automatically inserts communication FBs to enable the
communication between FBs mapped to different devices. This
is added in the XML structure of the system configuration file,
however this addition is not recognized by FBDK. Thus, the
XML elements associated to these communication FBs need to
be removed and replaced by other FBs known by FBDK (e.g.,
the “PUBLISH” and “SUBSCRIBE” FBs).

B. Portability from FBDK to NxtStudio

One way to import the system file from FBDK to NxtStudio
is to modify or change the XML elements in the system file. For
example, the name of the device (FRAME_DEVICE) and
resource in FBDK have to be changed into the name
recognized/used in NxtStudio, i.e., NXT_RMTDEV and
EMB_RES_ENH. Also, some NxtStudio specific XML
attributes (e.g., “NameSpace”) need to be included in the
system file with their respective values. For example, in
NxtStudio, the value of the “Namespace” attribute for FBs
created by the user is “Main”, whereas the value of simulated
device (SoftPLC) NXT_RMTDEV is “nxtControl.Standard”.
The value for the resources of the default devices is
“Runtime.Management”, and the communication FBs is
“IEC61499.Communication”.

If the application has SUBL and PUBL communication FBs
(in FBDK), these FBs are not recognized in NxtStudio, and thus
need to be removed, or later changed for example to
SUBSCRIBE and PUBLISH FBs when the application is
opened in NxtStudio. Furthermore, the port number
configuration used for deployment in either NxtStudio’s
Devices tab or the configuration file named [SystemName].cfg
and [SystemName].Device.properties have to be defined
properly so the IEC 61499 system can run.

C. Portability from NxtStudio to 4DIAC

Importing NxtStudio into 4DIAC editor is done via the
4DIAC’s own import feature File -> Import -> 4DIAC ->

4

System Import. Through the import feature, 4DIAC requests for
the system file and the FB files. During the import process, the
tool will notify whether the import is successful or certain
modifications need to be done.

Similar to porting from NxtStudio to FBDK, when porting
from NxtStudio to 4DIAC, the communication FBs originally
inserted by NxtStudio need to be removed and replaced by some
other communication FBs recognized by 4DIAC. Also, any
NxtStudio HMI FBs need to be completely removed or replaced
by the ones supported by 4DIAC. However, 4DIAC can
automatically remove NxtStudio specific unsupported XML
elements and their attributes from the system file, such as
AvoidsNodes, Attribute, and NameSpace. The default device
type NXT_RMTDEV and resource type EMB_RES_ENH of
NxtStudio need to be changed into the 4DIAC’s FORTE_PC
and EMB_RES to run the non-graphical (non-HMI)
functionality. NxtStudio graphical FBs (e.g., CAT FBs) are not
compatible with 4DIAC. 4DIAC can use, e.g., FBDK’s
FBRT_WINDOW device containing PANEL_RESOURCE
resource to run any graphical functions. We found that during
the import process, 4DIAC will add an extra empty default
resource type alongside the existing resource type(s) into the
devices.

D. Portability from 4DIAC to NxtStudio

Importing the system configuration file from 4DIAC to
NxtStudio requires similar steps as in the case of importing from
FBDK to NxtStudio. The system configuration file can be
opened by NxtStudio, however it is strictly read-only. To
actually run the program, a system file needs to be created using
NxtStudio, and then has its content modified/replaced with the
one created in 4DIAC.Then, the device and resource types
(FORTE_PC or FBRT_WINDOW and EMB_RES or
PANEL_RESOURCE) have to be changed to the ones
recognized by NxtStudio (NXT_RMTDEV and
EMB_RES_ENH). Also, parameters which are not known in
NXT_RMTDEV’s interface, e.g., “Color” and “Profile” which
are originally from and specific to 4DIAC, need to be removed.

Furthermore, the system configuration file has to contain the
“Namespace” attribute with the proper value for every FB,
devices and their respective resources. The value “Main” is for
user-created function blocks, “nxtControl.Standard” for
”SoftPLC”/simulated devices, “Runtime.Management” for
their resources, and “IEC61499.Communication” for
communication FBs. Finally, the device configuration (such as
port number) has to be set properly before the IEC 61499
system can run.

E. Portability from FBDK to 4DIAC

Porting from FBDK to 4DIAC is done using 4DIAC import.
The system configuration file created by FBDK does not need
to be modified, except for the device and resource types which
need to be “FORTE_PC” with “EMB_RES” resource. In case
when FBDK’s graphical elements are used, the device and
resource type should be changed into “FBRT_WINDOW” with
“PANEL_RESOURCE” if using simulated device. 4DIAC also
adds extra empty default resource to the devices and duplicates
the mapped FBs to the resource when the system configuration
file is imported from FBDK. This is shown in Fig.3. After the

import, it is possible that connections between mapped FBs in
the resource view becomes incorrect, at least from the graphical
perspective. However, whether this will affect the behaviour of
the system will require further investigation.

We found that the PUBL and SUBL FBs in FBDK do not
work exactly the same way as 4DIAC. In FBDK, the SUBL
block will only receive the event and data from the PUBL block
in different devices if the names of the FB instances are
identical. This is important to note for programmers when they
decide to use PUBL and SUBL FBs and will have the system
run on both FBDK and 4DIAC environments. Also, since
4DIAC only has the default library set from FBDK, 4DIAC will
not be able to compile composite FBs developed in FBDK.

F. Portability from 4DIAC to FBDK

IEC 61499 systems developed in 4DIAC can be opened in
FBDK by drag-and-dropping the file into the editor area of
FBDK. Before FBDK accepts the file, some unsupported XML
elements, e.g., “Color” and “Profile” attributes need to be
removed. After that, FBDK accepts the file without any error
messages. However, before execution, in this case, on simulated
devices, the device and resource types in the system
configuration file need to be changed into the ones used in
FBDK, FRAME_DEVICE with PANEL_RESOURCE.

Fig. 3. System importing process in 4DIAC.

IV. RESULTS

Section III describes our findings when we attempted to port
the traffic light example between different IEC 61499 tools. The
porting attempts between tools was generally successful with
either minor or greater modifications into the source code. This
section briefly points several important points we found during
our investigation and proposes a new tool to ease the effort in
porting IEC 61499 system between different IEC 61499 tools.

A. Portability assessment between the IEC 61499 compliant
tools

All three IEC 61499 compliant tools use the XML format,
as defined in the standard, for saving the information regarding
FBs and the system configuration. However, despite that all
tools use XML, not all follow the standard strictly which causes
portability issues between tools. Among one of the biggest
portability issues between the tools is the porting of graphical

5

(e.g., HMI) functions. In NxtStudio graphical functions are
programmed in C# encapsulated as CAT function blocks,
whereas in FBDK they are implemented in Java. 4DIAC can
use the graphical library from FBDK, but since some of the
graphical elements in FBDK can be encapsulated inside of
composite function blocks, this causes restrictions when porting
them into 4DIAC, as the composite FBs designed in FBDK
cannot be compiled neither into FORTE nor FBRT. This issue
is expected, since IEC 61499 standard doesn’t extend into
graphical functions. Graphical functions can be regarded as
SIFBs for the visualization device and SIFBs are tool/platform
dependent.

Another issue, although doesn’t necessarily affect the
execution of IEC 61499 systems between the tools, is the
definition of the horizontal and vertical locations of the function
blocks in the tool editor area which differ between these tools.
This is apparently caused by different coordinate systems of the
platforms used for the IDEs implementation. In large
applications, this might cause very messy visual rendering, as a
group of FBs might be piled up on top of each other. The
difference in how coordinates are defined between tools can
cause FBs to go outside of the visible area of the tool editor,
which might be challenging to notice. When this happens, some
programmers would agree that having the feature of automatic
tidying and positioning of FB within the editing area in the tool
will help.

Different from FBDK and 4DIAC, NxtStudio includes a
large number of XML elements specific only to NxtStudio.
When an IEC 61499 system designed in NxtStudio needs to be
ported to other tools, e.g., FBDK, many XML elements need to
be removed before FBDK can accept. Meanwhile, 4DIAC is
able to remove unsupported elements and save only those which
are recognized and needed. Importing from FBDK or 4DIAC
into NxtStudio is a bit tricky however, as NxtStudio does not
provide a way for importing the system configuration file
except only in a compressed (zip) format. When importing to
NxtStudio, some XML attributes (e.g., “Namespace”) are
required for every function block in the application in order to
be recognized by the tool. Additionally, since NxtStudio
automatically introduce communication FBs between mapped
FBs in different devices, in case of importing from FBDK,
existing communication FBs required in FBDK needs to be
removed. Finally, the suitable supported device and resource
type needs to be defined accordingly on the destination/target
tool.

Our findings on the portability investigation is summarized
in Table 2. The table presents the portability rating between the
tools based on the portability tests in chapter 3. According to
our knowledge, we are not aware of any standardized methods
to measure the portability features of different IEC 61499
compliant tools. The values are qualitative which are
determined based on:

1) Required number of elements and their types to
replace/modify inside the file (maximum 35%, the higher the
percentage is, the less number to modify in the files),

2) Difficulty in replacing the element by other element or
structure (such as graphical/HMI functionalities). The value is
maximum 45 %, the higher the percentage is, the easier it is to
replace the elements), and

3) The easiness in importing elements into the tool (max 20
%). The higher the value is, the less effort in addition to the
normal importing process is required by the user to get the
component or system to work in other software tool).

We found that when IEC 61499 systems involve the use of
graphical functions (e.g., visual simulation of the “physical”
system, HMI), they are more difficult to port to different tools.

Portability of IEC
61499 compliant
tools in scale of 0 –
100 %

To

NxtStudio FBDK 4DIAC

From

NxtStudio 100 % (35, 45, 20) 45 % (20, 10, 15) 50 % (25, 10, 15)

FBDK 45 % (25, 10, 10) 100 % (35, 45, 20) 90 % (30, 40, 20)

4DIAC 50 % (30, 10, 10) 95 % (30, 45, 20) 100 % (35, 45, 20)

Table 2. Degree of portability of IEC 61499 compliant tools based on the
investigation in chapter 3. The numbers inside the brackets refer to the

evaluation aspects (1, 2, 3) described above the table.

B. Converter program

Based on the findings, a converter program was developed
in Python (library version 3.3.5) to automate the required
modification effort (which otherwise needs to be done manually
by programmers) to simplify porting of IEC 61499 system
between the three tools. The converter can perform the
modifications based on those identified from our test case.

Fig. 4. The user interface of the converter program running in Eclipse IDE

console.

When executed, the converter program requests the user to
select one (or more) actions from the available options by typing
the selected option. Then, the user is asked to define which files
to be processed by the converter, where they will be stored
(path), and what the user wants to replace (for example, HMI
FBs). The program consists total of 9 different Python modules,
listed on Table 3. It uses Python default library set without any
third-party libraries needed. The converter is started by running
the MainProgram.py module, which has a “bootstrap” function
and is responsible for executing other functions in the converter
tool accordingly based on the inputs from the user. The program
is able to process individual function block(s) or the system
configuration file. The converter has built-in error handling
functions to deal with, e.g., invalid structures of the XML file
or invalid user input. The error-handling functions present
information about the error if such is present to inform the user
where the error comes from, and then the program will
terminate.

6

Module Function

MainProgram Module acting as a “bootstrap” and execute other
functions accordingly based on the inputs from the users

XML_Element Class representing one XML element of the file.

XML_File Class representing the entire XML tree of the file,
containing list of XML_Element objects.

XML_Parser Module reading and parsing the actual source files for
constructing them as a XML_File object.

XML_Modifier Module that execute functions provided by
NXT_Functions, FBDK_Functions and
FOURDIAC_Functions modules

Parser_functions Module that provides supporting functions for the
XML_Parser module.

NXT_Functions Module containing all the necessary functions to convert
files from NxtStudio to FBDK or 4DIAC. Contains also a
zip packing manager for importing files into NxtStudio.
(Python’s zip compression method doesn’t work with
NxtStudio)

FBDK_Functions Module containing all the necessary functions to convert
files from FBDK to NxtStudio or 4DIAC.

FOURDIAC_Funct
ions

Module containing all the necessary functions to convert
files from 4DIAC to NxtStudio or FBDK.

Table 3. Modules of the converter program with functionality descriptions.

Also, we introduce similar compression feature like in
NxtStudio, in the hope that once the tool generates compatible
FB and system configuration files for NxtStudio, it can put them
in a single compressed format for ease importing in NxtStudio.
However, we found that none of the compression types offered
by Python library, i.e., ZIP_STORED, ZIP_DEFLATED,
ZIP_BZIP2 or ZIP_LZMA, works with NxtStudio. When
converting the files to be imported into NxtStudio, the converter
program asks the user, whether the files will be compressed by
the converter program. In our experience, the compressed (zip)
files created using Windows 10 zip compression tool may face
certain issues if they have certain names when imported to
NxtStudio. However, at this stage we haven’t found any
conclusive reasons why this happens.

V. CONCLUSIONS AND FUTURE WORK

The main purpose of this work was to investigate the
portability issues between different IEC 61499 compliant tools.
The topic was first opened by introducing the features of the
IEC 61499 standard, followed by justifications why portability
is important. The paper considered three most utilized IEC
61499 tools NxtStudio, FBDK and 4DIAC to investigate.
Features of the software tools related to portability were
presented. We utilized a traffic light example to investigate the
portability of IEC 61499 systems between the tools. Then, the
portability of function block between the tools was examined.
Based on this, we identified several modifications which are
imperative to allow opening & executing FB in different tools.
While in general the three tools comply with IEC 61499
standard, there are some deviations/variations which prevent
straightforward porting of IEC 61499 systems between tools.

We found that NxtStudio, compared to FBDK and 4DIAC,
utilizes more complicated XML structure and
attributes/element specific only to NxtStudio. When done

manually, higher effort in modifying the FB source code file is
needed when importing from FBDK or 4DIAC to NxtStudio.
Also, another main portability issues between the tools are the
graphical elements, which are less likely to be portable since
these tools have their own ways of implementing graphical
elements in the program (which is not defined by the IEC 61499
standard). Based on our findings, an IEC 61499 converter tool
was created to automate the modification required by the FB
source file and system configuration file, so that they will be
accepted by different IEC 61499 tools.

REFERENCES

[1] V. Vyatkin, "Software Engineering in Industrial Automation: State-
of-the-Art Review," IEEE Transactions on Industrial Informatics,
vol. 9, pp. 1234-1249, 2013.

[2] International Electrotechnical Commission, International Standard
IEC 61131-3: Programmable Controllers. Part 3: Programming
Languages: IEC, 2003.

[3] W. W. Dai and V. Vyatkin, "A case study on migration from IEC
61131 PLC to IEC 61499 function block control," in 2009 7th IEEE
International Conference on Industrial Informatics, 2009, pp. 79-
84.

[4] International Electrotechnical Commission, "Function Blocks–Part
1: Architecture, International Electrotechnical Commission,
Geneva," Switzerland, Technical Report IEC 61499-12005.

[5] V. Vyatkin, IEC 61499 Function Blocks for Embedded and
Distributed Control Systems Design, 3 ed. USA: Instrumentation
Society of America, 2015.

[6] L. Ferrarini and C. Veber, "Control functions design and
implementation of distributed automation systems for
manufacturing applications," International Journal of
Manufacturing Research, vol. 1, pp. 442-465, 2006.

[7] P. J. Brown, Software Portability: an advanced course: CUP
Archive, 1979.

[8] C. Sunder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan,
A. Valentini, et al., "Usability and Interoperability of IEC 61499
based distributed automation systems," in 2006 4th IEEE
International Conference on Industrial Informatics, 2006, pp. 31-
37.

[9] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, A. Zoitl, J.
Chouinard, et al., "The IEC 61499 function block standard: Software
tools and runtime platforms," ISA Automation Week, vol. 2012,
2012.

[10] T. Strasser, A. Zoitl, J. H. Christensen, and C. Sünder, "Design and
Execution Issues in IEC 61499 Distributed Automation and Control
Systems," IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 41, pp. 41-51, 2011.

[11] C. Pang, S. Patil, C. Yang, V. Vyatkin, and A. Shalyto, "A
portability study of IEC 61499: Semantics and tools," in 2014 12th
IEEE International Conference on Industrial Informatics (INDIN),
2014, pp. 440-445.

[12] HOLOBLOC. (2018, 15 April). FBDK 3- The Function Block
Development Kit. Available:
http://www.holobloc.com/fbdk3/index.htm

[13] ISaGRAF. (2016, 9 March). ICS Triplex ISaGRAF Inc.—leading
IEC 61131 and IEC 61499 software. Available:
http://www.isagraf.com/pages/products/Isagraf/appworkbench_det
ail.htm

[14] 4DIAC. (2016, 9 March 2016). 4DIAC-IDE. Available:
http://www.eclipse.org/4diac/en_ide.php

[15] nxtControl. (2018, 15 April). nxtControl - nxtStudio. Available:
http://www.nxtcontrol.com/en/engineering/

[16] S. Patil, J. Yan, V. Vyatkin, and C. Pang, "On composition of
mechatronic components enabled by interoperability and portability
provisions of IEC 61499: A case study," in 2013 IEEE 18th
Conference on Emerging Technologies & Factory Automation
(ETFA), 2013, pp. 1-4.

