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Room Temperature Micropillar Growth of Lithium-Titanate-Carbon Composite
Structures by Self-biased Direct Current Magnetron Sputtering for Lithium Ion
Microbatteries

Jarkko Etula*, Katja Lahtinen, Niklas Wester, Ajai Iyer, Kai Arstila, Timo Sajavaara, Tanja
Kallio, Ulf Helmersson, Jari Koskinen

A new method enabling the fabrication of high surface area micrometer scale 3-
dimensional structures using DC-MS at room temperature without annealing or special
techniques such as lithography or shadow masking. Li-Ti-O-C micro-pillar structures were
fabricated for demonstration in Li-ion microbatteries. We believe this CMOS compatible
process can be extended to other similar metal-oxide-carbon systems.
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Here we describe an unidentified type of micropillar growth at room temperature during

conventional Direct-Current Magnetron Sputtering (DC-MS) deposition from a

Li4Ti5O12+graphite sputter target under negative substrate bias and high operating pressure.

These fabricated carbon-Li2O-TiO2 microstructures consisting of various

Li4Ti5O12/Li2TiO3/LixTiO2 crystalline phases are demonstrated as an anode material in Li-ion

microbatteries. The described micropillar fabrication method is a low-cost, substrate

independent, single-step, room-temperature vacuum process utilizing a mature industrial

CMOS compatible technology. Furthermore, tentative consideration is given to the effects of

selected deposition parameters and the growth process, as based on extensive physical and

chemical characterization. Additional studies are however required to understand the exact

processes and interactions that form the micropillars. If this facile method is further extended

to other similar metal-oxide-carbon systems, it could offer alternative low-cost fabrication

routes for microporous high-surface area materials in electrochemistry and micro-electronics.
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1. Introduction

Direct Current Magnetron Sputtering (DC-MS) is a mature industrial physical vapor

deposition (PVD) method used to produce high quality functional films for a diverse range of

market sectors.[1] Most of the scaling-related problems were overcome in the early 1970s,[2]

with current research focusing e.g. on further decreasing process times with various

unbalanced magnetron sputtering techniques.[3]

Magnetron sputtering can produce various kinds of films depending on a wide range of

deposition parameters. In 1977 Thornton introduced Structure Zone -models to describe

different types of film growth as a function of deposition pressure and substrate

temperature.[4] The models were later suggested by Anders to also account for generalized

homologous temperature, normalized kinetic energy flux, and net film thickness, only to name

a few of the several primary physical parameters that can affect film growth.[5] In the 1980s,

sputtering at elevated working pressures was used to induce gas nucleation and particle

agglomeration to deposit nanoparticles onto substrates.[6] Subsequent high-pressure sputtering

setups to synthesize nanoparticles developed into so called cluster sources.[7] This

controllable, room temperature, and CMOS compatible method to deposit highly functional

nanoparticles onto any desired surface has yielded several electronical, optical and magnetic

applications.[8] In general, the inherently enormous surface area and micro-porosity offered by

nanoparticles has been instrumental in advancing several electrochemical applications.[9–11]

One example application is the Li-ion battery anode material demonstrated in this work,

where higher sputtering pressures are employed to promote the nano-structuring of the

electrode material.

The increasingly accelerated integration of low-current self-powered micro-electronics in

Internet-of-things (IoT), such as wearable transmitters, sensors, and actuators requires

microbatteries that are safe, reliable, and stable over a wide range of temperatures.[12,13] One

such material is the Li2O-TiO2 anode material system discussed in this work. The reader is
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suggested to refer to Kleykamp for the binary Li2O-TiO2 and ternary Li-Ti-O phase

diagrams.[14] Li4Ti5O12 for example, is known for its high stability, safety, good rate-

capability and electronic conductivity at moderate current densities.[15,16] Addition of carbon

into the electrodes as a conductive agent is a common way to further improve on these

properties, and the introduction of micro-porosity as nano-structuring has been also shown to

be effective, as reviewed by Liu & Cao.[15] In lithiation by intercalation, the diffusion of the

Li-ion in the electrolyte is followed by the electrochemical reaction at the electrode electrolyte

interphase, further followed by diffusion into the bulk. Therefore, open microporous networks

of nanostructures offer higher power densities, shorter diffusion and intercalation distances, as

well as high pseudocapacitive contributions to charge storage.[17,18] Whereas Li4Ti5O12 is

known as a zero-strain material during lithium insertion,[19] anatase and rutile TiO2 can exhibit

lattice expansion and strain.[20,21] Through nano-structuring, however, this expansion can be

accommodated, potentially improving energy density and cyclability.[20]

In literature, Wang et al. describe the deposition of crystalline Li4Ti5O12 thin films for

microbattery applications using Radio Frequency Magnetron Sputtering (RF-MS) at in-situ

temperatures of 500-700°C.[22] Since Li4Ti5O12 by itself as a sputtering target is too resistive,

it requires RF-MS, which suffers from high equipment costs and low deposition rates. A

similar study by Wunde et al. utilized ion-beam sputtering at temperatures of 475-600°C to

fabricate Li4Ti5O12 thin films for Li-ion storage.[23]

To improve on these previous studies, the current work introduces i) a composite target

consisting of Li4Ti5O12 and graphite powder. This makes the target more conductive, enabling

the use of DC-MS, which is considerably cheaper, simpler, and enables higher deposition

rates due to higher currents at lower target voltages. ii) The added carbon also becomes mixed

into the final electrode structure, enhancing electrochemical performance and electrical

conductivity,[15] as well as promoting structural diversity and nano-crystallinity. iii) A

hydrated microporous multi-phase carbon-Li2O-TiO2 pillar structure achieved at room
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temperature using a combination of substrate self-biasing and higher process gas pressures.

As reported by Wang et al.,[24] a hydrated Li2O-TiO2 multi-phase structure was recently found

to sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle.

In this work we describe a method enabling a new and yet unreported type of micropillar

growth of LTO-Carbon (LTO-C) nanocomposite structures at room temperature using

conventional DC-MS deposition under higher than normal operating pressures and a negative

substrate bias. The electrochemical performance and applicability of these high surface area

microstructures is briefly demonstrated in Li-ion microbatteries. The physical properties and

the elemental composition are also extensively characterized to shed light on the growth

process. In contrast to more elaborate synthesis schemes, this work combines the electrically

conductive amorphous carbon, high surface area, and intrinsic micropillar patterning at room

temperature into a single process step utilizing a conventional industrial technology.

To the best knowledge of the authors, the room temperature deposited LTO-C micropillar

structure, the mechanism of the micropillar growth, or the possible self-assembly of

nanoparticles during DC-MS reported here is widely unidentified in literature. Similar

structures can be usually prepared by using for example nanolithography and patterning,[25,26]

or by using nanoparticles as a template for reactive ion etching (RIE).[27] Also processes at

elevated temperatures, such as the plasma-enhanced chemical vapor deposition (PECVD) of

carbon nanofibers (CNF),[28] allow the fabrication of similar 3D structures for a variety of

electrochemical applications.

2. Results and Discussion

2.1. Physical Characterization

2.1.1. Microscopy

Helium ion microscopy (HIM) in Figure 1a-d and scanning electron microscopy (SEM) in

Figure 1e-g were carried out to investigate the deposited LTO-C pillar structures. Figure 1

shows representative micrographs from the surface of the LTO-C structure.
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Figure 1. Micrographs of the LTO-C pillars grown on a-e) aluminum foil, and f-g) silicon

wafer. b) Magnified highlight of the red box marked in (a). c) Cross-sections of pillars

containing voids, milled by FIB. a-d) Helium ion microscope, and e-g) Scanning electron

microscope.
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On the aluminum (Figure 1a-e) the pillars are well distributed, however with some areas of

lower pillar density. Growth on the Si-wafer (Figure 1f-g) is more uniform and there are also

smaller pillars present. On both substrates there has also grown a thin film on the bottom

(Figure 1e,f). Cross-sections of LTO-C pillars milled by focused ion beam (FIB) in Figure 1c

shows that the pillars contain voids. Vertical line-artifacts produced by FIB-milling are also

visible. The average size of the larger visible voids in Figure 1c is around 9 nm ± 3 nm (N=46,

standard deviation). It is unclear if these voids are open or closed, and if they contribute to the

electrochemical performance of the material. Overall, LTO-C pillar growth is observed on

several substrates: aluminum foil native oxide surface, P+ boron-doped (100) Si-wafer native

oxide surface, and TiN films grown on same Si-wafers (Figure S1, Supporting Information).

An approximate number density for pillars grown on each substrate is computed using image

processing from SEM images provided in Figure S2, Supporting Information. The densities

are 1.30 pillars µm-2 for aluminum foil, 1.94 pillars µm-2 for Si-wafer, and 2.40 pillars µm-2

for the sputter grown TiN film on same Si-wafer.

It is apparent from Figure 1 and Figure S2 that the pillar growth is more homogenous on the

silicon wafer than on the aluminum foil. This is likely due to the more inhomogeneous surface

morphology and chemistry of the aluminum surface that gives rise to an inhomogeneous

electrical signature of the surface. For both substrates, but more pronounced on the silicon, the

pillars start to grow with a high areal density, but due to competitive growth, the number

density decreases as the pillars become higher. The observation that the pillar surfaces are

rough, and they contain voids is comparably different from the more homogenous surface

layer formed directly on the substrate. This may indicate that the pillars are formed of

nanoparticles formed in-flight (Figure 1b), as sputtered species may nucleate into

nanoparticles when sufficiently cooled by e.g. process gases in the vacuum chamber.

Alternatively, while the sputtered LTO-C species are expected to have low surface mobility

due to high gas pressure and room temperature process conditions, the pillar structure could
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be affected by plasma interaction and localized heating as evidenced by the high floating

potential during deposition. Sponge-like morphology has been reported for sputtered films of

Ni, Al, Ag, and Au, although at high surface mobility conditions and elevated process

temperatures corresponding ~0.5 Tmelt.[29] Bunting et al. report the formation of similar 3D

structures during RF-sputtering of LiFePO4+graphite,[30] but likewise at elevated process

temperatures of 600°C and at deposition times of 4 hours, since only film was obtained prior

to 1-2 hours. Bunting et al. also only provide XRD analysis of crystalline phases for the

elemental composition.[30] Therefore, to better understand the elemental composition of LTO-

C pillars fabricated in current work, time-of-flight elastic recoil detection analysis (TOF

ERDA) was carried out (Figure 2a) to obtain a complete elemental profile.

2.1.2. Time-Of-Flight Elastic Recoil Detection Analysis

Figure 2. a) TOF-ERDA experimental results of the LTO-C pillars in a raw histogram

depicting time-of-flight versus energy, b) Glancing angle X-ray diffraction 2-theta scans of

the LTO-C pillars and of the initial sputter target material (Li4Ti5O12+graphite) at an

incidence angle of 1 deg. Not all minor peaks are labelled, see Figure S3 in Supporting

Information for details.

Table 1. TOF-ERDA elemental compositions as calculated from the area marked with dotted

lines in Figure S4 in Supporting Information. The given uncertainties include both statistical
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uncertainties and uncertainties due to ion beam irradiation induced losses during the

measurement.

Sample Li [at%] O [at%] Ti [at%] N [at%] C [at%] H [at%]

LTO-C 17 ±1 52 ±3 11 ±1 0.7 ±0.1 12 ±2 9 ±1

Figure 2a and Table 1 display the elemental composition of the LTO-C pillars as measured

by TOF-ERDA. Compared to the expected stoichiometry of the target material (Li4Ti5O12),

the LTO-C structure is richer in lithium, and oxygen, with possible hydrates and carbon

originating from the graphite powder and water residues. The elemental depth distribution is

consistent (Figure S4 in Supporting Information).

2.1.3. Raman and Infrared Spectroscopy

Figure 3. a) Attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR)

results as measured from the LTO-C pillars. b) Raman spectroscopy results of the LTO-C.

The D and G peaks for amorphous carbon in (b) are fitted as described by Ferrari &

Robertson in Figure S5 (Supporting Information).[31]

ATR FTIR (Figure 3a) was carried out to obtain a broader perspective on the types of

bonding present in the LTO-C pillars. The spectrum displayed in Figure 3a shows a broad

4000 3500 3000 2500 2000 1500 1000 500

2)
 2

85
0

1)
 3

34
8

In
te

ns
ity

 (a
.u

.)

Wavenumber (cm-1)

3)
 1

60
5

4)
 1

50
0

8)
 8

61

6)
 1

12
7

5)
 1

42
1

7)
 1

08
5

1) OH stretch 7) n1 Li2CO3

2) C-H stretch 8) n2 Li2CO3

3) n3 Li2CO3 9) Li2CO3

4) n3 Li2CO3 10) Symm. TiO6

5) n3 Li2CO3 11) Li2CO3

6) C-O stretch

9)
 7

90
-7

12
10

) 6
50

11
) 4

90

2)
 2

92
1

a)

300 600 900 1200 1500 1800

 à
G

 à
D

·
A

1g
 6

66·
E g 4

31

¨
 A

g+
B

g1
48

6

·
F 2g

 2
36

¨
 A

g1
08

7

In
te

ns
ity

 (a
.u

.)

Raman shift (cm-1)

 LTO-C
 Si-wafer

¨ Li2CO3
· Li4Ti5O12
à Carbon

¨
 9

0-
19

0

b)

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now


10

absorption band in the range of 3600 to 2780 cm-1, evidencing presence of adsorbed –OH

groups. Two additional peaks centered at 2850 and 2921 cm-1 were also observed. These

bands have previously been observed for amorphous carbon (a-C) coatings and are frequently

attributed to –CH stretching of –CH3 groups.[32] a-C residues can be also found as

carbonaceous impurities in Li4Ti5O12.[33] The presence of a-C, could further explain the

relatively broad shoulder of the 1502 cm-1 peak due to C=C stretching, C=O stretching and C–

O in the amorphous carbon.[32]

Peaks attributed to Li2CO3 can be seen centered at 1605, 1500, 1421, 1085, 861, and 490

cm-1. In the lower wavenumber region, several broad peaks that could be attributed to both

Li2CO3 and Li4Ti5O12 are found. Additional expected bands of medium or weak intensity for

Li2CO3 at 360, 410, 440, 713, and 740 cm-1 have also been observed.[34,35] These bands could

explain the broad peaks in the range of 712-790 cm-1 and to the broad shoulder of the peak

center around 490 cm-1. The broad peak centered around 650 cm-1 is likely due to symmetric

stretching vibration of TiO6,[33] and have been previously observed for Li4Ti5O12.[33,36] The

second expected band for antisymmetric TiO6 stretching is likely also present, but overlaps

with bands for Li2CO3, and could therefore not be assigned. It should also be noted, that peaks

in the range 440 and 500-600 cm-1 have previously been attributed to Ti-O and Li-O modes,

respectively.[33]

Raman spectroscopy in Figure 3b confirms the presence of amorphous carbon, as indicated

by i) a broad D-peak , ii) a sharper G-peak at around 1585 cm-1, and iii) high ID/IG peak

intensity ratio of 2.6, as per Ferrari & Robertson (Figure S5, Supporting Information).[31,37]

Figure 3b also shows the presence of Li2CO3 in a sharp peak at 1087 cm-1,[34,35] a collection of

peaks in the range of 90 to 190 cm-1, and a sharp peak at 1486 cm-1.[35] Three broad peaks

centered around 236, 431 and 666 cm-1 likely attributed to Li4Ti5O12 were also observed and

are assigned in Figure 3b, indicating presence of Li4Ti5O12. Kellerman et al. showed that

carbon coating shifts the peaks to lower wavenumbers, as observed also in this work with the
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main strong lines for Li4Ti5O12.[38] It should be noted, that the broad peaks may also indicate

overlapping peaks for Li2TiO3 or TiO2.[39,40]

The FTIR and Raman analysis in Figure 3 indicate the presence of amorphous carbon,

Li2CO3, Li4Ti5O12 and possibly Li2TiO3 as well as TiO2. These results are in good agreement

with the structural diversity of crystalline material observed in the XRD analysis (Figure 2b).

Although there is no direct evidence to suggest a mechanism for the formation of Li2CO3, it is

possible that the excess lithium left over from the vacuum process reacts in the atmosphere to

form Li2CO3. This Li2CO3, and additional hydrates as well as oxygen functionalities may

explain the high concentration of oxygen and hydrogen found by TOF-ERDA in Table 1,

when compared only to the stoichiometric composition of Li4Ti5O12. It is however

inconclusive whether any water is located within the LTO-C, in Li2CO3, or on the surface as

adsorbed water. Detailed NMR studies are required to investigate the bonding of water.

Overall, the FTIR and Raman observations are in line with the low process temperature and

expected structural diversity, as further investigated by Glancing Angle X-ray Diffraction

(GIXRD) in Figure 2b.  In literature it is suggested by Rahman et al. that amorphous carbon

mixed within the nanostructure of Li4Ti5O12-TiO2 would promote diversity and impede

structural coarsening and grain growth.[41] Additionally, since plain Li2O-TiO2 structures can

be resistive, amorphous carbon is commonly added to electrode structures to promote

conductivity, facilitate lithium insertion/removal, provide structural stability, and minimize

trapping sites.[41] It is therefore expected, that the amorphous carbon found in the LTO-C

pillars in Figure 3b can enhance electrochemical performance in rate capability, cycling life

and capacity retention.[42,43]

2.1.4. Glancing angle X-ray Diffraction

GIXRD was carried out (Figure 2b) to identify phases present in the LTO-C pillars. Silicon

wafer diffraction peaks have been documented in the same GIXRD setup in previous work.[44]
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The scan shown in Figure 2b indicates the presence of multiple Li2O–TiO2 phases at 18.5 deg

2-theta, likely a mix of β-Li2TiO3 (COD 96-151-5996) and Li4Ti5O12 (96-100-1099). There

are also several possible TiO2 polymorphs at 20.2 and 25.3 deg 2-theta, which could be

lithiated. The wide Li2O–TiO2 phase diffraction peaks in Figure 2b indicate crystallinity in the

nanoscale range, as per Scherrer equation. More definite phase identification and crystallite

size approximation are however hindered by peak convolution due to presence of Li2CO3 (96-

900-9643) and an apparent wide carbon background around 26 deg 2-theta. Higher angle 2-

theta peaks are also broadened by the large beam footprint of the surface sensitive asymmetric

1 deg incidence angle, as also seen in the scan for the sputter target material

(Li4Ti5O12+graphite). See Figure S3 in Supporting Information for detailed peak positions of

all phases.

The nanoscale crystallinity found in Figure 2b agrees with the porous pillar structures

observed by HIM and SEM in Figure 1. Also, the crystalline phase composition agrees with

the binary Li2O-TiO2 phase diagram by Kleykamp[14], as TOF-ERDA indicates that the

stoichiometry is Li2O-rich compared to Li4Ti5O12 stoichiometry, i.e. composition of

Li2TiO3/Li4Ti5O12. This suggestion, however, is in contrast to the apparent presence of an

anatase TiO2 phase, but it can be also explained with the room temperature process and the

presence of possible hydrates, similar to those observed in water-based synthesis

intermediates.[24]

In literature, Wang et al. prepared crystalline Li4Ti5O12 films by RF sputtering at 500-700°C

degrees in low pressures (no added carbon).[22] Even 500°C in-situ annealing resulted in

Li4Ti5O12 films of low crystallinity. Since the method used in the present work is carried out

at room temperature, the wide peaks and low crystallinity of Li2O–TiO2 phases found in

Figure 2b are as expected but may not reflect the actual amounts of more amorphous

electrochemically active structures.
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There are several inherent benefits for both mechanical as well as electrochemical properties

in Li-ion storage when utilizing a diverse nanocrystalline network consisting of different

functional phases. i) A nanocrystalline TiO2 structure can have a higher amount of surface

defects and interfaces which enhance the potential Li-ion storage capacity and kinetics.[15,18]

ii) Wang et al. found that structural diversity induced by hydrates in Li2O-TiO2-H2O systems

can be highly beneficial for the battery performance in aprotic electrolytes, since complete

dehydration and annealing would coarsen the structure and degrade both cyclability and

electrochemical performance.[24] Similarly, it has been found that for example multiphase

Li2TiO3/Li4Ti5O12 composites can outperform pristine Li4Ti5O12.[45] Further, studies have

found that each polymorphic form of TiO2; anatase, rutile, TiO2(B), and brookite all have

attractive lithium storage behaviors, especially when nanostructured.[17,46]

2.2. Selected Deposition Parameters

Due to the high number of experimental variables, any discussion related to effects of

deposition parameters should be considered tentative pending further investigation. The

described method was found to result in the formation of micropillars when i) a high working

pressure of 60 mTorr argon, and ii) a substrate bias of -5 V with respect to ground were applied.

During the deposition, an accumulation of a negative electrical potential is measured between

the substrate and ground at floating potentials, corresponding to a current of hundreds of

milliamperes at -5 V bias. Considering for example the work by Bohlmark et al.,[47,48] it is

contemplated that although the target-to-substrate distance (8 cm) in this work is longer than

that of the measured magnetron null point (5 cm), the substrate may be subjected to plasma

interaction and heating localized to the top surface layers. It should be noted, however, that the

temperature of both the deposition chamber and the substrate holder remained below 22°C

throughout the deposition, as measured by integrated thermocouples. This is expected from the

work of Martin et al.,[49] where DC-MS deposited TiO2 films grown at a low pressure of 1
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mTorr are submitted to a higher intrinsic ion bombardment than those deposited at a higher

pressure of 11 mTorr.

High lithium mobility and segregation on sputter targets is commonly documented, as outlined

for example by Dudney et al.[50] This is, however, not often discussed in literature relating to

sputtering of Li4Ti5O12. Therefore, the high lithium content in the LTO-C pillar structures in

this work may be due to i) segregation of lithium on the target during sputtering to form areas

of higher and lower lithium contents across the sputtering target, or ii) different element-specific

sputter yields depending on structural and compositional variations across the sputter target.

Such effects may result in the formation of Li2O-TiO2 species of varying lithiation. This idea is

also indicated in the contrast of TOF-ERDA results to those of XRD (Figure 2 and Table 1),

where the Li2O-TiO2 stoichiometry is found elementally titanium-deficient i.e. composition of

Li2TiO3/ Li4Ti5O12, but there still appear TiO2 phases in the XRD analysis.

As per the Structure Zone-model developed by Thornton,[4] and later revised by Anders,[5] the

sputtering parameters used in this work would belong to the Zone 1. The Zone 1 structure results

from very low incident atom energy, low surface mobility, and insufficient available energy for

diffusion. This can result in shadowing effects and structures where nucleation occurs

preferentially on substrate high points. As described by Sanzaro et al.,[51] a glancing or oblique

angle deposition based on the shadowing effect can be used to deposit e.g. slanted pillars of

TiO2. This small incidence angle however also significantly decreases deposition rate. In the

current work, incidence angle is perpendicular to substrate, and the fairly large 4” target is at a

distance of 8 cm. These factors are expected to minimize any shadowing effects, although it

can be difficult to completely neglect an oblique flux due to effects of high gas pressure. Hence,

as it appears from the interpillar separation in Figure 1, the LTO-C micropillar growth cannot

be directly explained with shadowing effects or Thornton’s structure zone -models. Moreover,

because pillar growth did not occur at grounded or floating potentials within the current

experimental setup, a plasma interaction component may be involved. The beforehand
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mentioned study regarding the DC-MS deposition of TiO2 by Martin et al. found the flux and

mean energy of positive ions to decrease as the pressure increased.[49] For O- species on the

other hand, the mean energy and flux of O- was inversely affected by the total pressure for it to

become the dominant ion flux by an order of magnitude with a mean energy of 27 eV at 11

mTorr Ar pressure.[49]

Another important parameter is the possibility of gas phase nucleation occurring at the 60 mTorr

argon gas pressure and 8 cm working distance as used in this paper, selected based on the work

of Gunnarsson et al. for TiO2.[52] For example, Geetha et al. have investigated the effects of

substrate bias, gas pressure, and deposition temperature of TiO2, but have neither used similar

bias ranges nor high enough gas pressures.[53] Also, most methods apply substrate temperatures

of 400-600°C to enhance crystallization and stoichiometry using e.g. RF-sputtering or ion-beam

sputtering of Li4Ti5O12.[22,23,30] Few to no studies can be found on sputtering of lithiated titania

at room temperature with substrate biasing and higher gas pressures.

2.3. Electrochemical Characterization
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Figure 4. a) Cyclic voltammetry curves of LTO-C micropillars on aluminum foil at scan rates

of 0.1 mVs-1 and 0.2 mVs-1 in the voltage range of 1.0–3.0 V. b) and c) Electrochemical Li-

insertion rate capability results. The lowest and highest current densities were approximated

to correspond to C-rates of 0.1C and 10C. The red line in b) corresponds to the last scan

(N=35) performed at 0.2C (4.5 μA cm-2).

The cyclic voltammogram of the LTO-C micropillars, presented in Figure 4a, shows broad

peaks for both the anodic and cathodic intercalation process. Two peaks can be observed for

each, especially in the 0.1 mVs-1 scan rate, two anodic peaks being located at 1.72 V and 1.94

V. This indicates the presence of two or more Li-extraction processes occurring at different

potentials. The 1.72 V peak corresponds to the lithium intercalation reaction of Li4Ti5O12, and
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the 1.94 V to that of some TiO2 polymorph. However, due to peak convolution, the

characteristic Li-extraction processes cannot be reliably identified.

As determined by XRD in Figure 2b, the LTO-C pillars were rich in a number of different

Li2O–TiO2 phases, each likely contributing to the overall extraction process. A significant

portion of the crystalline material consists of Li2CO3, which is electrochemically inert and is

not expected to contribute to Li-ion storage capacity.[54] Furthermore, due to low density and

irregular distribution of pillars on aluminum foil (Figure 1), it is difficult to estimate the actual

amount of electroactive storage material to determine appropriate currents for rate capability

measurements shown Figure 4b,c. The lowest and highest current densities (Figure 4b,c)

were approximated to correspond to C-rates of 0.1C and 10C, assuming the LTO-C electrode

is 50% covered by 1.5 μm tall pillars composed of only Li4Ti5O12.

The initial specific capacity during discharge (Figure 4b) is ~27 μAh cm-2 at 2.2 μA cm-2, and

it decreases significantly after the first cycle to ~25 μAh cm-2. With the current increasing, the

specific capacity drops to ~22 μAh cm-2 at 22.6 μA cm-2, and 16 μAh cm-2 at 227.4 μA cm-2.

In other words, the 227.4 μA cm-2 capacity is approximately 64 % of the initial capacity at 2.2

μA cm-2, which is still rather high. Three cycles were performed with all currents to test the

stability of the cell. As seen in Figure 4c, the three subsequent cycles of any current give very

similar specific capacities indicating that the half-cells are stable. To further investigate the

stability and to tentatively investigate the cycle life of the cell, after the 227.4 μA cm-2 cycles

three more cycles with 4.5 μA cm-2 were performed. While the initial 4.5 μA cm-2 cycles give

a capacity of 22.7 μAh cm-2, the final 4.5 μA cm-2 give a capacity of 22.1 μAh cm-2. The drop

is small (97.4% retained capacity) and indicates good cyclability for the cell. Obviously, an

actual life cycle measurement should be performed to fully demonstrate the lifetime of this

material, but the scope of this section is only to investigate and compare the electrochemical

characteristics of the LTO-C composite to physical characteristics.

The initial capacity of the cell is quite low compared to typical values reported for
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microbatteries, for example 1-1.2 mAh cm-2 for 3D-printed macroscopic electrodes.[55,56] This

is however expected since the LTO-C pillars are only roughly 1.5 micrometers tall and the

growth density is only around 1.3 pillars µm-2 on aluminum foil (Figure 1 and Figure S2). If

the volume of LTO-C material on substrate is approximated by assuming a 50% surface

coverage by 1.5 μm tall pillars (μAh cm-2 µm-1), this would approximately correspond to

values reported by Wang et al. for Li4Ti5O12 thin films of similar volume deposited at

500°C.[22]

Although the presence of Li2CO3 in the LTO-C structure appears undesired, it has been

reported by Bhattacharya et al. that a Li2CO3 surface coating of graphite anodes can reduce

structural damage and improve long term cycling capacity with certain electrolytes by

reducing solvent co-intercalation induced surface damage.[57] Their work involved attaching

Li2CO3 particles to electrode surfaces from solutions with Agar as an adhesion promoter,

whereas in the current work this appears to be intrinsic to the chosen deposition parameters.

3. Conclusion

An unidentified type of micropillar growth was discovered during conventional DC-MS

deposition from a Li4Ti5O12+graphite sputter target at room temperature under relatively high

operating pressures and a negative substrate bias. A simple type of substrate self-biasing was

achieved using a variable resistor to ground the substrate. Based on physical and

electrochemical characterization, the resulting carbon-Li2O-TiO2 structures were found to

have several functional properties towards application as anode material in Li-ion

microbatteries. Furthermore, effects of used deposition parameters were tentatively discussed

based on the physical characteristics of the deposited LTO-C pillars. Both the high argon gas

pressure of 60 mTorr and the relatively low negative substrate bias of -5 V w.r.t. ground was

found critical for pillar growth.
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Compared to e.g. more elaborate high temperature processes, the described micropillar

fabrication method is low-cost, single-step, room temperature vacuum process utilizing a

mature CMOS compatible industrial technology. The customizability of the DC-MS process

also offers additional possibilities in modifying the pillars e.g. by N2, O2, or H2O doping to

obtain a desirable electrical or electrochemical response.

Additional studies are however required to better understand and develop this novel type of

micropillar or fiber growth. If this facile fabrication method can be further extended to other

metal-oxide-carbon systems, it could enable the emergence of alternative low-cost fabrication

routes for high-surface area electrode materials in electrochemistry and micro-electronics.

4. Experimental Section

Prior to methods detailed below, an effort was made to deposit carbon coated, hydrated, and

highly porous LTO-C films at high argon pressures, which yielded highly unexpected bush-

like surface structures (Figure S6 in Supporting Information). These substrates were mounted

on an electrically grounded holder using conductive carbon tape (Ted Pella). Although

unrecorded, the effective resistivity of the grounding connection was estimated to be low.

This result prompted a further investigation of deposition parameters, such as the self-biasing

described in this work. It is also contemplated that several deposition parameters, such as the

deposition rate and addition of reactive gases such as nitrogen, can affect the dimensional

properties of the grown pillars.

DC-MS deposition of LTO-C pillars

The custom 4’’ diameter lithium titanate graphite target was prepared by drop casting (2 ml)

of solution consisting of (0.2 g) of LTO powder (Li4Ti5O12, Sachtleben Pigments, Hombitec

LTO5, P33583, 1 μm crystallite size) and (0.015 g) of graphite (Alfa Aesar, 2-15 μm,

99.9995%) in ethanol onto a standard 4’’ Dia. x 0.250” Thick graphite target (Kurt J. Lesker,

http://www.tracker-software.com/buy-now
http://www.tracker-software.com/buy-now


20

99.999%). The target was allowed to dry in a fume hood for 1 hour after which it was further

dried on a hotplate at 100°C for 15 minutes to remove excess water. Some left-over water is

expected, which has been reported to be potentially beneficial for the electrochemical

performance.[24] The vacuum chamber was evacuated to a base pressure below 1x10-6 Torr

using a CTI cryogenics CTI 8F cryopump prior to deposition.

The conventional DC magnetron sputter deposition (DC-MS) was carried out perpendicular to

the substrate with an un-modified circular 4’’ TORUS (Kurt J. Lesker) DC-MS, at an anode-

to-substrate distance of 80 mm. The magnetic field null point was measured to be at around 5

cm from the anode surface with a Hall effect probe. Depositions were run for a total of 60

minutes in 60 mTorr Ar pressures at a flow rate of 6 sccm Ar with an Edwards Vacuum XDS

15 dry scroll pump and a DC02 BP (Kurt J. Lesker) power source controlled by built-in KJL

software. A run-in period of 4 min was used to ramp-up the freshly prepared LTO-C target to

the target power of 700 W. DC power source output values were 504V/1.38A in the beginning

of the deposition at 700 W, and 500V/1.39A at 60 min. The distance between the anode and

dark-space shield was about 1.2 mm. This deposition power and time would correspond to a

film around 1.2 µm thick at 5 mTorr Ar deposition pressure and grounded substrate.

A glass plated (electrically insulated) substrate holder was used, on which aluminum foil and

Si (100) P+ (boron-doped, <0.005 Ohm cm) pieces were mounted using conductive carbon

tape (Ted Pella). The electrically insulated substrates were grounded through a variable

resistor: This allows control over the charge accumulated on the substrate i.e. self-biasing. A

parallel voltmeter monitored this self-biasing potential between the substrate and the ground.

During deposition the variable resistor was controlled to maintain a bias potential of -5 V

between the sample and the ground. A fully floating substrate in open-circuit would

accumulate a negative bias of about -25 V. Current through the variable resistor was initially

about 240 mA but decreased steadily to tens of milliamperes at the end of the deposition.
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Samples were also prepared at both floating and grounded potentials, but these both resulted

in flat thin films, as observed by SEM.

Physical Characterization

Glancing angle X-ray diffraction (GIXRD) measurements were performed in parallel beam

mode using a Rigaku SmartLab diffractometer equipped with a 9 kW rotating Cu anode and a

2xGe(220) monochromator (Kα1, 0.154 nm), HyPix-3000 2D single photon counting detector

in 1D mode, 5° Soller slits at both incident and detector ends, as well as incident slits of 0.1

mm vertical and 15 mm horizontal. GIXRD scans were acquired in asymmetric geometry

with a fixed incidence omega angle of 1 deg.  Scans were obtained for both LTO-C

micropillars as well as for the sputter target material consisting of Li4Ti5O12 mixed with

graphite.

Visible-Raman spectroscopy was performed on a Horiba Jobin-Yvon Labram HR confocal

Raman system with a 488 nm argon laser with 10 mW power on sample. A spot size of 1 μm

was used with an Olympus 100x objective. Raman spectra were acquired in the range of 50 to

3000 cm-1 with a 600 lines/inch diffraction grating, exposure time of 15 s, and accumulation

averaging count of two. Spectroscopic calibration was performed on intrinsic Si wafer

(Ultrasil). Raman spectra were obtained from three places and fitted by two Gaussian peaks

for D and G regions of amorphous carbon to obtain the ID/IG peak intensity ratios, as

explained in literature.[31]

ATR measurements were carried out using a Bruker FTIR ALPHA II spectrometer with a

platinum ATR sampling module (diamond) in the spectral range of 400-4000 cm-1.

Cross-sectional scanning electron microscopy (SEM) analysis of the samples was performed

with a Hitachi S-4700 SEM equipped with a field emission electron source operated at 15 kV

accelerating voltage. Number density of the larger pillars grown on each substrate was
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computed using Gwyddion 2.50 software from 2k magnification planar SEM images by grain

analysis and excluding grains less than 20 pixel2 in size.

Surface morphology of LTO-C was studied with a Zeiss Orion Nanofab helium-ion

microscope (HIM) at the Nanoscience Center of the University of Jyvaskyla.

Elemental depth profiles of the LTO-C pillar structure were measured using a time-of-flight

recoil detection analysis system (TOF-ERDA). A detailed description of the method and

apparatus can be found in literature.[58] The ion beam was a 8.515 MeV 35Cl4+ from the

1.7MV Pelletron accelerator at the Accelerator Laboratory of the University of Jyvaskyla. Tilt

angle was 20 degrees relative to the ion beam direction. Data was analyzed using Potku

software.[59]

Electrochemical Characterization

14 mm diameter electrodes were cut from the LTO-C coated aluminum foil. The electrodes

were assembled to Hohsen 2016 coin cells in an argon atmosphere. Lithium metal foils (0.75

mm thick, Sigma-Aldrich) were used as a counter electrode in the half-cells. Lithium

hexafluorophosphate (LiPF6) dissolved in 1:1 ethylene carbonate (EC): dimethyl carbonate

solution (DMC) was used as an electrolyte and Whatman GF/A (0.26 mm) filter paper as a

separator. The cells were left to stabilize for 24 hours before starting the electrochemical

measurements.

Cyclic voltammetry (CV) of the half-cells was measured using Autolab potentiostat

(PGSTAT302N) and a GPES software. The CVs were performed in the voltage range of

1.0−3.0 V vs. Li/Li+ using scan rates of 0.1 mV/s and 0.2 mV/s. Three cycles were recorded

for both scan rates.

The rate capability measurements were performed using Neware battery cycler in the voltage

range of 1.0 −3.0 V vs. Li/Li+. Three cycles with currents of 2.2 μA cm-2, 4.5 μA cm-2, 11.4

μA cm-2, 22.6 μA cm-2, 45.5 μA cm-2, 68.2 μA cm-2, 91.0 μA cm-2, 113.7 μA cm-2, 182.0 μA
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cm-2, 227.4 μA cm-2 were performed. Finally, the cells were cycled again three times with 4.5

μA cm-2 to have initial information about the cycle life. The lowest and highest current

densities were approximated to correspond to C-rates of 0.1C and 10C, assuming the LTO-C

electrode is 50% covered by 1.5 μm tall pillars composed of Li4Ti5O12.
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