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Abstract: The growing interest in utilising multivariable statistical dimension reduction
techniques, PCA and PLS, and neural networks in process monitoring and analysis has
resulted in a number of successful industrial applications. This paper describes a process
study on the effects of the chemical quality of the anodes on the physical quality of
produced cathodes at a copper electrorefining plant through PCA, SOM and a
combination of these two techniques. The clustering of anode analysis data over time
was compared with the physical quality data of the cathodes.
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1. INTRODUCTION

Process monitoring and analysis through statistical
modelling techniques and neural networks have
received considerable attention in recent years. The
general objectives of process monitoring are to detect
any abnormal events, reduce off-specification
production and provide early wamings and identify
important process disturbances, malfunctions or
faults (Morris and Martin, 1997 and Kourti er. al,
1996). Process analysis by statististical or neural
network methods promotes understanding of the
process without the task of physical modelling, and
ultimately improvement of the plant performance.

Statistical process monitoring appeared first as a
traditional Statistical Process Control (SPC) concept.
It provided control charts to determine the process
state in a statistical manner. However, as discussed
by MacGregor (1995), SPC was found to be
inadequate for most processes because standard SPC
methods examine less frequently collected quality
variables, one at a time. At most industrial plants, the
essential information is in the form of large history
databases of process variables. It is reasonable to
utilize all the collected data instead of extracting
special quality information.

As reported by Hwang et. al. (1999), multivariable
statistical monitoring methods have successfully
replaced SPC. The multivariate projection
techniques, Principal Component Analysis (PCA)
and Partial Least Squares (PLS), especially have
proved to be effective in a number of industrial
applications (Wikstrém er. al, 1998 and Taylor,
1998). According to Kourti er. al. (1996) and Kresta
et. al. (1994), these methods address the traditional
problems encountered in statistical analysis such as
collinearity, missing data and large dimensionality.

Neural networks have been applied also in process
monitoring and analysis, particularly to cases with
nonlinearities and unknown mechanisms involved in
the process. The use of a Self-Organizing Maps
(SOM) has been successful in wvarious industrial
applications (Kohonen, 1990).

A number of attempts have been made to extend the
properties of PCA and PLS to a nonlinear domain
using various neural networks. Dong and McAvoy
(1996) have described the concept of non-linear PCA
(NLPCA). The combination of PCA and neural
network was used in classification of iron ore by
Cutmore ef al. (1998). Holcomb and Morari (1992)
discussed in depth how to combine PLS and



Feedforward Neural Networks. According to Wilson
et ol (1997), Radial Basis Function (RBF) neural
petworks can also be applied with PLS.

This paper presents a process analysis for a copper
electrorefining plant using PCA, SOM and their
combination. The object was to investigate the
mpact of anode impurities on the quality of
produced cathode copper. Electrorefining is a good
example of a process in which variables are strongly
correlated and the time constants exceptionally large,
both of which make the process very problematic to
monitor and control. The chemical and physical
quality of the anodes is recognised as the major
disturbance source for the process, affecting the
essential variables of the refinery. The physical
mnfluence mechanisms are very complex and mostly
not completely understood. Investigating the problem
through a physical model is thus laborious and
uncertain

2. PROCESS DESCRIPTION

In the refining process, impure (appr. 99.0 w-%)
copper anodes are electrically purified to high purity
copper cathodes (over 99.99 w-%). As the electrolyte
is continuously circulated through the electrolysis
cells, its temperature and, additive agent composition
can be controlled. The pure electrolyte is an aqueous
copper sulphate and sulphuric acid solution.
Purification of the soluble impurities (arsenic, nicke!,
etc.) is conducted in a separate process. Insoluble
impurities, such as gold, silver and other noble
metals, are handled in another process as well. E.g.
Biswas and Davenport (1980) give a complete
general description of the process.

The production rate is controlled by the electric
current applied to the cells. The current density
typically varies between 200 — 330 A/m’. The most
important variables include electrolyte composition,
temperature, current density, additive agent
concentrations and anode quality. The efficiency of
the process is expressed as the overall quality
(physical and chemical) of produced cathodes and
the current efficiency of the refinery.

The annual capacity of the Outokumpu Harjavalta
Metals Oy Pori Refinery is 125 000 tonnes of
purified copper. There are 692 production cells, each
containing 30 electrode pairs. The anodes are
transported by train from the smelter at Harjavalta.
The time needed to produce cathodes from starting
sheets is eight days. Applying Periodically Reversed
Current (PRC) allows higher current density (330
A/m?) as compared with direct current feed.

3. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis is a powerful
dimensionality reduction technique (Jackson, 1991).
PCA can be used to extract new latent variables,
called principal components, from the original data
without loss of any essential information. The
principal components are linear combinations of the
original variables that explain the maximum
variability and covariance in the data. The first
principal component describes the direction of
greatest variability in the original data set. The next
component is in the direction of the second greatest
variability and orthogonal to the first principal
component and so forth. The orthogonality of
principal components means that they are
independent from each other. PCA decomposes the
original data matrix X (n x m) according to following
model
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where T is the scores matrix, t is the score vector, P
is the loadings matrix, p is loading vector, E is
residual matrix and p is the number of principal
COMPpONEnts.

The loading vectors p, give the principal components
in the original coordinates, and also define how the
variables are related to each other in the original data
space. The score vectors t, contain the projection of
the n observations in the reduced principal
component subspace and therefore define the
relationship between the observations in the original
data matrix. Computationally PCA is based on the
eigenvector decomposition of the covariance matrix
of X. The corresponding eigenvalues of the
covariance matrix are the variances of the principal
components.

Usually only a few principal components are enough
to explain the behaviour of the original data matrix
because the greatest variability has been captured by
the first components. There are several methods for
determining a sufficient number of principal
components, perhaps the most usable being
crossvalidation (Jackson, 1991).

A PCA models of historical process variables data
can be used in both process monitoring and analysis.
However, a PCA model alone is not sufficient when
determining differences between observations. The
model explains the variation that is common to the
data set. To idenfy a new type of variation, one has to
determine the Squared Prediction Ermror (SPE) of
each new observation (Kresta et. ai., 1991).
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where x,.., is the new observation vector. The control

limits for the SPE are usually determined according
to the chi-squared distribution.

A useful method in the analysis is to examine the
formation of patterns or clusters in the score plots of
the observations together with the loading plots in
the principal component plane. Statistically deviating
observations can be identified by drawing Hotelling
T ellipse which corresponds to the confidence
interval at the given level. The Hotelling T* value is
calculated according to the following equation

2
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where n corresponds to the number of observations,
m is the number of variables and F, is the a
confidence value of the F-distribution.

In process monitoring, a statistically abnormal
situation can be detected from the score plot when
the projection of the observation passes outside the
Hotelling T ellipse or, equivalently, when the SPE
increases above its control limit. The situation is
illustrated in Figure 1.

4, SELF-ORGANIZING MAP

Of the architectures and algorithms suggested for
artificial neural networks, Kohonen’s Self-
Organizing Map has the special property of
effectively creating spatially organised internal
representations of various features of the input
signals and their abstractions. Self-organization is
based on competitive training that is able to find
clusters from the leaming data matrix X.

The SOM is composed of a set of elements, each of
which represents a vector in the original data space.
In training, the elements of the SOM compete for
each input vector; the element that is closest to the
input vector is the winner. The training algorithm
then moves the winning element and its
neighborhood closer to the presented input vector. In
this way the elements of the network gradually learn
to represent the training data. Since the neighborhood
is taken into account, the properties of adjacent
elements become similar. The map becomes ordered
in such a way that clusters with similar properties are
located near to each other (Kohonen, 1990).If the
input vector is denoted by x = [x X, ... Xx.;] and the
location of a mapping element by m; = [mp m;; ...
mi.1]", the self-organizing algorithm is as follows,
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Fig. 1. Detection of process deviation from the
scores plot and the SPE chart.

Initiate the locations of the elements with
random values

1¥ step:

2™ step:
A: Find the SOM element m, which best

matches to the data vector x; by searching
all elements m;

||x—mc||=mli11[]|x-mfﬂ] (4)

B: Adjust the locations of these elements

(5)
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In equation (5), N¢ denotes to the neighborhood area
in the map. In equations (4) the Euclidian metric can
be used as the distance measure.

In equation (5), the parameter a(t) is a coefficient
that determines the movement of the winning
element and its neighborhood in the direction of the
data vector x;. It is equivalent to the learning rate



used in the back propagation algorithm for
feedforward neural networks. It is recommended that
a(t) decreases slowly with the progress of the
iteration. [nitially «(t) may be chosen as unity and in
the final stages the recommended value is less than
0.01. One method for calculating c(t) is

aoT

a(t) = (6)

T +100¢

where T is the total number of iterations and a is the
initial value for a@(t). The neighborhood of the
winning element C is defined by N¢ = {i | d(i,C) <
r(t)}, where d(i,C) is the distance between map
elements i and C, and r(t) is the radius of the
neighborhood. To ensure good global ordering, the
radius r{t) should initially be more than half the
diameter of the network. The radius should slowly
decrease with time. In the final stage a small radius
gives the map a good local spatial resolution. In
addition to arranging the map topelogically, the use
of neighborhood equalises the number of input
vectors classified in each cell.

A third training parameter is the number of iteration
steps. To reach a good statistical accuracy the
number of training steps should be at least five
hundred times the number of elements in the SOM.

The topology of the trained SOM in the training data
space Ry can be inspected graphically. Each SOM
element carries a vector specifying its location in the
Ry. In one-dimensional SOM, the value
corresponding to the dimension is collected from the
location vector of each element. The values are set
into a matrix that can be presented graphically.

5. EXPERIMENTAL

3.1 Analysis data

The analyzed chemical quality history of the anodes
supplied to Pori refinery consisted of 1052 chemical
analyses during the past 1.5 years of operation. The
sample is taken once per anode casting batch. There
were nine variables representing the contents of the
impurities occuring in the anode: antimony, arsenic,
bismuth, lead, nickel, oxygen, selenium, silver and
tellurium. There were some missing values for the
lead (6.4 %), oxygen (1.3 %), silver (6.4 %) and
selenium (2.9 %) contents mainly due to laboratory
malfunctions.

The physical quality of the cathode is measured as
the percentage of A-class cathodes in the total
cathode production per day. The operators define the
class, A or B, of the cathode to according to the

quality specifications. The physical quality of the
cathodes during the time corresponding to the anode
data is plotted in Figure 2. The data are well suited
for the process analysis because there were no major
operational parameter changes or productional
disturbances reported (cathode quality excluded).
Five depressions in cathode quality can be seen
during the inspection interval.

5.2 Data pre-processing

Primarily due to the finite sampling and analyser
precision, the anode data contained noise that would
definitely have disturbed the efficiency of PCA and
SOM. One can also reason that the process acts as a
low pass filter due to large electrolyte volumes and
long anode dissolution periods. Therefore, the anode
data were passed through a first order filter,

g =0-5 A, (D)

where % is the filtered value and x is the original

value. A (0..1) is filtering coefficient which was set to
0.2

It is important to remember that PCA is scale-
dependent. Before building a PCA model one has to
scale the data in a meaningful way. The most
common method is standardization to unit variance,

xk“ _Ek 2
zk,f;I—J— (8)

I

where Z is the scaled variable, x is the original value,
X is the mean and o is the variance of the variable.
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Fig. 2. The physical quality of the cathodes at the
Pori Refinery during the inspected time
interval.



5.3 Results and discussion

The estimation of the effect of the chemical
composition of the anodes on the physical quality of
the cathodes was done by three different methods:
PCA models, SOM and a combination of PCA and
SOM. The effects were judged by comparing the
clusters formed among the observations (anode
analysis) with quality data of the cathodes.

PCA modelling; Two PCA models were constructed.
In the first one, the arsenic content was replaced by
its ratio to certain impurity contents. In addition, a
couple of other ratios were added largely due to
metallurgical interest and knowledge. The selected
variables are given in the loadings plot in Figure 3.
The modelling resulted in three principal components
with the explained variance (R2VX) of 72 %. The
statistical key figures of the model are summarized in
Table 1, and the scores and loadings plots of the first
and second principal components are shown in
Figure 3.

able e kev figures of the first 1
Eiggz R2VX/%  R2VX
{cum) / %
1* PC 448 34 34
2™ pC 3.10 24 58
3" PpC 1.78 14 72

The arrows in Figure 3 point at certain clusters that
could be distinguished from the data. The loadings
plot revealed positive comelation among several
impurities.

Only the oxygen content of the anode seemed to be
negatively correlated with other basic impurities
according to the first principal component.

The most interesting result was that the observations
clearly clustered in separate areas in the principal
component space when there was a fall in the
cathode quality. This implies that the anode
impurities have an effect on the physical quality of
the cathodes. A classification could therefore be
made to distinguish between problematic and non-
problematic anode qualities. Physical explanations
were also found for the problematic anode qualities.

The second PCA model was built using the nine
original analysis variables. The model consisted of
four principal components with 70 % explained
variance. This model did not bring any
improvements from the classification point of view
compared with the first PCA model, since the
clusters implied the same results. A minor setback
was that a fourth principal component was needed to
achieve a satisfactory explanation and classification.

First FCA Model
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Fig_ 3. The scores and loadings plot of the first PCA
model.

This considerably complicated the visualization and
analysis. However, this model gave a better view of
the correlations between the basic anode impurity
variables and there was not need to determine which
ratios of impurities should be included in the model.
The correlation structures are shown relative to the
first two principal components in the loadings plot in
Figure 4.

Figure 4 confirms the observation that all impurities
except oxygen are at least slightly positively
correlated with each other. Arsenic and antimony
especially have a strong correlation.

SOM analysis; An 8x8 Self-Organizing Map was
trained to the original anode analysis data. With
larger maps, the training time increased without any
noticeable advantages achieved. On the other hand,
smaller maps were poorer in classification.

Figure 5 shows the trained U matrix (Unified
Distance Matrix) and the component plane
representations for each of the variables used in the

The U matrix is a presentation of the distances
between the weight vectors of adjacent neurons in
the two-dimensional map. A neuron located adjacent
to other neurons indicate that the input vectors
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Fig. 4. The scores and loadings plot of the second
PCA model.

mapped to these neurons are close to each other in
input space and vice versa. The U matrix is used for
detecting clusters and deviating input vectors in the
original data.

The SOM was not as successful in classification as
the PCA models since all the drops in cathode quality
could not be traced to specific neurons. One reason
for the poorer performance might have been the
excessive dimension reduction - even the PCA
models needed more than two principal components
for the classification.
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Fig. 5. The U matrix and component plane
representations of the SOM trained
with the anode analysis data



Another reason could have been the missing analysis
values, which drifted to the lower right- and lefthand
corners of the U matrix. On the other hand, SOM
revealed correctly these abnormal observations (gaps
between the adjacent neurons are large). Some but
still not satisfactory improvements in clustering
could be noticed after removal of the observations
containing missing values. The component plane
representations reveal the same correlation structures
between input variables that PCA found. In these
representations bigger circle corresponds to larger
content in anode for a given impurity. The more two
representations look alike, the more correlated they
are. Nevertheless, the SOM proved to be an effective
method visually.

Combined PCA and SOM analysis; As PCA
succeeded in anode quality classification but was not
as visually efficient as SOM, it was decided to use
these methods together. As shown in Figure 6, the
scheme consisted of training a SOM with the
principal component vectors of the second PCA
model described in section 5.3. Now, a 16x16 map
was used because of visually clearer cluster
formation when compared with the 8x8 map, which

is shown in Figure 7.

This hybrid method further improved the
classification and the results could be investigated
from a two-dimensional map (U matrix). The
quantization error of the SOM training was reduced
to one third of the value achieved in direct SOM
analysis.

As shown in Figure 8, the drops in the cathode
physical quality could be traced to specific neurons
and to clusters formed in the constructed map. The
black coloured neurons indicate the areas in the map
that anode analysis hit during the pointed quality
depression periods. The reliability of the
classification was studied by counting a hit
percentage of each depression period hits, to total
hits (whole time interval of inspection) in
corresponding neuron cluster.
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Fig. 6. The combined PCA and SOM method for
classifying anode analysis.

LUugy g
- P=e00p0C
=00 J]OC

JJUEL.IU%UH
e

] oo

Dooo 0Jgc
REETY R =

Do a0 o
10 gl O00C
THHDHHHT

Fig. 7. The a) 16x16, and b) 8x8 U matrix of SOM
trained to four principal components.

For instance, a value of 94 % in the second
depression in Figure 8 means that 94 % of
observations mapped on this particular neuron cluster
(lower righthand comner) occured during the pointed
quality depression period. The remaining 6 % of
observations that hit to these neurons occurred when
the quality of the cathodes were in acceptable level.

The PCA-SOM model can be used to indicate
whenever the anodes that have proved to be
problematic arrive at the refinery. In this way
corrective actions to the process based on the results
of the model can be applied beforehand.
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Fig. 8. The U-matrix representing the neurons and
clusters where anode analysis hit during each
drop in cathode quality. The percentages
indicate the proportion of depression period
hits to total hits counted in each pointed
(black marked) neuron clusters.



6. CONCLUSIONS

The effects of anode impurities on the physical
guality of cathode copper in the copper electrorefing
process were analysed by PCA, SOM and a
combination of the two techniques. The chemical
composition of the anodes is widely recognized as
the major disturbance source in the process. This
study was focused on the clustering of the anode
analysis over time and comparison of these
formations to the physical quality data of the cathode

copper.

PCA especially proved to be a powerful method for
this kind of data mining application. The only
drawback to this technique is the lack of
visualization when there are more than two principal
components involved. Direct SOM analysis was not
as successful in classification, but was visually
effective. Therefore, a SOM was trained to the
principal component vectors in order to improve the
visualization because the results can always be
viewed from the two-dimensional map. In addition,
classification was noticeably improved. This
combination of PCA and SOM was found to give the
best classifying results.

The classification clearly implied that the impurity
concentration of the anodes had an effect on the
physical quality of the cathodes. Based on the PCA
models, the physical reasons for the cathode quality
depressions could also be deduced. The adopted
PCA-S0M model can be used to indicate whenever
the anodes that have proved to be problematic arrive
at the refinery. Early warnings of the upcoming
disturbances can then be generated to the process
control.
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