
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Leppäaho, Eemeli; Renvall, Hanna; Salmela, Elina; Kere, Juha; Salmelin, Riitta; Kaski,
Samuel
Discovering heritable modes of MEG spectral power

Published in:
Human Brain Mapping

DOI:
10.1002/hbm.24454

Published: 01/04/2019

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Leppäaho, E., Renvall, H., Salmela, E., Kere, J., Salmelin, R., & Kaski, S. (2019). Discovering heritable modes
of MEG spectral power. Human Brain Mapping , 40(5), 1391-1402. https://doi.org/10.1002/hbm.24454

https://doi.org/10.1002/hbm.24454
https://doi.org/10.1002/hbm.24454


R E S E A R CH AR T I C L E

Discovering heritable modes of MEG spectral power

Eemeli Leppäaho1 | Hanna Renvall2,3 | Elina Salmela4 | Juha Kere5,6,7 |

Riitta Salmelin2,3 | Samuel Kaski1

1Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Helsinki, Finland

2Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland

3Aalto NeuroImaging, Aalto University, Helsinki, Finland

4Department of Biosciences, University of Helsinki, Helsinki, Finland

5Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland

6Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden

7School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom

Correspondence

Samuel Kaski, Department of Computer

Science, Helsinki Institute for Information

Technology HIIT, Aalto University, Helsinki,

Finland.

Email: samuel.kaski@aalto.fi

Funding information

Academy of Finland: Finnish Center of

Excellence in Computational Inference

Research COIN, Grant/Award Numbers:

127401, 255349, 256459, 277655, 283071,

292334, 294238, 315553; Biocentrum

Helsinki; Ella and Georg Ehrnrooth Foundation;

Finnish Cultural Foundation; Jenny and Antti

Wihuri Foundation; Sigrid Jusélius Foundation,

Swedish Research Council

Abstract
Brain structure and many brain functions are known to be genetically controlled, but direct links

between neuroimaging measures and their underlying cellular-level determinants remain largely

undiscovered. Here, we adopt a novel computational method for examining potential similarities in

high-dimensional brain imaging data between siblings. We examine oscillatory brain activity mea-

sured with magnetoencephalography (MEG) in 201 healthy siblings and apply Bayesian reduced-

rank regression to extract a low-dimensional representation of familial features in the participants'

spectral power structure. Our results show that the structure of the overall spectral power at

1–90 Hz is a highly conspicuous feature that not only relates siblings to each other but also has very

high consistency within participants' own data, irrespective of the exact experimental state of the

participant. The analysis is extended by seeking genetic associations for low-dimensional descrip-

tions of the oscillatory brain activity. The observed variability in the MEG spectral power structure

was associated with SDK1 (sidekick cell adhesion molecule 1) and suggestively with several other

genes that function, for example, in brain development. The current results highlight the potential of

sophisticated computational methods in combining molecular and neuroimaging levels for exploring

brain functions, even for high-dimensional data limited to a few hundred participants.

KEYWORDS

Bayesian reduced-rank regression, genome-wide association, GWAS, heritability,

magnetoencephalography

1 | INTRODUCTION

Noninvasive brain imaging can, at its best, provide very detailed mea-

sures of brain anatomy and function, and of connectivity between

different brain areas, but yields very little information on the cellular-

level functions behind the measured phenomena. If variation of

neuroimaging features could be associated with genetic variability, it

would offer a link to their molecular-level descriptions and promote

better understanding of the significance of neuroimaging measures in

brain development, functioning and, eventually, in neurological

pathologies.

The search for genetic associations of high-dimensional brain

imaging features is challenging especially due to the typically small

experimental group sizes, resulting in weak statistical power (Hibar,
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Kohannim, Stein, Chiang, & Thompson, 2011). So far, genetic connec-

tions to brain imaging have mainly been sought by associating single-

nucleotide polymorphisms (SNPs) of predefined candidate genes with

neuroimaging measurements, especially in clinical populations (Egan

et al., 2001; Meyer-Lindenberg, 2010) but increasingly also in healthy

participants (Darki et al., 2017; Mueller, Makeig, Stemmler, Hennig, &

Wacker, 2011; Smolka et al., 2005). Recently, unrestricted genome-

wide linkage and association analyses have successfully been applied

to neuroimaging phenotypes, but so far mainly to fairly simple and

prevalent imaging measures, such as the different cortical rhythms

(Malone et al., 2014; Porjesz et al., 2002; Salmela et al., 2016; Smit

et al., 2017), and auditory evoked responses (Renvall et al., 2012).

An especially prominent feature among human cortical functions

is the brain's background activity that covers a wide range of frequen-

cies, including delta (1 − 4 Hz), alpha (≈10 Hz), beta (≈20 Hz), and

gamma (≈30 − 200 Hz) bands, featuring both salient rhythmicity and

more arrhythmic patterns. The spectral power at delta, alpha, and beta

bands has been shown to be highly heritable (Hodgkinson et al., 2010;

Salmela et al., 2016; Smit, Posthuma, Boomsma, & Geus, 2005; Smit,

Wright, Hansell, Geffen, & Martin, 2006; Van Baal, De Geus, &

Boomsma, 1996; Van Beijsterveldt, Molenaar, De Geus, & Boomsma,

1996; Vogel, 1970; Young, Lader, & Fenton, 1972), but still relatively

little is known about the underlying genome-level correlates. The

most salient of these intrinsic oscillations are the parieto-occipital

10 Hz alpha rhythm and the rolandic somatomotor mu rhythm with

distinct 10 and 20 Hz components (for a review, see, e.g., Hari & Sal-

melin, 1997). Both of these rhythms are strongly dependent on the

participant's state: for example, the alpha rhythm is attenuated by

opening of the eyes, it is modulated by tasks that require visual atten-

tion and working memory (Jensen, Gelfand, Kounios, & Lisman, 2002;

Tuladhar et al., 2007), and the somatomotor mu rhythm reacts to

movement execution and observation (e.g., Hari et al., 1998; Salme-

lin & Hari, 1994). Both of the rhythms thus appear to have important

functional roles instead of only reflecting cortical idling (for a review,

see, e.g., da Silva, 2013).

In the present study, we aim at utilizing cutting-edge computa-

tional tools for finding both maximally familial and heritable features

from high-dimensional brain imaging data. We study the wide-band

cortical power spectral structure measured with magnetoencephalog-

raphy (MEG) in siblings, and establish its potential genetic correlates.

We particularly seek to find basic features of the MEG spectral power

that would not depend on the participants' exact state. We thus

included in the analysis MEG signals recorded in different experimen-

tal conditions known to produce variability at the prominent fre-

quency bands (eyes closed, eyes open, simple hand movements). To

account for the high dimensionality of both neuroimaging and genetic

data, we apply a new Bayesian reduced-rank regression (BRRR)-based

association study method (Gillberg et al., 2016). Reduced-rank regres-

sion methods have been shown to achieve high power in genome-

wide association studies (GWASs) even when the phenotype

dimensionality exceeds the number of participants (Le Floch et al.,

2012; Vounou et al., 2012; Vounou, Nichols, & Montana, 2010). We

determine a low-dimensional representation of the MEG spectral

power structure that is maximally informative about the relations

between the participants. BRRR is subsequently applied for searching

for genome-wide associations of the high-dimensional MEG spectral

power structure, from which it is able to extract heritable compo-

nents. This demonstrates that association studies for high-dimensional

phenotype can be enabled by extracting lower-dimensional descrip-

tions of the phenotype in a data-driven manner. This approach com-

plements association studies of well-known phenotypes that are

derived from the raw data, such as the alpha rhythm.

2 | METHODS

2.1 | Participants

Altogether, 210 Finnish-speaking adults, siblings from 100 families,

participated in the study (eight families with three siblings, one family

with four). The participants were 30 � 1 (SEM) years old (148 females

and 62 males). Monozygotic twins were excluded from the study.

Then, 206 participants were right-handed, three ambidextrous, and

one left-handed. None of the participants had a history of neurological

or psychiatric disorders. All participants gave their written informed

consent, and the study had a prior approval from the Ethics Commit-

tee of the Hospital District of Helsinki and Uusimaa.

2.2 | MEG recordings

Spontaneous cortical activity was recorded while the participant was

seated in the magnetically shielded room of the Aalto NeuroImaging

MEG Core, with the head covered by the helmet-shaped 306-channel

Vectorview neuromagnetometer (Elekta Oy, Helsinki, Finland) that

contains 204 gradiometers and 102 magnetometers. Four head-posi-

tion-indicator coils were attached to the scalp, and their positions

were measured with respect to three anatomical landmarks (nasion

and two preauricular reference points) using a three-dimensional digi-

tizer, and to the sensor array by briefly feeding current to the marker

coils. The measurement consisted of three experimental conditions,

with 3 min of data collected for each: (a) eyes closed (hands relaxed),

(b) eyes open (hands relaxed), and (c) eyes open and clenching of

hands ≈ once per second. Furthermore, to estimate the stability of

the recorded brain activities, the study was replicated twice for two

participants, with several months between the measurements.

The MEG signals were band-pass filtered to 0.03–200 Hz and

sampled at 600 Hz. For external artifact suppression, a signal space

separation method (Taulu & Kajola, 2005) was applied, and each indi-

vidual MEG recording was transferred to the same head position using

a signal space separation-based head transformation algorithm (Taulu,

Kajola, & Simola, 2004), implemented in MaxFilter software

(Elekta Oy).

The data analysis was performed on the 204 gradiometer signals.

The power spectra in all experimental conditions were estimated using

a periodogram of the same length as the input data within MATLAB-

function bandpower, applying a Hamming window. The power spectra

were estimated starting from 1 to 3 Hz and widened linearly up to

81.8 − 87.8 Hz, resulting in altogether 21 frequency bands. The band

containing 50 Hz was omitted to remove power-line interference.
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One sibling pair was left out of the analysis due to noisy data of one

sibling.

2.3 | Genotyping

Autosomal genotypes of the studied individuals were obtained as

described earlier by Renvall et al. (2012) and Salmela et al. (2016). In

short, genomic DNA extracted from blood samples was genotyped on

Affymetrix 250K StyI SNP arrays (Affymetrix, Santa Clara, CA) accord-

ing to manufacturer's instructions. The genotypes were then filtered

in Plink (version 1.07; Purcell et al., 2007) based on quality measures

of genotyping success (>98% per marker and >95% per individual),

minor allele frequency (>5%), and Hardy–Weinberg equilibrium

(p > .0001 in either of two subsets of 98 unrelated samples). Pairwise

relatedness of individuals was checked based on allele sharing, indicat-

ing no obviously deflated or inflated relatedness. Individuals whose

siblings failed to pass the quality controls were removed as well. The

final number of autosomal SNPs was 150,217, while the overall geno-

typing success rate was 99.8% and the lowest success rate per indi-

vidual was 97.9%. In the end, high-quality genotype and MEG data

were available for 201 participants, coming from 97 families.

2.4 | Data analysis

In the following, the MEG data are presented in matrix Y with

N = 201 rows (participants) and P = 4,284 columns (204 MEG gradi-

ometers × 21 frequency bands), and the family identifiers in matrix

F with N rows and M = 97 columns. The mth column of F, denoted by

f:,m, is a binary vector consisting of 1s for members of family m and 0s

for the other participants. The genotype is represented as a matrix

G with N rows and D = 150,217 SNPs. Each genotype matrix column

g:,s indicates the number of minor alleles for each participant in the

specific SNP.

We are interested in analyzing both the familial characteristics of

the MEG power spectrum, that is the distribution p(Y| F), as well as

the heritable effects p(Y| G). As both P and D are at least an order of

magnitude larger than N, the problem needs to be regularized in order

to maintain statistical strength. With the knowledge that the variables

of Y are highly (spatially) correlated, we apply reduced-rank regression

that gives a low-dimensional projection of the data. Performing a stan-

dard regression (or correlation-based) analysis for a low-dimensional

description of Y (such as principal components [PCs]) would be possi-

ble as well, but it would not allow taking into account the covariates F

and G in the dimensionality reduction. The study participants were all

of Finnish Caucasian origin and their genotyping data were exten-

sively quality-controlled for in a previous study (Renvall et al., 2012).

Population admixture or marker biases were excluded. In the follow-

ing, the analysis steps are described in more detail.

2.5 | Bayesian reduced-rank regression

We first aim at revealing which parts of the MEG power spectrum are

similar between siblings. We utilize here BRRR (Gillberg et al., 2016),

which simultaneously can predict Y given F, as well as learn a

description of the latent (familial) features of Y. The BRRR model is

defined as

Y¼ FΨ+Ωð ÞΓ+E, ð1Þ

where ΨM × K is a low-dimensional regression coefficient matrix con-

taining the familial values of the latent features, ΓK × P is a projection

of the latent space to the MEG channels and frequency bands (the

observational space). Here, K is a model parameter, chosen by the

user, that determines the complexity of the model, and the product

ΨΓ is a standard regression coefficient matrix β with rank K. ΩN × K

contains unknown factors representing noise in the latent (K-dimen-

sional) space, and EN × P describes residual noise in the observation

space—in this case, also the differences between siblings. Specifying

the noise models in this way is useful particularly when noise is corre-

lated with signal (as in this case across the channels), as demonstrated

by Gillberg et al. (2016). Any categorical and numeric variables, such

as gender and age, could be included in the covariate matrix in Equa-

tion (1), but here we use only the family identifier matrix F to focus on

inferring familial features.

The regression and projection coefficients are given shrinkage

priors presented by Gillberg et al. (2016); these aid in solving the

identifiability problem inherent in reduced-rank regression by placing

the strongest effects in the first components. Specifically, each col-

umn ψ:k and row γk,: is given the prior N 0,τ−1k I
� �

, where τk ¼
Qk

l¼1δl,

with δ1 �G(10,1) and δl>1 �G(4.1,1), with N denoting the normal dis-

tribution and G denoting the Gamma distribution, parameterized by

shape and rate. As the Gamma distributions have positive expected

values, the precisions τk increase with k and limit later components to

vary less than the earlier ones. Furthermore, a small fixed K is used to

control the model complexity, and hence only low noise levels are

assumed: elements of E and Ω are set to have mean 0 and SD 0.1 and

10−6τ−1k , respectively. For model inference, we initialize the Γ and Ψ

such that the family identifiers explain maximal amount of variance in

Y, that is, according to linear discriminant analysis, each component

explaining less variance than the previous one. This kind of informed

initialization allows the sampling to converge rapidly. The parameters

are inferred using Gibbs sampling with 500 iterations, discarding the

first 250 as a burn-in period. The proportion of total variance

explained by the covariates approximately converged within the burn-

in period of 250 Gibbs samples.

As only the family identifier matrix F is used as a covariate in

Equation (1), the model cannot differentiate siblings within families,

and only aims to maximally explain differences between the families.

This leads to the rows of Γ directly revealing features that are maxi-

mally different between families, as well as maximally similar within

families. To evaluate the ability of BRRR to discriminate between fam-

ilies, we perform cross-validation such that Γ is learned from training

data (90% of the families) and the similarity of the test participants is

estimated in the latent space YΓ−1. This process is illustrated in

Figure 1. If the model is successful in extracting heritable components,

siblings should be located nearby in the latent space (as measured by

L1 distance). We examine the performance separately in the three

experimental conditions, and by using MEG data fragments of differ-

ent lengths. We also test how consistently Γ identifies the same
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participant from earlier versus later parts of the same experimental

condition, as well as across different conditions, that is, whether the

latent components can be considered as a “cortical fingerprint.” Cam-

pisi and Rocca (2014) reviewed the use of this kind of fingerprints in

Electroencephalography (EEG)-based user recognition. In addition, we

are interested in how large the within-family differences are compared

to the between-family ones. This is accomplished by inspecting the

proportion of total variance explained (PTVE) in Y by a rank K BRRR

solution.

2.6 | Genome-wide association study

Finally, BRRR is used to perform a GWAS, similarly to Marttinen

et al. (2014), with additional family identifier covariates explaining

family-related environmental effects separately. A separate model is

trained for each of the 150,217 SNPs as:

Y¼ F g:,s
� �

Ψ+Ω
� �

Γ+E, ð2Þ

where the covariates are the family identifiers F and g:,s, the genotype

for SNP s. The additional covariate is included in Ψ, which is now a

matrix in R(M + 1) × K, describing the M families and the single SNP in

the latent space. Matrix Γ maps the latent space, both for the familial

indicators and the SNP, into the sensor space, as in Equation (1). This

approach allows us to jointly study the P = 4,284 highly correlated spa-

tiospectral MEG features (in matrix Y), while preserving high statistical

strength, as the regression in Equation (1) is of low rank (Vounou et al.,

2010). Thus, we can effectively search for associations for KG << P

components that are estimated using the observed SNP and family

information. Here choosing a higher number of components allows

searching for associations for a broader range of latent features,

whereas a lower number maintains higher statistical strength. The model

estimates a set of components that explain joint effects of SNPs and

family effects. It is initialized and inferred as described in the previous

section; the spectral MEG components are initialized to maximally sepa-

rate families, but each SNP may affect this structure and create unique

outcomes.

We do not explicitly account for population stratification in Equa-

tion (2), which could potentially lead to spurious results. All our partici-

pants represented the Finnish population, which is known to harbor

internal genetic structure, with the main stratification observed

between East and West Finland (Kerminen et al., 2017; Salmela et al.,

2008). To confirm the absence of significant population stratification

effects, we used a population sample of 265 Finns with known grand-

parental birthplaces across the main genetic clines of Finland (Salmela

et al., 2008) to calculate the first 10 PCs of the population data, based

on the genotypes of 136,370 SNPs shared between that data set and

ours. These PCs were then used to calculate the corresponding scores

for all the 201 participants of our study. This was done using the pro-

gram SMARTPCA as implemented in EIGENSOFT (Patterson, Price, &

Reich, 2006; Price et al., 2006). None of the correlations of the first

PC, corresponding to the East–West origin, with the six MEG compo-

nents (i.e., phenotypes) acquired in the familial BRRR analysis were

significant (maximal r2 = 0.01 with p = .16). We further examined the

correlations of the other 9 PCs with the MEG components, and found

no significant correlations (maximal r2 = 0.05 with p = 1.3×10−3

between PC9 and MEG component 6, with Bonferroni corrected sig-

nificance limit at 8.3×10−4). Furthermore, PC9 showed negligible cor-

relation with the other components of MEG spectral power, thus

explaining only little variance in total. We therefore conclude that any

population stratification is highly unlikely to affect the results of our

association study.

We determine the associations in this study based on the propor-

tion of total variance explained by the SNPs. Additional convergence

and stability checks are performed for the models resulting in signifi-

cant or suggestive findings. Convergence is checked by running a lon-

ger Gibbs sampling chain for 5,000 iterations: these runs resulted in

similar parameters and PTVEs as the shorter ones (500 iterations).

Model stability was evaluated by running sampling chains from differ-

ent random initializations. The deviation between PTVEs acquired for

the same data with different sampling chains was minimal (maximal

difference in PTVE 0.02%), in line with (Gillberg et al., 2016).

FIGURE 1 Cross-validation procedure for estimating the quality of the identified familial structure. Left: Raw data of training families (illustrated

here for 1 s on seven magnetoencephalography [MEG] channels) is used for computing spectral power, which in turn is used to estimate familial
components (here components 1 and 2) based on data of siblings. Right: Each participant is visualized as a point in the here two-dimensional
familial component space. Three families included in the training data (black), as well as two test families (blue) are highlighted by connecting lines
between the siblings. Furthermore, components of test participants based on two time periods in the data (connected by red line; see insert at
top right) demonstrate the robustness of the structure within individuals [Color figure can be viewed at wileyonlinelibrary.com]
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We produce a random baseline for the association study through

permutation testing. Ideally, hundreds of batches of 150k permuted

runs would be used to estimate the significance limits for the PTVE

values acquired from the nonpermuted runs. However, inferring the

BRRR parameters for a single SNP requires approximately 1 CPU

hour, prohibiting multiple repetitions of 150k runs. Thus, we analyze a

total of 150k runs where the genotype is permuted, and compare the

distribution of the resulting PTVE values to the PTVE values in the

original runs (instead of the distribution of the maximal PTVE values

repeated over hundreds of batches of 150k runs).

As computational reasons prohibit estimating p-values based on

the permutation tests, we assess the significance of the acquired

PTVEs by estimating the local false discovery rates (LFDRs) using an

empirical Bayes approach (Stephens, 2017). The approach is designed

for multiple testing problems, taking into account also the variance of

the estimates. The SDs of the nonpermuted PTVEs are set as the SE

for the significance testing. We report both the significant (LFDR

<0.05) and suggestive (LFDR <0.1) findings. The resulting PTVEs are

visualized using an R script modified from (Saxena et al., 2007),

accompanied with recombination rates based on the Finnish sample

of the 1000 Genomes data (available at ftp://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/technical/working/20130507_omni_recombination_

rates/).

3 | RESULTS

3.1 | Familial structure

We first examined the effectiveness of BRRR in identifying compo-

nents that are similar within families. The examination was performed

for time periods of different lengths (from 1 to 180 s), for each in a

10-fold cross-validation scheme, where 10% of the families were

assigned as test data, and the model was estimated based on the

remaining participants, using the family identifiers F as covariates.

Figure 2 (“Sibling”) illustrates the ranking of siblings as a function of

the length of the time period per participant, both separately for the

three experimental conditions and as an average across them

(denoted as “mean data”). The ranks are shown for different numbers

of components K = {6, 20, 50}. Monotonic improvement with K was

observed, with ranks reaching their minima at K ≈ 50. All the experi-

mental conditions resulted in very similar accuracies in ranking the sib-

lings. The accuracies of the models in finding any test participant's

sibling among a group of 18 unrelated participants improved when

more data were included, up to time period length of about 5–7 s.

The best average ranks for the siblings were obtained by averaging

over experimental conditions, with ranks ranging between 5 and 6 for

segments longer than 5 s (1 denoting perfect accuracy and 10 a ran-

dom guess).

When models with different numbers of components were com-

pared to the baseline (i.e., the full data Y used in computing the simi-

larities based on L1 distance), as few as K = 6 latent features yielded

nearly as good accuracies as using the full 4,284 features of Y. Use of

larger number of familial components allowed picking out relevant

familial structure and leaving out noise, thus outperforming the base-

line ranking, which is based on the full data.

For establishing the consistency of the extracted components

within participants, we tested the model's ability to identify data

recorded from the same participant at another time point. The results

(“self” in Figure 2) demonstrate that even a few seconds of data were

sufficient for identifying test participant's own data among other par-

ticipants' data sets. Overall, any participant could be identified with an

average rank of ≈1.1 when 60 s of data was used. Furthermore, par-

ticipants could be identified accurately irrespective of which experi-

mental condition was used as the test data, with the exception that

with few seconds of recordings only, “eyes closed” differed signifi-

cantly from the two other conditions. Combining the different condi-

tions resulted in the smallest rank of ≈1.015 (all but one of the

participants identified perfectly in the cross-validation) when using

only 3 s of data from each condition (K = 20).

We additionally assessed the identification accuracy in two par-

ticipants with multiple recording sessions several months apart. With

tens of seconds of data, and by averaging over the experimental

FIGURE 2 Mean similarity rank of a sibling to a test participant (left, top), and the similarity rank of a test participant to his/her own data at a

different time period in the same experimental condition (left, bottom); shown as a function of seconds of data used for evaluation. The
similarities are based on 6, 20, or 50 familial components, or the full magnetoencephalography (MEG) spectral power data. Zoom-ins of both
(sibling and self) are shown on the right, for data averaged across the experimental conditions. The test set consists of 1 related (sibling or self at
another time period) and 18 unrelated participants: thus, perfect prediction corresponds to rank 1, and a random prediction to rank 10 [Color
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Six BRRR components best explaining the brain activity differences between families. The varying component weights over

frequencies (1–88 Hz) on a subset of gradiometer sensors are illustrated on the magnetoencephalography (MEG) sensor plane (all 204 sensors are
shown in Supporting Information). For visualization, each frequency bandwidth (in Hz) is given a color shown on the right. The measurement
helmet is viewed from above, flattened onto a plane, with the nose pointing upward. The 204 planar gradiometers of the Vectorview system are
arranged in 102 locations along the helmet [Color figure can be viewed at wileyonlinelibrary.com]
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conditions, the difference between recordings was negligible, suggest-

ing that the low-dimensional familial components can provide a robust

individual fingerprint.

Combination of the experimental conditions resulted, on average,

in the smallest ranks in both sibling and self prediction, and was thus

used in the following analysis. To illustrate the spectral data structures

found by BRRR, we estimated the model on the full MEG spectral

power data. The family identifiers were again used as covariates, with

K = 6 and K = 20. For these familial component numbers, the PTVEs

in Y were approximately 54 and 61%, respectively. Figure 3 depicts

the familial components acquired with K = 6. The parameter matrix Γ
describing the projection of the low-dimensional variables into Y is

visualized on the MEG sensor plane where each gradiometer pair has

its own weights for the different frequency bands. The observed com-

ponents are spatially smooth, but a clear structure can be seen with

respect to different frequency bands and brain areas. For clarity, only

a subset of the gradiometers are illustrated in Figure 3, and the com-

plete figure can be found in Supporting Information. Component

1 incorporated the total power as a major determinant of the overall

data variability, with 24.4% of PTVE, extending to frequency bands up

to 90 Hz. Component 2 (with 10.6% of PTVE) reflected spatial varia-

tion of total power, with increased power at the occipital channels

and reduction at the frontal channels. Component 3 (8.5% of PTVE),

in turn, highlighted spectral variation of total power, as a combination

of increased power up to ≈25 Hz and reduction in the gamma band

(here 25–90 Hz). Figure 4 provides a summary of the components

clustered on both the MEG channels and frequency bands.

3.2 | Genome-wide association study

Finally, we performed a GWAS by inferring independent BRRR models

for each of the 150k SNPs, using the family identifiers and one SNP at

a time as covariates. Given the relatively small number of participants,

we set K = 6 to keep the model complexity low. Yet, this number of

components sufficed to capture meaningful features of the pheno-

type. We examined the PTVEs of the SNPs explaining the MEG spec-

tral power measurements.

We found six SNPs significantly associated with oscillatory brain

activity (LFDR <0.05) and further eight SNPs suggestively associated

(LFDR <0.1). Three significantly associated SNPs are located close to

gene SDK1 on chromosome 7, and one distant from known genes on

chromosome 6. Out of the six significant findings, we regarded two as

uninteresting in the present context, as they simply indicated the gen-

der of the participants, explaining differences in the total spectral

power. The rest of the SNPs along with their closest genes (annota-

tions obtained from USCS Genome browser, assembly GRCh37) are

reported in Table 1. We additionally studied possible eQTL effects of

the implicated SNPs (examining brain-tissue specific significant effects

in https://gtexportal.org/home/datasets), recognizing, however, that

many significant associations cannot be easily explained by eQTLs

(GTEx Consortium, 2017). We identified significant eQTL associations

for two suggestive SNPs, rs13057362 (gene DRICH1) and rs4622752

(genes LONRF2 and CHST10) in seven and two brain regions, respec-

tively. No significant eQTLs were detected for the other

implicated SNPs.

All the associated SNPs strongly explained the MEG total spectral

power (relatively constant weights across the frequency bands and

the scalp; top left in Figure 5), which emerged as the most varying

component of oscillatory brain activity across participants in this

study. Some SNPs explained additionally other spectral power struc-

tures, as illustrated in Figure 5 (and for all the gradiometers in Sup-

porting Information). Overall, the resulting heritable components

strongly resembled the familial components illustrated in Figure 3. We

additionally inspected the PTVEs in the SNPs surrounding the signifi-

cant associations to address their robustness. Loci that are near to

each other in the genome tend to show linkage disequilibrium, that is,

FIGURE 4 Summary of the weights of the six BRRR components that maximally explained the brain activity differences between families. The

component weights (shown in Figure 3) are averaged over distinct frequency bands and channels covering frontal (F), temporal (T), parietal (P),
and occipital (O) areas over the left (L) and right (R) hemispheres [Color figure can be viewed at wileyonlinelibrary.com]
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their alleles correlate. Therefore, phenotypic associations are typically

visible in several markers within the associated region, and the pres-

ence of such associations can serve as an additional control of result

quality. Figure 6 illustrates these regional association plots. It demon-

strates the robustness of the SDK1 association, as nearby SNPs result

in low LFDRs.

The PTVE quantiles for the heritable components, estimated from

the original data, were compared to those resulting from the

permuted runs (Figure 7), illustrating that the SNPs achieve better-

than-random explanation of the data. None of the 150k runs with

permuted SNPs resulted in false discovery rates below 0.05.

The presented analysis requires setting a fixed dimension for the

latent space, that is, the parameter K. Using a suitable sparsity prior

would allow for inferring K from the data, as shown by Gillberg

et al. (2016). However, for the repeated inferences performed here,

we wanted to unify and simplify the approach by setting a fixed K = 6

for each of the models. To inspect the effect of this choice in the

association study results, sensitivity analysis was performed by

repeating the study with K = 1, …, 30 for 15 SNPs resulting in the

highest PTVEs (with K = 6), as well as for 100 additional randomly

selected SNPs. Robust results were seen across the tested values of

K: for the top 15 results, maximal deviance from the PTVE obtained

with K = 6 was 0.005 (0.003 when omitting overly simple K = 1, 2).

Furthermore, the two highest associations reported in Table 1 would

have been significant (LFDR <0.05) with all the tested K ≥ 3. The two

other significant results with LFDR ≈0.043 (K = 6) would have been

FIGURE 5 Components significantly explained by individual single-nucleotide polymorphisms (SNPs), with proportion of total variance explained

(PTVE) shown. Each associated SNP explained variance in the total spectral power, similar to rs2040918 (top left) here; SNPs explaining other
spectral power structures as well are illustrated. The varying component weights over frequencies (1–88 Hz) on a subset of gradiometers are
visualized on the magnetoencephalography (MEG) sensor plane (all 204 sensors are shown in Supporting Information). Each frequency bandwidth
(in Hz) is given a color shown on the right [Color figure can be viewed at wileyonlinelibrary.com]
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significant with 12 of the 30 tested component numbers. For the

100 randomly selected SNPs, the maximal PTVE difference from

values computed with K = 6 was 0.008 (0.005 with K ≥ 3).

Genes expressed in the brain and thus with potentially interesting

functions relevant for this study included SDK1 (sidekick cell adhesion

molecule 1; Saus et al., 2010; Tsang et al., 2013), BCR (breakpoint

cluster region (Hashimoto et al., 2005), slingshot protein phosphatase

(Xiang et al., 2014), catenin alpha 3 (Morgan et al., 2008; Stahn et al.,

2016), catenin delta 2 (Belcaro et al., 2015; Jun et al., 2012), and

fragile histidine triad (Corominas et al., 2014). We visualized the

expression of these genes in Supporting Information over different

brain areas for cell line, fetal, newborn, and adult samples. The expres-

sion profiles were extracted from FANTOM5 human promoterome

and gene expression data (Andersson et al., 2014) using ZENBU

(http://fantom.gsc.riken.jp/zenbu/). The FANTOM5 project has estab-

lished the transcription start sites for most human genes in a large

number of tissue and cell culture samples, yielding a map of most gene

promoters (the promoterome) and tissue-specific gene expression

FIGURE 6 Regional association plots showing the local false discovery rate (LFDR) of single-nucleotide polymorphisms (SNPs) near the most

significant findings, with significance limit 0.05 indicated by the dotted line. Each nearby SNP is colored according to its linkage disequilibrium
with the most significant SNP of the region (r2 > 0.8 red, r2 > 0.5 orange, and r2 > 0.2 yellow). The light blue line indicates local recombination

rate (cMMb); its peaks are expected to delineate the regions of strong disequilibrium. Genes located in the area are depicted in dark green. All

genomic coordinates are derived from human genome assembly GRCh37. Six regions containing the lowest LFDR values are illustrated [Color
figure can be viewed at wileyonlinelibrary.com]
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data. In case of multiple samples regarding the same target, we are

showing their median. Furthermore, even though FERM domain con-

taining 1 shows no expression in the brain, and is hence not show in

the Supporting Information, Ebejer et al. (2013) have indicated a sug-

gestive connection between the gene and ADHD.

4 | DISCUSSION

We demonstrated in the present study that BRRR can efficiently infer

familial structures from brain activity measured by MEG. The identified

salient components in MEG power spectra predicted siblings well above

chance level, despite the relatively small number of participants. We fur-

ther discovered that the MEG spatiospectral composition of any individ-

ual participant can be reliably identified based on only a few seconds of

data, and mostly independently of the experimental conditions or time

interval within the measurement, suggesting that it may be considered

as representing an individual “cortical fingerprint.” Furthermore, applica-

tion of BRRR on gene data resulted in MEG spatiospectral components

which largely agreed with the components identified on the basis of

familial structure alone, with a significant genetic link to SDK1 in chromo-

some 7, as well as suggestive links to several other genes expressed in

the brain. Previous analysis of this data collection regarding genetic back-

ground of the 10-Hz parieto-occipital rhythm pointed to chromosome

10 with several plausible genes (Salmela et al., 2016). The SDK1 gene

has been implicated previously in neuronal connectivity in the retina

(Yamagata & Sanes, 2008), but a survey of its expression pattern in the

human brain in the FANTOM5 database revealed high expression in the

human brain, including fetal occipital and parietal lobes, adult hippocam-

pus, substantia nigra, parietal cortex and spinal cord, suggesting wide-

spread functions in neural processing. Thus, the functions and expression

pattern of this gene are generally compatible with our current findings.

The discovered latent components were sensible from a neurophys-

iological point of view. In line with earlier EEG studies (e.g., Smit et al.,

2005; Van Beijsterveldt et al., 1996; Young et al., 1972), the overall

oscillatory power was shown to be highly heritable and to extend also

to higher, gamma-range (30–90 Hz) frequencies. The overall spectral

power was subsequently shown to suggestively associate with loci on

multiple chromosomes, containing genes with known relevance for brain

function. The significantly associated gene SDK1 encodes a member of

the immunoglobulin superfamily (Yamagata, Weiner, & Sanes, 2002) that

mediates laminar connections especially in retina, but likely also in other

parts of central nervous system (Yamagata & Sanes, 2008). Copy num-

ber variations in SDK1, among several other genes, have been associated

with schizophrenia in the Asian population (Sakai et al., 2015).

The reduced-rank regression framework proved to be well suited

for a GWAS. Learning a compact set of latent features and searching

for the associations jointly, along with performing the analysis sepa-

rately for each SNP, was shown to be successful here, allowing the

inference of maximally heritable components. In contrast, even

though, for example, PCA preprocessing could be used to maintain

high statistical power in GWAS, it would limit the study to consider

the K PCs computed from the phenotype only, irrespective of their

heritability. Furthermore, explaining the phenotype jointly with the

family identifiers and the SNPs allows utilizing all the observations for

GWAS. In contrast, approaches such as PC of heritability (Ott & Rabi-

nowitz, 1999), require splitting the data to separately estimate the

familial components and the associations (Klei, Luca, Devlin, & Roeder,

2008). Analysis of the statistical power of reduced-rank regression on

high-dimensional data, simulated to resemble imaging genetics, has

been presented in (Vounou et al., 2010).

The performed association study is limited by the small number of

participants, and thus further verification of the observed associations

is required for drawing strong conclusions. We used a moderate-

density set of SNPs to analyze genetic associations, and therefore

additional associations might be detected in further studies using SNP

arrays with higher density. The main goal of the study was to demon-

strate the prospects of reduced-rank regression for challenging prob-

lems limited by the amount of data, as was the case here. In addition,

in order to properly estimate the robustness of the individual MEG

FIGURE 7 Q–Q plot showing the proportion of total variance

explained (PTVE) quantiles of the original Bayesian reduced-rank
regression (BRRR) runs against those of runs with permuted single-
nucleotide polymorphism data

TABLE 1 SNPs resulting in significantly or suggestively high PTVE in

the MEG spectral power measurements. Significance was estimated
using LFDR <0.05 (denoting significant findings, above the dashed
line). The chromosome where the SNP was located and up to two
closest genes within 70 kb are reported, with genes known to be
expressed in the brain bolded. Two significant SNPs, indicating the
gender of the participants, were omitted from the table

PTVE LFDR SNP Chromosome Closest genes

0.036 0.0097 rs2040918 7 SDK1

0.035 0.015 rs6454976 6

0.032 0.043 rs5021672 7 SDK1

0.032 0.043 rs11773381 7 SDK1

0.032 0.058 rs747995 6 FRMD1

0.032 0.058 rs747994 6 FRMD1

0.032 0.06 rs13057362 22 CES5AP1,BCR

0.031 0.065 rs4622752 2 AFF3

0.031 0.066 rs2241220 12 SSH1

0.031 0.071 rs16925246 10 CTNNA3

0.031 0.082 rs3895695 5 CTNND2

0.03 0.087 rs10510836 3 FHIT

AFF3 = AF4/FMR2 family member 3; BCR = breakpoint cluster region;
CES5AP1 = carboxylesterase 5A pseudogene 1; CTNNA3 = catenin alpha 3;
CTNND2 = catenin delta 2; FHIT = fragile histidine triad; FRMD1 = FERM
domain containing 1; LFDR = local false discovery rate; MEG = magnetoen-
cephalography; PTVE = proportion of total variance explained; SDK1 =
sidekick cell adhesion molecule 1; SNP = single-nucleotide polymorphisms;
SSH1 = slingshot protein phosphatase 1.
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spectral power fingerprints, several recording sessions will be needed

for a large sample of the participants.

Even though the reduced-rank regression was shown to provide

robust fingerprints of brain activity and enable GWAS in a challenging

domain, some aspects remain for future research. Firstly, speeding up

the inference would allow (a) easier scaling of the analysis to larger

sets of measurements, and (b) computing a larger number of permuta-

tion comparisons. Also, taking into account the full genome while

searching for associations with a single SNP would allow leveraging

statistical power over correlated SNPs, but this approach remains

extremely challenging especially with high-dimensional phenotypes.

In this study, we searched for familial and heritable features of

the MEG spectral power during rest conditions and continuous task

performance. The same approach may be extended to event-related

experimental designs to shed light on how different stimulus-evoked

processes in the brain are genetically determined. In future studies,

extending this type of analysis to the source space will enable further

interpretation of associations between neural signals and genes via

engagement of specific brain regions.
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