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Abstract

The expressive power of Gaussian processes
depends heavily on the choice of kernel. In
this work we propose the novel harmonizable
mixture kernel (HMK), a family of expressive,
interpretable, non-stationary kernels derived
from mixture models on the generalized spec-
tral representation. As a theoretically sound
treatment of non-stationary kernels, HMK
supports harmonizable covariances, a wide
subset of kernels including all stationary and
many non-stationary covariances. We also
propose variational Fourier features, an inter-
domain sparse GP inference framework that
offers a representative set of ‘inducing frequen-
cies’. We show that harmonizable mixture ker-
nels interpolate between local patterns, and
that variational Fourier features offers a ro-
bust kernel learning framework for the new
kernel family.

1 INTRODUCTION

Kernel methods are one of the cornerstones of machine
learning and pattern recognition. Kernels, as a measure
of similarity between two objects, depart from common
linear hypotheses by allowing for complex nonlinear
patterns (Vapnik, 2013). In a Bayesian framework,
kernels are interpreted probabilistically as covariance
functions of random processes, such as for the Gaussian
processes (GP) in Bayesian nonparametrics. As rich
distributions over functions, GPs serve as an intuitive
nonparametric inference paradigm, with well-defined
posterior distributions.

The kernel of a GP encodes the prior knowledge of the
underlying function. The squared exponential (SE) ker-
nel is a common choice which, however, can only model
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global monotonic covariance patterns, while generalisa-
tions have explored local monotonicities (Gibbs, 1998;
Paciorek and Schervish, 2004). In contrast, expressive
kernels can learn hidden representations of the data
(Wilson and Adams, 2013).

The two main approaches to construct expressive ker-
nels are composition of simple kernel functions (Ar-
chambeau and Bach, 2011; Durrande et al., 2016; Gönen
and Alpaydın, 2011; Rasmussen and Williams, 2006;
Sun et al., 2018), and modelling of the spectral repre-
sentation of the kernel (Wilson and Adams, 2013; Samo
and Roberts, 2015; Remes et al., 2017). In the com-
positional approach kernels are composed of simpler
kernels, whose choice often remains ad-hoc.

The spectral representation approach proposed by
Quiñonero Candela et al. (2010), and extended by Wil-
son and Adams (2013), constructs stationary kernels as
the Fourier transform of a Gaussian mixture, with the-
oretical support from the Bochner’s theorem. Station-
ary kernels are unsuitable for large-scale datasets that
are typically rife with locally-varying patterns (Samo
and Roberts, 2016). Remes et al. (2017) proposed a
practical non-stationary spectral kernel generalisation
based on Gaussian process frequency functions, but
with explicitly unclear theoretical foundations. An
earlier technical report studied a non-stationary spec-
tral kernel family derived via the generalised Fourier
transform (Samo and Roberts, 2015). Samo (2017)
expanded the analysis into non-stationary continuous
bounded kernels.

The cubic time complexity of GP models significantly
hinders their scalability. Sparse Gaussian process
models (Herbrich et al., 2003; Snelson and Ghahra-
mani, 2006; Titsias, 2009; Hensman et al., 2015) scale
GP models with variational inference on pseudo-input
points as a concise representation of the input data.
Inter-domain Gaussian processes generalize sparse GP
models by linearly transforming the original GP and
computing cross-covariances, thus putting the inducing
points on the transformed domain (Lázaro-Gredilla and
Figueiras-Vidal, 2009).

In this paper we propose a theoretically sound treat-
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Kernel Harmonizable Non-stationary Spectral inference Reference
SE: squared exponential 3 7 3 Rasmussen and Williams (2006)
SS: sparse spectral 3 7 3 Quiñonero Candela et al. (2010)
SM: spectral mixture 3 7 3 Wilson and Adams (2013)
GSK: generalised spectral kernel 3 3 7 Samo (2017)
GSM: generalised spectral mixture ? 3 7 Remes et al. (2017)
HMK: harmonizable mixture kernel 3 3 3 current work

Table 1: Overview of proposed spectral kernels. The SE, SS and SM kernels are stationary with scalable
spectral inference paradigms (Lázaro-Gredilla and Figueiras-Vidal, 2009; Quiñonero Candela et al., 2010; Gal and
Turner, 2015). The GSM kernel is theoretically poorly defined with unknown harmonizable properties. HMK is
well-defined with variational Fourier features as spectral inference.

ment of non-stationary kernels, with main contribu-
tions:

• We present a detailed analysis of harmonizability,
a concept mainly existent in statistics literature.
Harmonizable kernels are non-stationary kernels
interpretable with their generalized spectral repre-
sentations, similar to stationary ones.

• We propose practical harmonizable mixture kernels
(HMK), a class of kernels dense in the set of har-
monizable covariances with a mixture generalized
spectral distribution.

• We propose variational Fourier features, an inter-
domain GP inference framework for GPs equipped
with HMK. Functions drawn from such GP priors
have a well-defined Fourier transform, a desirable
property not found in stationary GPs.

2 HARMONIZABLE KERNELS

In this section we introduce harmonizability, a general-
ization of stationarity largely unknown to the field of
machine learning. We first define harmonizable kernel,
and then analyze two existing special cases of harmoniz-
able kernels, stationary and locally stationary kernels.
We present a theorem demonstrating the expressive-
ness of previous stationary spectral kernels. Finally,
we introduce Wigner transform as a tool to interpret
and analyze these kernels.

Throughout the discussion in the paper, we consider
complex-valued kernels with vectorial input k(x,x′) :
RD × RD 7→ C, and we denote vectors from the input
(data) domain with symbols x,x′, τ , t, while we denote
frequencies with symbols ξ,ω.

2.1 Harmonizable kernel definition

A harmonizable kernel (Kakihara, 1985; Yaglom, 1987;
Loève, 1994) is a kernel with a generalized spectral
distribution defined by a generalized Fourier transform:

Definition 1. A complex-valued bounded continuous
kernel k : RD × RD 7→ C is harmonizable when it can
be represented as

k(x,x′) =

∫
RD×RD

e2iπ(ω>x−ξ>x′)µΨk
(dω, dξ), (1)

where µΨk
is the Lebesgue-Stieltjes measure associ-

ated to some positive definite function Ψk(ω, ξ) with
bounded variations.

Harmonizability is a property shared by kernels and ran-
dom processes with such kernels. The positive definite
measure induced by function Ψk is defined as the gener-
alized spectral distribution of the kernel, and when µΨk

is twice differentiable, the derivative Sk(ω, ξ) =
∂2Ψk

∂ω∂ξ
is defined as generalized spectral density (GSD).

Harmonizable kernel is a very general class in the sense
that it contains a large portion of bounded, continuous
kernels (See Table 1) with only a handful of (somewhat
pathological) exceptions (Yaglom, 1987).

2.2 Comparison with Bochner’s theorem

Stationary kernels are kernels whose value only depends
on the distance τ = x−x′, and therefore is invariant to
translation of the input. Bochner’s theorem (Bochner,
1959; Stein, 2012) expresses similar relation between
finite measures and kernels:

Theorem 1. (Bochner) A complex-valued function
k : RD×RD 7→ C is the covariance function of a weakly
stationary mean square continuous complex-valued ran-
dom process on RD if and only if it can be represented
as

k(τ ) =

∫
RD

e2iπω>τψk(dω). (2)

where ψk is a positive finite measure.

Bochner’s theorem draws duality between the space of
finite measures to the space of stationary kernels. The
spectral distribution ψk of a stationary kernel is the
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Figure 1: Comparison of Gaussian, SS, SM, GSK, GSM and HM kernels (columns) with respect to the kernel,
Wigner distribution, and the generalized spectral density including real and imaginary part (rows).

finite measure induced by a Fourier transform. And
when ψk is absolutely continuous with respect to the
Lebesgue measure, its density is called spectral density

(SD), Sk(ω) =
dψk(ω)

dω
.

Harmonizable kernels include stationary kernels as a
special case. When the mass of the measure µΨ is
concentrated on the diagonal ω = ξ, the generalized in-
verse Fourier transform devolves into an inverse Fourier
transform with respect to τ = x − x′, and therefore
recovers the exact form in Bochner’s theorem.

A key distinction between the two spectral distributions
is that the spectral distribution is a nonnegative finite
measure, but the generalized spectral distribution is a
complex-valued measure with subsets assigned to com-
plex numbers. Even with a real-valued harmonizable
kernel, Ψk can be complex-valued.

2.3 Stationary spectral kernels

The perspective of viewing the spectral distribution
as a normalized probability measure makes it possible
to construct expressive stationary kernels by modeling

their spectral distributions. Notable examples include
the sparse spectrum (SS) kernel (Quiñonero Candela
et al., 2010), and spectral mixture (SM) kernel (Wilson
and Adams, 2013),

kSS(τ ) =

Q∑
q=1

αq cos(2πω>q τ ), (3)

kSM (τ ) =

Q∑
q=1

αqe
−2π2τ>Σqτ cos(2πω>q τ ), (4)

with number of components Q ∈ N+, the component
weights (amplitudes) αq ∈ R+, the (mean) frequencies
ωq ∈ RD+ , and the frequency covariances Σq � 0. Here
we prove a theorem demonstrating the expressiveness
of the above two kernels.

Theorem 2. Let h be a complex-valued positive def-
inite, continuous and integrable function. Then the
family of generalized spectral kernels

kGS(τ ) =

Q∑
q=1

αqh(τ ◦ γq)e2iπω>
q τ , (5)
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is dense in the family of stationary, complex-valued
kernels with respect to pointwise convergence of func-
tions. Here ◦ denotes the Hadamard product, αq ∈ R+,
ωk ∈ RD, γk ∈ RD+ , Q ∈ N+.

Proof sketch. We know that discrete measures are dense
in the Banach space of finite measures. Therefore, the
complex extension of sparse spectrum kernel kSS(τ ) =∑K
k=1 αke

2iπω>
k τ is dense in stationary kernels.

For each q, the function
αq
h(0)

h(τ ◦ γq)e2iπω>
k τ con-

verges to αqe2iπω>
q τ pointwise as γq ↓ 0. Therefore,

the proposed kernel form is dense in the set of sparse
spectrum kernels, and by extension, stationary kernels.
See Section 1 in supplementary materials for a more
detailed proof. �

We strengthen the claim of Samo and Roberts (2015)
by adding a constraint αk > 0 that restricts the family
of functions to only valid PSD kernels (Samo, 2017).
The spectral distribution of kGS is

ψkGS
(ξ) =

Q∑
q=1

αq∏D
d=1 γkd

ψh((ξ − ωk)� γk), (6)

with � denoting elementwise division of vectors. A real-
valued kernel can be obtained by averaging a complex
kernel with its complex conjugate, which induces a
symmetry on the spectral distribution, ψk(ξ) = ψk(−ξ).
For instance, the SM kernel has the symmetric Gaussian
mixture spectral distribution

ψkSM
(ξ) =

1

2

Q∑
q=1

αq(N (ξ|ωq,Σq) +N (ξ| − ωq,Σq)).

(7)

2.4 Locally stationary kernels

As a generalization of stationary kernels, the locally
stationary kernels (Silverman, 1957) are a simple yet
unexplored concept in machine learning. A locally
stationary kernel is a stationary kernel multiplied by a
sliding power factor:

kLS(x,x′) = k1

(
x + x′

2

)
k2(x− x′). (8)

where k1 : RD 7→ R≥0 is an arbitrary nonnegative
function, and k2 : RD 7→ C is a stationary kernel. k1 is
a function of the centroid between x and x′, describing
the scale of covariance on a global structure, while k2

as a stationary covariance describes the local structure
(Genton, 2001). It is straightforward to see that locally
stationary kernels reduce into stationary kernels when
k1 is constant.

Integrable locally stationary kernels are of particular
interest because they are harmonizable with a GSD.
Consider a locally stationary Gaussian kernel (LSG)
defined as a SE kernel multiplied by a Gaussian den-
sity on the centroid x̃ = (x + x′)/2. Its GSD can
be obtained using the generalized Wiener-Khintchin
relations (Silverman, 1957).

kLSG(x,x′) = e−2π2x̃>Σ1x̃e−2π2τ>Σ2τ , (9)

SkLSG(ω, ξ) = N
(
ω + ξ

2

∣∣∣∣ 0,Σ2

)
N (ω − ξ| 0,Σ1) .

(10)

2.5 Interpreting spectral kernels

While the spectral distribution of a stationary kernel
can be easily interpreted as a ‘spectrum’, the analogy
does not apply to harmonizable kernels. In this section,
we introduce the Wigner transform (Flandrin, 1998)
which adds interpretability to kernels with spectral
representations.

Definition 2. The Wigner distribution function
(WDF) of a kernel k(·, ·) : RD × RD 7→ C is defined as
Wk : RD × RD 7→ R:

Wk(x,ω) =

∫
RD

k
(
x +

τ

2
,x− τ

2

)
e−2iπω>τ dτ .

(11)

The Wigner transform first changes the kernel form k
into a function of the centroid of the input: (x + x′)/2
and the lag x− x′, and then takes the Fourier trans-
form of the lag. The Wigner distribution functions
are fully equivalent to non-stationary kernels. Given
the domain of WDF, we can view WDF as a ‘spec-
trogram’ demonstrating the relation between input
and frequency. Converting an arbitrary kernel into
its Wigner distribution sheds light into the frequency
structure of the kernel (See Figure 1).

The WDFs of locally stationary kernels adhere to the
intuitive notion of local stationarity where frequencies
remain constant at a local scale. Take locally stationary
Gaussian kernel kLSG as an example:

WkLSG(x,ω) = N (ω|0,Σ2)e−2π2x>Σ1x. (12)

3 HARMONIZABLE MIXTURE
KERNEL

In this section we propose a novel harmonizable mix-
ture kernel, a family of kernels dense in harmonizable
covariance functions. We present the kernel in an in-
tentionally concise form, and refer the reader to the
Section 2 in the Supplements for a full derivation.
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3.1 Kernel form and spectral representations

The harmonizable mixture kernel (HMK) is defined
with an additive structure:

kHM(x,x′) =

P∑
p=1

kp(x− xp,x
′ − xp), (13)

kp(x,x
′) = kLSG(x ◦ γp,x′ ◦ γp)φp(x)>Bpφp(x

′),

(14)

where P ∈ N+ is the number of centers, (φp(x))
Qp

q=1 =

e2iπµ>
pqx are sinusoidal feature maps, Bp � 0Qp are

spectral amplitudes, γp ∈ RD+ are input scalings, xp ∈
RD are input shifts, and µpq ∈ RD are frequencies. It
is easy to verify kHM as a valid kernel, for each kp is a
product of an LSG kernel and an inner product with
finite basis expansion of sinusoidal functions.

HMKs have closed form spectral representations such
as generalized spectral density (See Section 2 in the
Supplement for detailed derivation):

SkHM(ω, ξ) =

P∑
p=1

Skp(ω, ξ)e−2iπx>
p (ω−ξ), (15)

Skp(ω, ξ) =
1∏D

d=1 γ
2
pd

∑
1≤i,j≤Qp

bpijSpij(ω, ξ), (16)

Spij(ω, ξ) = SkLSG((ω − µpi)� γp, (ξ − µpj)� γp).
(17)

The Wigner distribution function can be obtained in a
similar fashion

WkHM(x,ω) =

P∑
p=1

Wkp(x− xp,ω), (18)

Wkp(x, ω) =
1∏D

d=1 γpd

∑
1≤i,j≤Qp

Wpij(x,ω), (19)

Wpij(x,ω) = WkLSG

(
x ◦ γp,

(
ω − (µpi + µpj)/2

)
� γp

)
× cos(2π(µpi − µpj)>x). (20)

The kernel form, GSD and WDF both take a nor-
mal density form. It is straightforward to see SkHM is
PSD, and that kHm(−x,−x′) is the GSD of SkHM . A
real-valued kernel kr is obtained by averaging with
its complex conjugate: Wkr(x,ω) = Wkr(x,−ω),
Skr (ω, ξ) = Skr (−ω,−ξ).

3.2 Expressiveness of HMK

Similar to the construction of generalized spectral ker-
nels, we can construct a generalized version kh where
kLSG is replaced by kLS, a locally stationary kernel
with a GSD.

Theorem 3. Given a continuous, integrable kernel
kLS with a valid generalized spectral density, the har-
monizable mixture kernel

kh(x,x′) =

P∑
p=1

kp(x− xp,x
′ − xp), (21)

kp(x,x
′) = kLS(x ◦ γp,x′ ◦ γp)φp(x)>Bpφp(x

′),

(22)

is dense in the family of harmonizable covariances with
respect to pointwise convergence of functions. Here
P ∈ N+, (φp(x))q = e2iπµ>

pqx, q = 1, . . . , Qp, γp ∈ RD+ ,
xp ∈ RD, µpq ∈ RD, Bp as positive definite Hermitian
matrices.

Proof. See Section 3 in the supplementary materials.

4 VARIATIONAL FOURIER
FEATURES

In this section we propose variational inference for
the harmonizable kernels applied in Gaussian process
models.

We assume a dataset of n input X = {xi}ni=1 and
output y = {yi} ∈ Rn observations from some function
f(x) with a Gaussian observation model:

y = f(x) + ε, ε ∼ N (0, σ2
y). (23)

4.1 Gaussian processes

Gaussian processes (GP) are a family of Bayesian mod-
els that characterise distributions of functions (Ras-
mussen and Williams, 2006). We assume a zero-mean
Gaussian process prior on a latent function f(x) ∈ R
over vector inputs x ∈ RD

f(x) ∼ GP(0,K(x,x′)), (24)

which defines a priori distribution over function values
f(x) with mean E[f(x)] = 0 and covariance

cov[f(x), f(x′)] = K(x,x′). (25)

A GP prior specifies that for any collection of n
inputs X, the corresponding function values f =
(f(x1), . . . , f(xn))> ∈ Rn are coupled by following a
multivariate normal distribution f ∼ N (0,Kff ), where
Kff = (K(xi,xj))

n
i,j=1 ∈ Rn×n is the kernel matrix

over input pairs. The key property of GP’s is that
output predictions f(x) and f(x′) correlate according
to how similar are their inputs x and x′ as defined by
the kernel K(x,x′) ∈ R.
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4.2 Variational inference with inducing
features

In this section, we introduce variational inference of
sparse GPs in an inter-domain setting. Consider a GP
prior f(x) ∼ GP(0, k), and a valid linear transform L
projecting f to another GP Lf (z) ∼ GP(0, k′).

We begin by augmenting the Gaussian process with
m < n inducing variables uj = Lf (zj) using a Gaus-
sian model. zj are inducing features placed on the
domain of Lf (z), with prior p(u) = N (u|0,Kuu) and
a conditional model (Hensman et al., 2015)

p(f |u) = N (Au,Kff −AKuuA
†), (26)

where A = KfuK
−1
uu , and A† denotes the Hermitian

transpose of A allowing for complex GPs. The ker-
nel Kuu is between the m × m inducing variables
and the kernel Kfu is the cross covariance of L,
(Kfu)is = cov(f(xi),Lf (zs)). Next, we define a varia-
tional approximation q(u) = N (u|m,S) with the Gaus-
sian interpolation model (26),

q(f) = N (f |Am,Kff −A(S−Kuu)A†), (27)

with free variational mean m ∈ Rm and variational
covariance S ∈ Rm×m to be optimised. Finally, varia-
tional inference (Blei et al., 2016) describes an evidence
lower bound (ELBO) of augmented Gaussian processes
as

log p(y) ≥
n∑
i=1

Eq(fi) log p(yi|fi)−KL[q(u)||p(u)]. (28)

4.3 Fourier transform of a harmonizable GP

In this section, we compute cross-covariances between a
GP and the Fourier transform of the GP. Consider a GP
prior f ∼ GP(0, k) where the kernel k is harmonizable
with a GSD Sk and where f̂ is the Fourier transform
of f ,

f̂(ω) ,
∫
RD

f(x)e−2iπω>x dx. (29)

The validity of this setting is easily verified because f
is square integrable on expectation,

E
{∫

RD

|f(x)|2 dx

}
=

∫
RD

k(x,x) dx <∞. (30)

We can therefore derive the cross-covariances

cov(f̂(ω), f(x)) =

∫
RD

k(t,x)e−2iπω>t dt (31)

cov(f̂(ω), f̂(ξ)) = Sk(ω, ξ). (32)

The above derivation is valid for any harmonizable
kernel with a GSD. The Fourier transform of GP(0, k)
is a complex-valued GP with kernel Sk, which correlates
to the original GP.

For harmonizable, integrable kernel k, we can construct
an inter-domain sparse GP model defined in 4.2 by
plugging in Lf = f̂ .

4.4 Variational Fourier features of the
harmonizable mixture kernel

HMK belongs to the kernel family discussed in 4.3,
but we can utilize the additive structure of an HMK
kHM =

∑P
p=1 kp(x − xp,x

′ − xp). A GP with kernel
kHM can be decomposed into P independent GPs:

f(x) =
P∑
p=1

fp(x− xp), (33)

fp(x) ∼ GP(0, kp(x,x
′)). (34)

Given this formulation, we can derive variational
Fourier features with inducing frequencies conditioned
on one fp. For the pth component, we have mp in-
ducing frequencies (ωp1, . . . ,ωpmp) and mp inducing
values (up1, · · · , upmp). We can compute inter-domain
covariances in a similar fashion:

Kfu(ωqj ,x) , cov(f(x), uqj) (35)

=

P∑
p=1

cov(fp(x− xp), uqj)

= cov(fq(x− xq), f̂q(ωqj)).

Similarly, we compute entries of the matrix Kuu

Kuu(ωpi,ωqj) , cov(upi, uqj) =

{
Sp(ωpi,ωqj), p = q,

0, p 6= q.

(36)

The matrix Kuu allows for a block diagonal structure,
which allows for faster matrix inversion. The variational
Fourier features are then completed by plugging in
entries in Kfu (35) and Kuu (36) into the evidence
lower bound (28).

4.5 Connection to previous work

In this section we demonstrate that an inter-domain sta-
tionary GP with windowed Fourier transform (Lázaro-
Gredilla and Figueiras-Vidal, 2009) is equivalent to a
rescaled VFF with a tweaked kernel. GPs with sta-
tionary kernels do not have valid Fourier transform,
therefore, previous attempts of using Fourier trans-
forms of GPs have been accompanied by a window
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Figure 2: Sparse GP classification with the banana dataset. The model is learned by an HMK with P = 4
components, and thus 2 inducing frequencies for each component constitute a total of 2× 4 inducing frequencies.

function:

Lf (ω) =

∫
RD

f(x)w(x)e−2iπω>x dx. (37)

The windowing function w(x) can be a soft Gaus-
sian window w(x) = N (x|µ,Σ) (Lázaro-Gredilla
and Figueiras-Vidal, 2009) or a hard interval window
w(x) = I[a≤x≤b]e2iπa (Hensman et al., 2017). The win-
dowing approach shares the caveat of a blurred version
of the frequency space, caused by an inaccurate Fourier
transform(Lázaro-Gredilla and Figueiras-Vidal, 2009).

Consider f ∼ GP(0, k) where k is a stationary kernel,
and w(x) = N (x|µ,Σ), we see that g(x) = w(x)f(x) ∼
GP(0, w(x)w(x′)k(x − x′)). It is easy to verify that
the kernel of g(x) is locally stationary. There exist the
following relations of cross-covariances:

cov(f(x),Lf (ω)) =
cov(g(x), ĝ(ω))

w(x)
, (38)

cov(Lf (ω),Lf (ξ)) = cov(ĝ(ω), ĝ(ξ)). (39)

Therefore, windowed inter-domain GPs are equivalent
to rescaled GPs with a tweaked kernel.

5 EXPERIMENTS

In this section, we experiment with the harmonizable
mixture kernels for kernel recovery, GP classification
and regression. We use a simplied version of the har-
monizable kernel where the two matrices of the lo-
cally stationary kLSG are diagonals: Σ1 = diag(σ2

d),
Σ2 = λ2I. See Section 6 in the supplement for more
detailed information.

5.1 Kernel recovery

We demonstrate the expressiveness of HMK by using
it to recover certain non-stationary kernels. We choose
the non-stationary generalized spectral mixture kernel
(GSM) (Remes et al., 2017) and the covariance function
of a time-inverted fractional Brownian motion (IFBM):

kGSM(x, x′) = w(x)w(x′)kGibbs(x, x
′) cos(2π(µ(x)x− µ(x′)x′)),

kGibbs(x, x
′) =

√
2l(x)l(x′)

l(x)2 + l(x′)2
exp

(
− (x− x′)2

l(x)2 + l(x′)2

)
,

kIFBM(t, s) =
1

2

(
1

t2h
+

1

s2h
−
∣∣∣∣1t − 1

s

∣∣∣∣2h
)
,

where s, t ∈ (0.1, 1.1] and x, x′ ∈ [−1, 1]. The hy-
perparameters of kHM are randomly initialized, and
optimized with stochastic gradient descent.

Both kernels can be recovered almost perfectly with
mean squared errors of 0.0033 and 0.0008. The result
indicates that we can use the GSD and the Wigner
distribution of the approximating HM kernel to inter-
pret the GSM kernel (see Section 5 in supplementary
materials).

5.2 GP classification with banana dataset

In this section, we show the effectiveness of variational
Fourier fetures in GP classification with HMK. We use
an HMK with P = 4 components to classify the banana
dataset, and compare SVGP with inducing points (IP)
(Hensman et al., 2015) and SVGP with variational
Fourier features (VFF). The model parameters are
learned by alternating optimization rounds of natural
gradients for the variational parameters, and Adam
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Figure 3: Kernel recovery experiment with true kernels
(left) against SM kernel approximations (right).

optimizer for the other parameters (Salimbeni et al.,
2018).

Figure 2 shows the decision boundaries of the two
methods over the number of inducing points. For both
variants, we experiment with model complexities from
6 to 24 inducing points in IP, and from 2 to 8 inducing
frequencies for each component of HMK in the VFF.
The centers of HMK (red triangles) spread to support
the data distribution. The IP method is slightly more
complex compared to VFF at the same parameter
counts in terms of nonzero entries in the variational
parameters.

The VFF method recovers roughly the correct decision
boundary even with a small number of inducing frequen-
cies, while converging faster to the decision boundaries
as the number of inducing frequencies increases.

5.3 GP regression with solar irradiance

In this section, we demonstrate the effectiveness of
HMK in interpolation for the non-stationary solar ir-
radiance dataset. We run sparse GP regression with
squared exponential, spectral mixture and harmoniz-
able mixture kernels, and show the predicted mean, and
95% confidence intervals for each model (See Figure 2).

We use sparse GP regression proposed in (Titsias, 2009)
with 50 inducing points marked at the x axis. The
SE kernel can not estimate the periodic pattern and
overestimates the signal smoothness. The SM kernel
fits the training data well, but misidentifies frequencies
on the first and fourth interval of the test set.

For sparse GP with HMK, we use the same framework

Figure 4: Sparse GP regression with solar irradiance
dataset.

where the variational lower bound is adjusted for VFF.
The model extrapolates better for the added flexibility
of nonstationarity, and the inducing frequencies aggre-
gate near the learned frequencies. Both first and last
test intervals are well fitted. The Wigner distribution
with inducing frequencies of the optimised HM kernel
is shown in Figure 2d.

6 CONCLUSION

In this paper, we extend the generalization of Gaussian
processes by proposing harmonizable mixture kernel, a
non-stationary kernel spanning the wide class of har-
monizable covariances. Such kernels can be used as
an expressive tool for GP models. We also proposed
variational Fourier features, an inter-domain inference
framework used as drop-in replacements for sparse GPs.
This work bridges previous research on spectral repre-
sentation of kernels and sparse Gaussian processes.

Despite its expressiveness, one may brand the para-
metric form of HMK as not fully Bayesian, since it
contradicts the nonparametric nature of GPs. A fully
Bayesian approach would be to place a nonparametric
prior over harmonizable mixture kernels, representing
the uncertainty of the kernel form (Shah et al., 2014).
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