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 

Abstract—An influential factor in enhancing the attendance 
services, mainly in commercial and emergency sectors, is the 
vehicular technology used to transport people, goods, or 
equipment. Although hybrid electric vehicles (HEVs) represent a 
sustainable transport alternative, the existing technical limitations 
such as battery and fuel capacities, and autonomy, among others, 
highlight the provision of an efficient automation tool. The tool can 
serve to enhance the operational performance of the HEV by 
selecting the proper driving mode (on fuel or electricity), and the 
navigation strategies to the delivery and charging points in urban 
areas. This paper proposes a two-stage methodology that allows 
the HEVs operators to automate the operational performance of a 
heterogeneous HEV fleet on a city map. Each stage is handled by 
its corresponding optimization model. In the first stage, the total 
navigation time and the battery lifetime of the fleet during the 
operation are optimized. In this stage, constraints related to 
charge-sustaining/charge-depleting modes, state of charge (SoC) 
of the HEVs battery, and deliveries schedules are taken into 
account. To this end, operating strategies related to the 
performance of different types of existing HEV technologies are 
anonymously considered. In the second stage, the best operating 
strategy among all the operating strategies is selected while 
considering the capacity of HEVs to deliver a given quantity of 
goods. Moreover, uncertainties during the HEV navigation are 
simulated considering the change in traffic density of the urban 
roads as a function of the levels of service (LOS). Results show that 
the proposed methodology establishes an efficient operational 
scheme for a HEVs fleet, ensuring a significant reduction of energy 
usage as well as mitigating the CO2 emissions. 

Index Terms—Attendance services, Battery charging, HEV 
heterogeneous fleet, operating strategies. 

NOMENCLATURE  
A. Sets and indexes 
k/i,d,e,u Indexes stand for intersections i/k, delivery, HEV 

technology, and density value, respectively. 
op/ps Indexed of operation, and operating strategy 

௨௥, ௜ Set of urban roads ki and intersections i of roads. 
ௗ ௘ Set of deliveries points d and HEV technologies e. 
௢௣ ௣௦Set of operations s and operating strategies v. 
஽ Set of density values u. 

B. Parameters 
௘ Autonomy value of HEV e (km). 

 Linear battery degradation cost-intercept parameter. 
௘ Battery capacity of the HEV e (kWh). 
௅ Battery lifetime in years. 
௘
ுா௏ Capacity of HEV e (quantity of goods that can be 

transported by HEV e). 
஻ Battery cost ($/kWh). 
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ி Capacity fade at end of life. 

௞௜, ௞௜  Length of road ki (km), and the corresponding traffic 
density (veh/km). 

௨ Value of the traffic density of element u (veh/km). 

௃ Saturation density value (veh/km). 

଴ Optimal density value related to ௠௔௫ (veh/km). 

௘
஼ைమ CO2 emissions of HEV e (gCO2/km). 

௠௔௫ Maximum traffic flow value (veh/h). 

௠௔௫
௠௥  Maximum traffic flow value on main roads (veh/h). 

௠௔௫
௦௥  Maximum traffic flow value on secondary roads 

(veh/h). 
஼ Fuel capacity (L). 
 Linear battery degradation cost-slope parameter. 
         Big value used as part of the constraints linearized. 

௘,௦,௩,ௗ
ௗ௘௟  Hyper-matrix related to the deliveries d in operating 

strategy v of the operation s to be performed by HEV e. 

௘,௦,௩
௙௢௕  Hyper-matrix related to the objective function values of 

operating strategy v for operation s of HEV e. 
ௗ Total number of points to be visited (delivery points and 

warehouse). 

௘
௖௛ Charging rate of HEV e (kW). 

𝑃௨
௠௥/௦௥ Probability values related to ௨ at main/secondary 

roads, respectively. 
𝑃௨

௔௠௥/௔௦௥Accumulated probability value related to ௨
௠௥ or ௨

௦௥. 

௜
௦ Type of intersection i (1: if the intersections has a 

charging station, otherwise 0). 

௘
௢ Initial SoC of the battery of HEV e (kWh). 

ௗ,௜
௡  Indicates the type of intersection i at delivery d. 

௞௜
௨௥ Indicates the type of road ki (1: main; 0: secondary). 

௦
௢௣ Quantity of goods to be demanded in operation s. 

௞௜ Maximum average speed value of road ki (km/h). 

௙ Free flow speed value (km/h). 

଴ Optimal speed value related to ௠௔௫ (km/h). 
𝑣଴

௠௥/𝑣଴
௦௥ Optimal speed related to ௠௔௫

௠௥  or ௠௔௫
௦௥  (km/h). 

𝛿௡௧, 𝛿௕௟ Weighted weights related to total navigation time, and 
battery lifetime. 

௨௘ Extra units cost ($/units). 
 Parameter for defining the nodes status of ௗ,௜

௡  (-1: 
starting node; 0: intermediate node; 1: arrival node). 

௘
஼ Fuel consumption rate (km/L). 
஼ Percentage of CO2 emissions reduction. 
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௘
௉ா Percentage of battery capacity, used to calculate the 

SoC of HEV e returning to the warehouse. 

௘
஽ Rate of energy spend by HEV e (kWh/km). 

ൣ𝜏௖௛, 𝜏௖௛൧Charging time variation interval (h). 
𝜂௖ா/𝜂ௗா Charging/discharging efficiencies values. 
C. Variables 

௘,ௗ,௞௜ Decides the travel of HEV e in road ki for delivery d. 

௘,ௗ,௞௜
஼ௌெ/஼஽ெ Length of road ki that HEV e travels in CSM/CDM for 

delivery d. 
௘,ௗ,௜ SoC of the battery of HEV e at the intersection , at 

delivery d (kWh). 
௘,ௗ,௜
௔  SoC of the battery of HEV e when arrives at the 

intersection i at delivery d (kWh). 
௘,ௗ,௜  Energy for charging of HEV e at intersection i for 

delivery d (kWh). 
௘,ௗ,௜
௖௛  Denotes the charging time of HEV e at charging station 

located in the intersection i during delivery d (h). 
௘,ௗ,௜ Stands for the charging status of HEV e at intersection 

i during delivery d. 
௘,ௗ,௞௜
஼஽ெ  Represents the product of ௘,ௗ,௞௜ and ௘,ௗ,௞௜

஼஽ெ at the 
linearized constraints. 

௘,ௗ,௞௜
ᇱ  Represents the product of ௘,ௗ,௞௜ and ௘,ௗ,௞ at the 

linearized constraints. 
௘,ௗ,௜
௖௛  Represents the product of ௘,ௗ,௜ and ௘,ௗ,௜

௖௛ at the 
linearized constraints. 

௘,௦,௩  Decides which operation s is made by HEV e via the 
operating strategy v. 

ுா௏ Total extra quantity of goods. 

I. INTRODUCTION 
HE electricity demand by the transportation sector will 
increase sharply after 2020 due to the projected increase in 

sales of new electric vehicles (EVs) and hybrid electric vehicles 
(HEVs) [1]. In this context, service sectors, mainly commercial 
(e.g., postal, merchandise, home care, etc.) and emergency 
(e.g., ambulances, fire engines, police vehicles, energy 
company cars, etc.), can have a positive influence, since the 
quality of their attendance depends largely on the vehicular 
technologies used to transport people, goods and/or equipment 
in urban areas [2]. These services present several challenges 
such as minimizing delay times, managing fuel consumption, 
selecting the most appropriate route, etc., thereby affecting the 
vehicle fleet performance. These challenges highlight the 
crucial role of electric vehicles and the operational and 
sustainable aspects to be considered within an efficient 
automation strategy during their operation [3], [4]. 

Studies show that among EV-based technologies, the HEV is 
a promising alternative in the transportation sector, mostly due 
to socio-environmental factors [5], [6]. Basically, HEVs present 
two driving modes during navigation such as 1) Charge-
Sustaining Mode (CSM), and 2) Charge-Depleting Mode 
(CDM). In CSM, the internal combustion engine drives the 
HEV, whereas, in CDM, the electric energy of the battery is 
used for driving purposes [7], [8]. If a fleet of HEVs is used to 
transport goods, their capacity and performance are 
determining factors that must also be considered in the 
automation of this particular type of service. Therefore, 
depending on the quantity of goods, location of supply points 
and scheduling of operations, proper technology should be 
assigned. This reveals the significant role of smart tools that 

ensure the efficient automation of an HEV heterogeneous fleet 
considering the optimal CSM/CDM selection, optimal battery 
management, optimal deliveries scheduling, and environmental 
issues. Also, the uncertainties due to the variation in traffic 
density for each road on the urban map, as well as speed limits 
on roads and sustainable performance of HEVs should be 
considered in the automation tool [9], [10].  

In the literature, most of the existing works related to HEV 
fleets merely consider the optimal charging or fuel consumption 
management. In [6], to fulfill the economic criteria of 
autonomous EVs charging in a city with a predefined spatial 
limit, a Monte Carlo simulation-based approach was proposed. 
A mixed-integer linear programming (MILP) model was 
developed in [11] to coordinate the charging and power storage 
in the battery of the HEV fleet. In order to optimize the charging 
profile in the predefined charging points, an energy management 
system for EV fleet operators was proposed in [12]. In [13], a 
sensitivity analysis has been done to find the optimal charging 
process of the EV fleet and the flow exchange between the 
power grid and EVs. In [14], optimal recharging of EVs 
considering the different habits of owners was a part of a smart 
microgrid project in order to manage energy usage, fuel costs, 
and carbon dioxide emissions, while, as a storage device, 
addressing the fluctuations of renewable energy output. In [15], 
a predictive management system was proposed for optimal 
charging of the HEVs fleets while the charging station was 
equipped with PVs taken into account the distribution network 
restrictions. Decentralized control strategies and mathematical 
programming models for the charging of an EV fleet were 
developed in [16] and [17]. In [18], an adjustable robust 
optimization model considering a set of charging stations, travel 
costs, and battery capacities was investigated. In [19], [20], 
aiming at minimizing the charging costs, proper policies and 
charging strategies to determine the optimal scheduling 
considering historical data were developed. To fairly address 
the optimal scheduling of EVs, the economic charging and 
battery degradation were co-optimized in [21] via the Pareto 
front technique. The EV charging rates were modeled via 
partial differential equations under three conditions: 1) EVs 
receive energy from the grid, 2) EVs are connected to the grid 
but not charging, and 3) EVs deliver energy to the grid, was 
considered in [22]. Optimal charging scheduling of taxi fleets 
was presented in [23] while taking into account the charging 
station locations, unpredictability and balancing issues. 
Although the aforementioned works highlight the importance 
of EV charging scheduling, energy management of both EV 
fleets and charging points and their impact on the electricity 
grid, both the route as well as the uncertainties involved during 
navigation of each EV were not part of their focus, while the 
navigation modes, emissions reduction during navigation, and 
the EV type (heterogeneous fleet) were also neglected.  

In order to fill the aforementioned existing gaps, the 
performance of EVs and HEVs has been investigated in some 
works. The integration of thermal power generation units as a 
support system for PHEV charging has been studied in [24] 
aiming at minimizing the emissions, especially during peak 
demand periods. A comparative study on the fuel consumption 
and emission output of conventional HEVs and plug-in HEVs 
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were conducted in [25] while taking into account the interaction 
between the energy storage system, electric machine, power 
control unit and internal combustion engine. An energy 
management and vehicle control models were proposed in [26] 
to simultaneously reduce the fuel consumption and polluting 
emissions of the HEVs by taking into account the information 
related to a city road network. In [27], a neural network-based 
dynamic online programming strategy was used to minimize 
the fuel consumption of PHEVs where the real-time 
information, i.e., traffic and control signal, was interchanged 
between the vehicles and the control center. A management 
strategy based on the performance of Toyota Prius was 
investigated in [28] to control the pollutant effects of CO2 
emissions. Internal power flow and its efficient management in 
the HEV powertrain were analyzed in [29] and [30]. In [29], the 
limits of the power grid and the waiting and charging times by 
HEV were considered, while in [30], travel speed, energy level, 
and stop-and-go frequency were addressed. However, still, 
there is a lack of smart tools for an effective route and delivery 
schedule to manage the costs and emissions more effectively.  

Investigations related to the determination of the optimal 
routes, deliveries, and transport capacity of vehicle fleets were 
addressed in a few works. A mixed-integer quadratically 

constrained programming (MIQCP) model was proposed in 
[31] aimed at minimizing the fuel and the recharging costs of 
the EV fleet in urban areas. However, in this MIQCP model, the 
traffic density on the main and secondary roads, the direction of 
the roads, which can be one- or two-way in real-world urban 
areas, as well as the autonomy of EVs were disregarded. Such 
oversimplification results in an impractical and unrealistic 
outcome. In [32], a mathematical formulation for the service 
network design of a heterogeneous fleet was developed. This 
formulation considered a set of delivery points with predefined 
demand and the required time in the scheduling process to 
reveal the importance of considering a heterogeneous fleet as 
part of a service network. However, this paper did not take into 
account the attendance sequences, route types in the 
transportation network, and aspects related to the sustainable 
operation of the fleet, i.e., the presence of BEVs, HEVs, or 
PHEVs. In [33], a mixed-integer linear programming (MILP) 
model was proposed to solve the vehicle routing problem of the 
heterogeneous fleet while minimizing the total transportation 
costs considering a set of vehicles with their transport capacity 
attending a limited number of customers. A combined energy 
management strategy, i.e., electricity and fuel consumption, 
based on frequent route data was developed in [34]. The model 
considered a set of HEVs and the information related to global 
positioning and routes while disregarding the location of 
charging stations and operational characteristics such as 
navigation time and within urban areas. In [35], to satisfy the 
transport demand in a given geographical area, a MIQCP model 
was proposed to guarantee the minimum distance of a fleet of 
EVs. Although a pure battery fleet represents nearly-zero 
emissions, its optimal performance is questionable due to the 
battery charging times and lack of flexibility. In the 
aforementioned works, the problem of optimal routing 
considering the transport capacity of vehicular fleets was 
addressed. However, studies involving the environmental issue 

and the use of EVs/HEVs heterogeneous fleet as sustainable 
forms of transport in the service sector are scarce in the 
literature.  

Works related to EVs and HEVs considering charging 
batteries and navigation routes for deliveries were developed in 
[7], [8], [36]. It is worth mentioning that the main motivation of 
our proposed model is to fill the existing gaps in these works. 
The authors in [7] and [8] addressed the performance of HEVs 
during navigation taking into account the driving modes. In [7], 
the automation of HEVs driving modes within an urban area 
was addressed via an MILP model taking into account traffic 
density variations in main and secondary urban roads. In [8], 
the trip information, charging stations along with path planning, 
were considered to minimize the fuel consumption by selecting 
the most appropriate driving mode. The model was handled by 
dynamic programming for offline mode, while a novel 
algorithm, namely online, was used for real-time optimization 
purposes. In [36], the optimal operation of a fleet of EVs was 
guaranteed via a MILP model considering a predefined number 
of deliveries to be made within a city map. In this model, the 
shortest distances and minimum operating times of the EVs for 
each delivery was targeted. However, due to long battery 
charging times in purely battery-based EVs, it represents an 
operational limitation in the commercial service and emergency 
sectors. In contrast, HEVs that have different driving modes 
represent a more promising alternative in these sectors. To this 
end, four HEV technologies were tested in [37] via a MILP 
model that aims to optimize maintenance costs while 
guaranteeing the CO2 emission reduction. In this work, the 
performance of each HEV belonging to the fleet was evaluated 
individually by the proposed model. In these approaches, the 
transport capacities of the EVs and HEVs, as well as the 
selection of the best operating strategy, were not considered.  

Consequently, in order to fill the aforementioned existing 
gaps, this paper proposes a two-stage methodology for the 
efficient automation of an HEV heterogeneous fleet that 
enables the service operators to ensure the optimal operational 
strategy of the vehicle fleet during deliveries. In the first stage, 
all the operating strategies related to the performance of each 
type of HEV are determined taking into account the optimal 
selection of CSM and CDM, as well as a set of constraints 
related to CO2 emissions level, SoC of HEVs and deliveries 
scheduling aiming at minimizing the maintenance and overtime 
costs. In the second stage, the best operating strategy for a type 
of HEV technology considering constraints related to the goods 
supply capacity is obtained. Uncertainties, due to traffic density 
variation in the operation of HEV, are modeled considering the 
probability values corresponds to the levels of service (LOS). 
The model of the urban map presents a graph with 412 nodes 
(intersections between main and secondary roads) and 832 
roads. In order to obtain more realistic results of the HEV 
heterogeneous fleet during operation on the urban map, real-
data of the existing HEVs technology are anonymously used. 
Our work goes beyond the models proposed in [7], [36], and 
[37]. In [7] and [37], investigations related to the performance 
of HEV technologies were carried out and in [36] the 
management of a homogeneous fleet of EVs was developed. 
These technologies have less robust batteries and different 
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modes of navigation, thus allowing to optimize the delivery and 
charging time during the operation of HEV. The proposed 
approach ensures the efficient automation of the HEV 
heterogeneous fleet during the navigation considering CO2 
emissions reduction, and the goods supply capacities associated 
with the type of HEV technology. In order to find the optimal 
solution, the AMPL [48] software is used for implementation 
purpose while the model is solved via the commercial solver 
CPLEX [49].  

The main contributions of this paper over the existing works 
in literature are summarized as follows. 
 Proposing computationally-efficient MILP models for the 

proper automation of the HEV heterogeneous fleet 
considering CO2 emissions reduction. 

 Investigating the potential impact of using various HEV 
technologies in the service sector considering their supply 
of goods capacities and sustainable modes of navigation that 
guarantee the optimal using of the battery. 

 From a sustainable standpoint, the application of this smart 
tool contributes to reducing dependence on fossil fuels as 
well as the minimization of polluting gases in urban centers.   

The remainder of this work is organized as follows. The 
hypothesis and stochasticity in the HEVs operation are presented 
in Section II. Optimization models and the linearization process 
are presented in Section III. Section IV explains in detail the 
proposed methodology. Section V presents the numerical 
example and results. Conclusions are given in Section VI.  

II. SIMULATION SETUP 
In this section, first, a general explanation of the primary 

requirements of the automation strategy for transportation 

purposes is provided. Then, the main hypotheses of the 
proposed model, the location of charging stations and delivery 
points, as well as the uncertainties associated with the HEV are 
explained in detail. 

The HEVs automation strategy should take into account the 
basic information [38], see Fig. 1. As can be seen, the service 
operators require some information of the urban areas, namely 
offline information such as location of the warehouse, delivery 
points and the number of goods to be delivered, and charging 
stations, and online information such as the traffic density in the 
urban roads [38], [39]. Then, a set of deliveries is assigned to 
each HEV of the fleet considering its transport capacity, i.e., the 
quantity of goods that the HEV can transport, and hybrid 
technology characteristics, e.g., SoC, battery capacity, fuel tank 
capacity, autonomy, etc. Fig. 2 is used to illustrate the 
assignment and delivery of goods, and the operational strategies 
in the delivery process [36]. There exist a set of deliveries, i.e., 
delivery 1 to 4, differentiable in quantities and types of goods 
that influence the HEV selection. The operator analyzes all the 
possible operational strategies and the sequences in which the 
goods will be delivered, the urban routes to be traversed as part 
of the total delivery route, i.e., Route 1 to 5, as well as the 
charging points to be visited during navigation for charging 
purposes [7]. Considering all these aspects during the HEV 
navigation, from starting and returning to the warehouse, results 
in a highly complex model.  
A. Hypotheses 

In the proposed approach, the following hypotheses are used 
to adequately model the problem. 

1. In the urban map, the locations of all the deliveries and 
charging points are predefined.  

2. There is only one point within the urban map that the HEVs 
departure and arrive, namely the warehouse. 

3. Each urban road is subject to a speed limit as a 
consequence of uncertainties in the traffic density. 

4. The costs due to the degradation of the battery present a 
linear behavior based on the SoC of each HEV. 

5. An operation consists of a given number of delivery points 
to be visited. 

6. An operating strategy consists of a specific sequence in 
which the delivery points are visited. 

 
Fig. 2. Possible sequences for the delivery of product (operating strategies) related to a given operation. 

 
Fig. 1. Operational diagram of a service company. 
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B. Location of Charging Stations and Delivery Points  
In this work, to model the locations of charging stations and 

delivery points [36], [40] are used where the urban map 
presented in [36] is extended to a large-urban map, as depicted 
in Fig. 3. The main and secondary urban roads are differentiated 
by ௞௜

௨௥ and are represented by gray and dashed lines, 
respectively [7]. In this figure, the charging stations are 
presented with gray squares, and the distance between two 
consecutive stations is approximately five kilometers. The 
charging stations in the secondary roads are located at the 
intersections i ( ௜

௦ ) near the main roads and by the city 
perimeter. The green-filled triangles and empty stand for the 
warehouse and delivery points, respectively. For identification 
of each intersection i to be visited by HEV during delivery d, 
parameter ௗ,௜

௡  is used that can take two values, 1 or -1 that stand 
for arrival and departure intersections, respectively. Locations 
of the warehouse, charging, and deliveries, as well as the length 
of the roads on a large-urban map, are available in [41].  
C. Modeling of Uncertainties 

This paper considers the uncertainties correspond to the 
variation of traffic density (vehicle per kilometer), as a 
stochastic phenomenon, on a given road. The traffic density 
affects the speed limit of the HEVs in a road [36], [42]. Traffic 
density values linked to the LOS are used to simulate these 
uncertainties.  

In practice, to represent the LOS, six letters A-F are used [43] 
where the difficulties that the HEV driver will have along an 
urban road are increased from A to F. In order to portray this 

stochastic difficulty, in this work, the uncertainties are 
simulated based on the first three usual levels such as A (low 
traffic density, car drivers have complete mobility on the roads), 
B (reasonable traffic density, slightly restricted 
maneuverability) and C (high traffic density, maneuverability 
is restricted and driver needs high concentration) [44], [45]. 
Table I shows the cumulative probability values to be adopted 
[7]. The values of ௨

௔௠௥ or ௨
௔௦௥ are calculated considering that 

each urban road ki has the same probability, e.g., as can be seen 
in Table 11, there exist 11 subcases in total (3 subcases in level 
A, 4 subcases in level B, and  4 subcases in level C), the 
probability is . These probabilities are assigned to the given 

values of ௨. Thus, the accumulated probability values, ௨
௔௠௥, 

are obtained by adding up the probability values, ௨
௠௥, in each 

subcase, e.g., in subcase 3 it will be calculated as                   
, as can be seen in Table I. Therefore, 

in the main urban roads, the lower values of ௨
௔௠௥ are related to 

a lower quantity of traveled vehicles per kilometer, ௨, while 
the higher probability values are considered for higher traffic 
density (see Fig. 4). This fact ensures the representation of 
higher vehicle flow on the main roads that makes the 
operational performance of HEVs more complex.  

The cumulative probability curves of ௨
௔௠௥and ௨

௔௦௥, on the 
left side of Fig. 4, is used to extract the accumulated probability 
values of traffic density presented in Table I. This way, on the 
secondary urban roads, the behavior of a lower vehicle flow is 
related to a higher probability, thus, with a lower probability, 
the situations in which a secondary road presents a higher traffic 
density are characterized. The cumulative probability values are 
used to assign the density values, ௨, to all the main and 
secondary roads [7], [37]. Fig. 5 represents the proposed 
algorithm to simulate uncertainties related to traffic density 
variation, where ௢

௠௥ and ௢
௦௥ are set to 60 and 30, respectively. 

The number of iterations is equal to the number of roads in the 
urban map. This algorithm starts with pre-defined values for 
parameters ௨

௔௠௥, ௨
௔௦௥, ௨, ௃, ௢

௠௥, ௢
௦௥, while ௞௜ and ௞௜ are 

initialized to zero. Nonzero random values within interval 
[0,100] are assigned to ௔௟; the condition, ௔௟ ≠ 0 is evaluated 
to guarantee the nonzero value. Then, to start the iterative 
process for calculating ௞௜, type of roads are differentiated via 

TABLE I 
ACCUMULATED PROBABILITY RELATED TO TRAFFIC DENSITY 

LOS A B  C 
u  1 2 3 4 5 6  7  8  9  10  11 

𝐷௨ (veh/km) 5 6 7 8 9 10  11  12  13  14  15 
Main urban roads ki 

𝑃௨
௔௠௥ 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11/11 

Secondary urban roads ki 
𝑃௨

௔௦௥ 11/11 10/11 9/11 8/11 7/11 6/11 5/11 4/11 3/11 2/11 1/11 

Fig. 3. Urban map containing 412 intersections and 832 roads. 

 

Fig. 4. Cumulative probability behavior and traffic density values for each 
urban road ki. 

 
Fig. 5. Flowchart of the simulation algorithm. 
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checking the condition ௞௜
௨௥. If the condition ௞௜

௨௥=1 is satisfied, 
then the process belongs to the main roads otherwise this 
process is used for the secondary roads ( ௞௜

௨௥ = 0). Note that the 
iterative process is similar for both roads, it is only required to 
consider the values correspond to them, ௨

௔௠௥
௨
௔௦௥ and 

௢
௦௥

௢
௠௥. Therefore, the detail explanation of this iterative 

process is provided for the main roads. If u=1, ௔௟ is assessed 
under the condition 0 ≤ ௔௟ ≤ ௨

௔௠௥, and if this condition is 
satisfied, ௨ is assigned to ௞௜ and ௞௜ is obtained. Otherwise, 
for u>1, the condition 

௨ିଵ
௔௠௥ ≤ ௔௟ ≤ ௨

௔௠௥ is used to evaluate 
௔௟, and if this condition is satisfied, ௞௜ is assigned to its 

respective ௨ and ௞௜ is calculated. This internal iterative 
process terminates when the stopping criterion = ஽

 is met, 
and then the algorithm checks whether the process has been 
done for all roads. At the end of this iterative process, the values 
of ௞௜ for each road ki on the urban map are obtained. This value 
is used in the first term of (1).  

III. PROPOSED MODEL 
In this section, the mathematical formulation of the proposed 

two-stage model is presented in detail.  
A. First-stage: MINLP Model  

The problem of this stage is represented via a mixed-integer 
nonlinear programming (MINLP) model (1)–(16). 

௡௧
ଵ

௕௟
ଶ  (1) 

where,  

ଵ ௘,ௗ,௞௜

∀௞௜∈ஐೠೝ

௞௜

௞௜∀ௗ∈ஐ೏

 

ଶ
஻ ௘,ௗ,௜

ி ௅
∀௜∈ஐ೔∀ௗ∈ஐ೏

 

subject to: 

௘,ௗ,௞௜

∀௞௜∈ஐೠೝ

௘,ௗ,௜௝

∀௜௝∈ஐೠೝ

 

ௗ ௜ ௗ,௜
௡  

(2) 

௞௜ ௘,ௗ,௞௜ ௘,ௗ,௞௜
஼஽ெ

௘,ௗ,௞௜
஼ௌெ

ௗ ௨௥  (3) 

௘,ௗ,௞௜
஼஽ெ

ௗ ௨௥  (4) 

௘,ௗ,௞௜
஼ௌெ

ௗ ௨௥  (5) 

௘
஼ ௘,ௗ,௞௜

஼ௌெ

∀௞௜∈ஐೠೝ∀ௗ∈ஐ೏

஼ ஼   (6) 

௘,ௗ,௜ ௘
௢  

ௗ ௜ ௗ,௜
௡  

(7) 

௘,ௗ,௜ ௘,ௗିଵ,௜  

ௗ ௜ ௗ,௜
௡

ௗିଵ,௜
௡  

(8) 

௘,ௗ,௜ ௘,ௗ,௜
௔

௘,ௗ,௜ ௗ ௜ ௗ,௜
௡   (9) 

௘,ௗ,௜ ௘
௉ா

௘ ௗ ௜
ௗ

ௗ,௜
௡   (10) 

௘,ௗ,௜ ௘ ௗ ௜  (11) 

௘,ௗ,௜
௔

௘,ௗ,௞௜ ௘,ௗ,௞
ௗா

௘
஽

௘,ௗ,௞௜
஼஽ெ

∀௞௜∈ஐೠೝ

 

ௗ ௜ 
(12) 

௘,ௗ,௜
௔

ௗ ௜  (13) 

௘,ௗ,௜  

ௗ ௜ 

ௗ,௜
௡

ௗ,௜
௡

௜
௦  

(14) 

௘,ௗ,௜
௖ா

௘
௖௛

௘,ௗ,௜ ௘,ௗ,௜
௖௛  (15) 

ௗ ௜ ௗ,௜
௡

௜
௦  

௖௛
௘,ௗ,௜
௖௛ ௖௛

ௗ ௜
  (16) 

The objective function (1) represents two parts related to ଵ 
and ଶ, as well as their respective weighting factors.  ଵ stands 
for the total navigation time of each HEV and its minimization 
ensures that the shortest route is selected considering the traffic 
information represented by the speed value, ௞௜, in each road ki 
to be selected as part of an operation strategy. On the other 
hand, ଶ is related to the lifetime of the HEV battery, taking 
into account the minimization of the degradation effect due to 
frequent recharging. Thus, for the efficient usage of an HEV 
battery, an optimal level of SoC should be considered. The 
scheduling of deliveries d for each HEV, are made via (2). In 
this constraint, the values of  ( 1, 0, and 1) define the type of 
intersection i and are used to determine the shortest route ij 
(related to node i) to be traveled. For β = -1, (2) is used to 
calculate the shortest distance ௜௝ to be traveled, from 
intersection i ( ௗ,௜

௡  = -1) to all possible intersections j. For β = 0, 
(2) stands for the navigation of HEV on the roads with 
intermediate intersections, where the trip from intersections k 
to i and i to j is part of the minimum route, ௞௜ and ௜௝. In this 
case, the intermediate intersections i ( ௗ,௜

௡  = 0) stand for the 
arrival intersection of an HEV that is coming from intersections 
k, while at the same time, it plays the role of the departure point 
for the HEV going to intersections j. For β = 1 the road ki is 
traveled, starting from all possible intermediate intersections k 
( ௗ,௞

௡  = 0) to the arrival intersection i ( ௗ,௜
௡  = 1), where, ௞௜ 

represents the shortest road. Constraints (3)-(6) stand for the 
navigation modes of the HEV considering a percentage of daily 
fuel consumption, ஼. Constraint (3) shows that the distance for 
delivery d in each road, ௞௜, is equal to the sum of the distances 
traveled in CDM, ௘,ௗ,௞௜

஼஽ெ  and, in CSM, ௘,ௗ,௞௜
஼ௌெ . The reduction of 

௘,ௗ,௞௜
஼஽ெ  implies a reduction in the maintenance costs of the battery 

(improving its lifetime), which results in increasing ௘,ௗ,௞௜
஼ௌெ , and 

consequently, more fuel is consumed and higher CO2 is emitted. 
However, to ensure the sustainable management of the fleet, it 
is necessary to consider a daily fuel consumption limit that 
allows the efficient use of the battery taking into account the 
minimization of the effects of degradation during its lifetime. 
Constraints (4) and (5) stand for non-negativity conditions. The 
distance traveled in CSM, ௘,ௗ,௞௜

஼ௌெ , considering ஼ is guaranteed 

in  (6). Note that CO2 emissions are implicitly limited when a 
daily fuel consumption, ஼ ஼, is considered. Therefore, the 
energy of HEV battery is used more frequently (obtaining a 
longer distance traveled in CDM, ௘,ௗ,௞௜

஼஽ெ ), in order to optimize 

its useful lifetime. The battery charging of each type of HEV is 
established via (7)-(16). In (7), the initial SoC at intersection i 
( ௗ,௜

௡  = -1) is considered for the first delivery d. At intersection 
i, the SoC of HEV e in delivery d, ( ௗ,௜

௡  = -1), is equal to its SoC 
in delivery d-1, ( ௗିଵ,௜

௡  = 1), (8). The SoC for delivery d at 
intersection i ( ௗ,௜

௡  ≥ 0) is calculated by (9). To do so, the 
available energy, ௘,ௗ,௜

௔ , and the recharging energy by the 
HEV at the charging station i ( ௜

௦ = 1), ௘,ௗ,௜, is considered. For 
the final SoC at intersection i, ( ௗ,௜

௡  = 1), after returning to the 
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warehouse ( ௗ) (10) is used, while (11) guarantees the 
limits of ௘,ௗ,௜. In (12), ௘,ௗ,௜

௔  is obtained as the difference 
between ௘,ௗ,௞ at intersection k and the energy used during 
the trip in CDM on road ki ( ௘,ௗ,௞௜= 1), ௗா

௘
஽

௘,ௗ,௞௜
஼஽ெ . Constraint 

(13) stands for the non-negativity condition of ௘,ௗ,௜
௔ . To 

avoid charging at the starting intersection i ( ௗ,௜
௡ = -1), during the 

first delivery, and for the subsequent deliveries with 
intersection i ( ௗ,௜

௡  ≥ 0) in which there is no charging station ( ௜
௦ 

= 0), (14) is used.  The recharge energy, ௘,ௗ,௜, is calculated in 
(15) which depends on the variables ௘,ௗ,௜ and ௘,ௗ,௜

௖௛  at 

intersection i which is equipped with charging station, ௜
௦ = 1. 

Constraint (16) guarantees that ௘,ௗ,௜
௖௛  within the acceptable 

bounds.  
B. Second-stage: MILP Model 

The proposed approach at this stage is presented by an MILP 
model, (17)–(20).  

௨௘ ுா௏
௘,௦,௩
௙௢௕

௘,௦,௩

∀௩∈ஐ೛ೞ∀௦∈ஐ೚೛∀௘∈ஐ೐

 
(17) 

subject to: 

௘,௦,௩

∀௩∈ஐ೛ೞ∀௦∈ஐ೚೛

௢௣ ௘
 

(18) 

௘,௦,௩

∀௩∈ஐ೛ೞ∀௘∈ஐ೐

௢௣ ௦
௢௣

௘
ுா௏ 

(19) 

෍ ቌ ෍ ෍ 𝐶௘
ுா௏𝑍௘,௦,௩

∀௦∈ஐ೚೛∀௘∈ஐ೐

െ ෍ ෍ 𝑈௦
௢௣𝑍௘,௦,௩

∀௘∈ஐ೐∀௦∈ஐ೚೛

ቍ ൑
∀௩∈ஐ೛ೞ

𝐻𝐸𝑉
 

(20) 

The objective function at this stage (17) is composed of two 
terms. The first term stands for the costs related to the total 
quantity of extra goods obtained as a result of the optimal 
management of the operations of the heterogeneous fleet. The 
second term represents the values of the objective functions 
obtained for HEV e in operation s via the possible strategy v. In 
this term, the cost matrix 

௘,௦,௩
௙௢௕  is obtained from the first stage. 

Constraint (18) guarantees the limit of the number of operations 
to be performed by a type of HEV technology, while (19) 
guarantees that only one strategy is possible to be selected in 
operation s of a type of HEV e, so that the capacity, ௘

ுா௏, is 
greater than or equal to the total demand, ௦

௢௣. The balance 

between the total capacity of transporting goods by the HEV 
heterogeneous fleet and the total demands in operation s, ௦

௢௣, 
is established in (20). This balance is related to the number of 
extra units of goods, ுா௏, to be minimized in (17).  

C. Linearization 
The global solution of the proposed MINLP model in the first 

stage cannot be guaranteed via existing commercial solvers, 
although a well-defined nonlinear model may result in a high-
quality optimal solution [46]. Therefore, an appropriate 
linearization technique, the Big-M method, is applied to recast 
the nonlinear terms in (12) and (15), [47].  

Constraint (12) is replaced with (21.a) and the linearization 

technique presented in [7] is used in (21.b)-(21. e). 

௘,ௗ,௜
௔

௘,ௗ,௞௜
′

௘
஽

௘,ௗ,௞௜
஼஽ெ

∀௞௜∈ఆೠೝ

 

ௗ ௨௥ 

(21.a) 

௘,ௗ,௞௜
′

௘,ௗ,௞ ௘,ௗ,௞௜  

ௗ ௨௥ 
(21.b) 

௘,ௗ,௞௜
′

௘,ௗ,௞௜ ௗ ௨௥ (21.c) 

௘,ௗ,௞௜
஼஽ெ

௘,ௗ,௞௜
஼஽ெ

௘,ௗ,௞௜  

ௗ ௨௥ 
(21.d) 

௘,ௗ,௞௜
஼஽ெ

௘,ௗ,௞௜ ௗ ௨௥  (21.e) 

To linearize (15), constraints (22.a)-(22.c) are used. 

௘,ௗ,௜
௖ா

௘
௖௛

௘,ௗ,௜
௖௛  

ௗ ௜ ௗ,௜
௡

௜
௦  

(22.a) 

௘,ௗ,௜
௖௛

௘,ௗ,௜
௖௛

௘,ௗ,௜ ௗ ௜ (22.b) 

௘,ௗ,௜
௖௛

௘,ௗ,௜ ௗ ௜  (22.c) 

D. MILP models 
The obtained MILP models are as follows. 

First Stage: min (1) s.t.: (2)-(11), (13)-(14), (16), (21), (22). 
Second Stage: min (17) s.t.: (18), (19), (20). 

IV. PROPOSED METHODOLOGY 
This section provides detailed explanations of the proposed 

methodology. 
A. First Stage 

At this stage, the optimization problem related to the 
objective function (1) is solved as a part of the iterative process 
depicted in Fig. 6  using the hyper-matrix data, ௘,௦,௩,ௗ

ௗ௘௟ , to 

TABLE II  
OPERATING STRATEGIES RELATED TO OPERATION 1 

e s v Warehouse and delivery points d 
1 1 1 : 214 → 211 → 250 → 265 → 276 → 214 
2 2 2 : 214 → 211 → 250 → 276 → 265 → 214 
3 3 3 : 214 → 211 → 265 → 250 → 276 → 214 
4 4 4 : 214 → 211 → 265 → 276 → 250 → 214 
 ⋮ ⋮ ⋮ 
 11 11 : 214 → 250 → 276 → 211 → 265 → 214 
 12 12 : 214 → 250 → 276 → 265 → 211 → 214 
  ⋮ ⋮ 
  24 : 214 → 276 → 265 → 250 → 211 → 214 

TABLE III 
MAIN FEATURES OF THE HEV TECHNOLOGY TYPES 

HEV 
e 

𝐶௘
ுா௏ 

(units) 
𝑆𝑂𝐶௘

௢ 
(kWh) 

𝛿௘
஼ 

(km/L) 
𝐵௘ 

(kWh) 
𝑎𝑢௘ 
(km) 

𝐸௘
஼ைమ 

(gCO2/Km) 
𝛿௘

஽ 
(kWh/Km) 

1  15 8.8 71.43 8.8 35 32 0.201 
2  20 18 29.42 18 80 40 0.180 
3  10 6.7 41.67 6.7 21 148 0.255 
4  13 16 40.00 16 80 27 0.160 

Fig. 6. Flowchart of the iterative process. 
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obtain the 
௘,௦,௩
௙௢௕  values. Table II shows the structure of this 

hyper-matrix related to operation 1 with delivery points in the 
intersections 211, 250, 265, and 276 [41]. For this operation, all 
possible strategies v for a given HEV e are presented. Also, all 
the operating strategies v start and end at intersection 214, 
which is the warehouse. In matrix 

௘,௦,௩
௙௢௕ , obtained via the 

iterative process, each element represents the value of the 
objective function (1) for each strategy v of the operation s to 
be performed by HEV e. The iterative process is run for each 
type of HEV technology to be used for operation s considering 
all the operating strategies v. The algorithm starts with pre-
established values: ௘, ௢௣, ௣௦, ௗ, ௜, and  ௘,௦,௩,ௗ

ௗ௘௟ . The 

values ௗ,௜
௡  and 

௘,௦,௩
௙௢௕ , are initialized to zero. Table III 

anonymously presents the information related to the types of 
HEVs. Real data of 4 different existing technologies are 
anonymously used.  

In addition, another iterative process is executed to each 
delivery d and, intersection i. All intersections i are compared 
under conditions ௘,௦,௩,ௗ

ௗ௘௟ , and ௘,௦,௩,ௗାଵ
ௗ௘௟ . Depending on 

the value of intersection i (which exist in the matrix ௘,௦,௩,ௗ
ௗ௘௟ ), 

the conditions can be met or not, and consequently, 1 (stands 

for departure) and 1 (stands for arrival) are assigned to ௗ,௜
௡ , 

respectively. Thereafter, the condition ௜ , is evaluated for 
each intersection i. If this condition is not met, then a new 
iteration for i is performed, otherwise, condition ௗ  is 
considered for each d; if this condition is not met, then the 
iteration is performed for the next d. Otherwise, the proposed 
MILP model is solved and the solution is assigned to ௘,௦,௩

௙௢௕ . 

Then, for each operating strategy v, condition ௣௦  is 
evaluated. If the condition is not met, then a new iteration for v 
is done, otherwise, the condition ௢௣  is evaluated for each 
s. If this condition is not met, then the iteration is done for the 
next operation s. Otherwise, the MILP model is solved for 
another HEV e technology considering the condition ௘ , 
and if this condition is not met, the iteration for the next e is 
done, otherwise, the process terminates. Up to this point, the 
best fleet automation strategy without considering goods 
capacity of HEVs is determined by the summation of the 
minimum values of the matrix of the objective function related 
to operating strategy v for operation s of HEV e, 

௘,௦,௩
௙௢௕ . Note 

that this minimum value is strongly tied to each operating 
strategy v to be made by HEV e, which presents the minimal 
navigation time as well as the most economical battery usage. 
To ensure that the heterogeneous fleet automation strategy is 
not only sustainable but also operationally efficient in terms of 
the number of goods to be transported (see Figs. 1 and 2), a 
second stage that optimizes the vehicles transport capabilities is 
implemented based on information from the matrix 

௘,௦,௩
௙௢௕ .  

B. Second Stage 
In the MILP model with objective function (17), ுா௏ and 

௘,௦,௩ are decision-making variables at this stage. In this 
objective function, the 

௘,௦,௩
௙௢௕  values calculated in the previous 

stage serve as the coefficients related to the main variable ௘,௦,௩. 
Fig. 7 provides an illustrative example of selecting the best 
operational strategy among all for each operation s via variable 

௘,௦,௩. If operation s equals 1 ( ଶ,ଵ,ଵଵ ), operating strategy 
11 and HEV with technology type 2 are selected, while, for 
operations 2 ( ଵ,ଶ,ଷ ) and 3 ( ଶ,ଷ,ଶସ ), the HEV types 1 
and 2 under operating strategies 3 and 24 are selected, 
respectively. An interesting observation is that for two different 
operations, e.g., 1 and 3, the same type of vehicular technology 
can be used as far as the capacity of this vehicle meets the 
requirements of each operation s. Note also that, at this stage, 
the ௘

ுா௏
௘,௦,௩ and ௦

௢௣
௘,௦,௩ terms play a key role in efficiently 

managing the HEVs capability in goods delivery, that is, 
reducing the values of ுா௏ for the heterogeneous fleet so 
that the maximum capacity to be used while not overloading the 
HEVs. This way variable ௘,௦,௩ allows us to select the best type 
and strategy to carry out a given operation guaranteeing the 
optimal management of the heterogeneous fleet of HEVs. 

V. RESULTS AND DISCUSSION 
In order to evaluate the proposed two-stage model, the urban 

area presented in Fig. 3 is used for tests. Twelve operations 
( ௢௣ ) are considered in which four different delivery 
points should be visited for each operation [41]. Each operation 
s presents 24 operating strategies ( ௣௦ ) representing the 
possible sequences in which an HEV can perform the 

 
Fig. 7. Selection of HEV e and operating strategy v for each operation s. 
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deliveries. Also, 4 types of HEV technologies ( ௘ ) are 
considered, as shown in Table III. The ௘,௦,௩,ௗ

ௗ௘௟  values related 
with the operating strategies are shown in Table II. At the first 
stage, the iterative process presented in Fig. 6 is run. The values 
of ௞௜ are obtained via the algorithm portrayed in Fig. 5. The 
value of ௘

஽ for each HEV type is ா divided by ௘. The 

௘
௢ of HEV e is equal to the battery capacity, ௘, while ௘

௉ா 
for the arrival is set to 85%. All the HEVs start with ஼ = 40L, 
and the fuel price is considered to be $3.65/L [7]. For each 

charging point, the values ௘
௖௛, ௖௛, and 

௖௛, are set to 10 kW, 
0.3 h, and 0.5 h, respectively [20], [36]. The efficiencies, ௖ா 
and ௗா are considered to be 0.98 and 1.00, respectively [8], 
[29]. The daily fuel consumption, ஼, is set to 30% [29]. The 
weighting coefficients ௡௧, ௕ௗ, ௨௘, are set to 100, 10, and 1, 
respectively. It is worth highlighting that the coefficients related 
to the optimization model in the first stage present a greater 
weight, specifically, the coefficient related to the total 
navigation time of the fleet. Reducing the navigation time of the 
HEV fleet results in efficiently managing both the charging 
time and the number of times that the battery needs to be 
recharged. Thus, in our proposed methodology, the best 
operational strategies with the minimum navigating time are 
guaranteed. In order to consider a linear degradation of the 
batteries of the HEV fleet,  and  adopt the respective values 

of 1.59e-6 and 6.41e-6. In addition, ௅ is 10 years, the capacity 
fade at the end of life, ி, and the battery cost, ஻  for each 
HEV are 0.2 and $300/kWh, respectively [21]. In the second 
stage, the values of ௦

௢௣, and ௘
ுா௏ are shown in Table IV. The 

programming language AMPL is used for the implementation 
purpose, while the global optimal is obtained via the 
commercial solver CPLEX on a PC with 2.67-GHz CPU, and 3 
GB of RAM. Table IV shows the type of HEV technology, the 
best operating strategy selected for each operation and the fuel 
consumption for two cases: with and without CDM/CSM. The 
term without CDM/CSM refers to the condition in which HEV 
e only navigates in CSM (charge-sustaining mode), i.e., the 
HEV is propelled by the energy produced by the fuel 
consumption, while the term with CDM/CSM stands for the 
conditions in which the HEV can select between CSM and 
CDM (charge depleting mode), i.e., the HEV is propelled by the 
energy produced by either the fuel consumption or the energy 
stored in the battery. Each operation is supplied by a type of 
HEV with ௘

ுா௏ ௦
௢௣, ensuring that each HEV satisfies the 

capacity limit in transporting the goods. Thus, the total extra 
goods units, ுா௏, in each HEV related to operations 2, 4, 6, 
7, 8, 9, 10 and 11, resulting in 20 units. For example, in scenario 
1, the capacity of HEV type 1 is 15 and it is carrying 15 goods, 
while in scenario 6, the capacity of HEV type 2 is 20 and it is 
carrying only 16 goods, resulting in 4 extra vacant lots. The 
total costs regarding fuel consumption for both cases are $24.20 
and $62.49, which show savings of 61.27% per day. It is worth 
mentioning that, for each operation, the values of with 
CDM/CSM and without CDM/CSM have been calculated 
considering the same shortest route related to the best 
operational strategy. In order to know the characteristics of the 
driving routes of the operations carried out by the 
heterogeneous fleet, the sequence of urban roads ki traversed by 
each HEV during operation is shown in Fig. 8. In this figure, 
each subfigure contains the operation number (in the right-side 
of vertical direction), number of traversed urban roads during 
the operation (in horizontal direction), and the traveled 
distances (in the left-side of vertical direction). As can be seen, 
all the vehicles have traversed below 60 urban roads while, 

 
Fig. 8. Urban roads traveled in each operation. 

TABLE IV  
OPTIMAL MANAGEMENT SCHEME OF THE HEV HETEROGENEOUS FLEET  

s (𝑈௦
௢௣) e(𝐶௘

ுா௏) Nº Best operating strategies 
With  

CDM/CSM 
(L) 

Without 
CDM/CSM 

(L)  
1 (15) 1 (15) 12 214250276265211214 0.11 0.43 
2 (14)  1 (15)  16  214254227259207214  0.22 0.54 
3 (13)  4 (13)  1  214248282315400214  0.46 1.79 
4 (12)  1 (15)  6  214313397395349214  0.29 0.90 
5 (10)  3 (10)  4  214321363366325214  0.79 1.22 
6 (16)  2 (20)  10  214304360381292214  0.59 2.31 
7 (17)  2 (20)  1  214156166189199214  0.88 1.76 
8 (13)  1 (15)  19  21415194128148214  0.40 0.90 
9 (12)  1 (15)  15  2143421563214  0.65 1.26 

10 (13)  1 (15)  24  214140867151214  0.47 1.08 
11 (11)  4 (13)  1  21427295355214  0.78 2.21 
12 (20)  2 (20)  1  214  57125162184214  0.99 2.72 
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among all, the largest and smallest number of traversed urban 
roads belong to operation 9, with 56 traversed roads, and 
operation 1, with 21 traversed roads, respectively. In this figure, 
the longest urban road (7.2 km) is traversed by the HEV of type 
1 during operation 1, see Fig. 8 (a). From Fig. 8 (d), it can be 
seen that in operations 10 and 11, the total number of traversed 
urban roads is similar, 49 for each. To see the difference 
between these two cases, Table V is presented. Features such as 
the total distance, longest urban road, and the total number of 
urban roads traversed within the best operational strategies, 
presented in Table IV, are detailed in Table V. In this table, the 
percentages are obtained with respect to the largest traveled 
distance that belongs to operation 9. From this table, it can be 
concluded that the traveled distance in operation 10, is 77.44 
km, which is a bit lower than the distance traveled in operation 
10, with 88.48 km. Moreover, it can be seen that the total 
distances related to operations 4 and 8 are similar, 64.64 km. 
However, the number of urban roads traversed in operation 4 is 
more than the one in operation 8, see Table V. Fig. 9 is used to 
illustrate the number of urban roads traversed by the HEV to do 
the deliveries while visiting the charging points, if necessary.  

In addition, the shape of these types of routes can be used to 
explain the strong influence of traffic density as well as the 
driving direction (one-way or two-way) during navigation. For 
example, in operation 8, HEV departs from the warehouse 
(node 214) to arrive at the first delivery location (node 151); 
among these nodes there are several paths that could have been 
selected as part of the total route, but due to the influence of the 
aforementioned factors, the most practical choice is the red 
path. In order to analyze the most representative cases of Table 
IV, Fig. 10 shows the shortest routes related to the best 
operating strategies selected for operations 3, 5, 9, and 12, 
performed by different types of HEVs. The charging points to 
be visited by an HEV are represented by gray squares. In Fig. 

10 (a), the shortest routes related to the operations 3 (red line) 
and 9 (blue line) are shown. Note that for both routes, the HEVs 
of type 4 and 9 recharge their batteries at the charging points 
278 and 310, and 116 and 191, with charging times of 0.5 h and 
0.43 h, and 0.47 h and 0.50 h, respectively. This fact shows that, 
for operations with deliveries located far away from the 
warehouse location, the best decision of the fleet operator 
should consider the use of HEVs with higher battery capacities 
and autonomy. Fig. 10 (b) shows the routes to be traveled by 
the HEVs of type 3 and 2 related to operations 5 (red line) and 
12 (blue line), respectively. Note that the HEV of type 2 visits 
more charging points (169 and 194, both with charging times of 
0.5 h), compared to the HEV of type 3 (278 with 0.5 h). It is 
worth mentioning that the recharge done by the HEV of type 3 
occurs during the return to the warehouse. Also, operation 9 
(90.1 km), with the highest number of km, is performed by the 
HEV of type 1 (8.8 kWh) with battery recharges at charging 
points (116 and 191) with a longer distance than the other cases, 
i.e., the distance between 116 and 191 is longer than the 
distance between 278 and 310 or 169 and 194. In this case, for 
the HEV with lower energy storage capacity, the strategy 
chooses to charge the battery at a lower number of charging 
points with a longer distance and not to charge at more charging 
points with shorter distances. These representative cases reveal 
the impact of optimal management of HEVs for a given daily 
operation and emphasize the importance of implementing 
heterogeneous fleets with different operational characteristics 
within the service sector. Figs. 11 (a)-(d) show the CDM/CSM 
of the HEVs related to the representative cases by setting ஼ to 
30%. The black dots represent the distances of each road ki 
traveled by HEVs during the navigation on the shortest route 
without considering the CDM/CSM, ௞௜ ௘,ௗ,௞௜, while the 

Fig. 9. Routes related to the operations 4 and 8. 

TABLE V  
CHARACTERISTICS OF URBAN ROADS TRAVERSED IN EACH OPERATIONAL 

STRATEGY  

Operation s Total distance 
(km) 

Total Distance 
(%) 

Longest Urban 
road ki  

Total # 
of Urban roads 

1 30.88 34.28 7.2 21 
2 38.40 42.63 2.56 26 
3 71.52 79.40 6.4 47 
4 64.64 71.76 6.4 43 
5 50.72 56.31 6.4 34 
6 67.84 75.31 7.2 41 
7 51.84 57.55 3.2 31 
8 64.64 71.76 6.4 39 
9 90.08 100.0 6.4 56 

10 77.44 85.97 4.48 49 
11 88.48 98.22 4.00 49 
12 80.16 88.99 3.20 45 

 
Fig. 10. Routes related to the representative efficient strategies. 

Fig. 11. Kilometers traveled by HEVs related to the representative cases. 
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distances traveled in CSM ( ௘,ௗ,௞௜
஼ௌெ ) and CDM ( ௘,ௗ,௞௜

஼஽ெ ) are 
presented by the red-dashed and green lines, respectively, for 
the case with CDM/CSM. The values in which the black dots 
and green lines meet each other indicate that the HEV has 
navigated in CDM, i.e., with an efficient use of the battery 
energy. Otherwise, the HEV has navigated some distance in 
CSM and the remaining distance in CDM. Note that from the 
beginning of each operation, most of the roads are traveled in 
CDM and the remaining distances are traveled in CSM; then 
fully charged batteries are available for the next operation, as 
shown in Fig. 12. Figs. 12 (a)-(d) show the SoC profiles of the 
HEVs for different operations considering the efficient battery 
charging.  

The decreasing bars represent SoC values when the vehicle 
has used the battery power in CDM from the beginning of the 
operation. The bars with constant values indicate the fuel 
consumption by the HEV in CSM, after an efficient use of the 
battery. The bar changes from one constant level to another, 
which indicates that the HEV battery is charging at these points. 
In Figs. 12 (a), (b) and (d), there are two jumps for each 
operation. For operation 3, the jumps are from 7.65 kWh to 
11.34 kWh and from 11.34 kWh to 15.84 kWh; for operation 9, 
from 0 kWh to 4.21 kWh and from 4.21 kWh to 8.71 kWh; and 
for operation 12, from 8.82 kWh to 13.32 kWh and from 13.32 
kWh to 17.82 kWh. Fig. 12 (c) shows a jump for operation 5, 
from a level of 2.13 kWh to 6.63 kWh. These facts demonstrate 
the applicability of HEV technology in the service sector 
ensuring the sustainable operation of the heterogeneous fleet. 
Fig. 13 shows the reduction of CO2 emission levels obtained as 
a selection of the best strategies related to each operation 
presented in Table IV. The CO2 emission level values for the 
operation of HEVs with and without CDM/CSM are shown 
with green and red lines, respectively. The total contribution of 
the reduction of CO2 emissions by the HEV fleet reaches a 
value of 55.7% with respect to the total emissions obtained 
without CDM/CSM, which is a considerable reduction. Note 
that operation 5, where a shorter distance is traveled in CDM, 
presents a higher emission reduction due to the high value of 

௘
஼ைమ related to the HEV of type 3 (see Table III). The positive 

impact of the optimal management of the HEVs in urban areas 
is evidenced as a consequence of the significant reduction of 
polluting emissions.  

VI. CONCLUSIONS 
In this paper, a two-stage methodology has been proposed for 

the efficient automation of an HEV heterogeneous fleet. In the 
first stage, the deliveries scheduling, CDM/CSM driving mode 
strategies, and SoC of the HEV battery for a given percentage 
of CO2 emission reduction has been considered. However,  
finding the optimal operating strategy among all the possible 
operating strategies, the HEV to be assigned for each operation, 
while considering its capacity, has been handled in the second 
stage. The MILP models associated with the two stages of the 
proposed framework are subject to a set of operational and 
environmental constraints while considering deliveries 
schedules, speed variation, battery, and fuel capacities, 
distances traveled in CDM and CSM, charging and discharging 
rates, emission reduction levels, and the goods units to be 
delivered by various HEV technologies. The speed variation is 
presented by the probability values associated with the LOS. An 
urban area that contains 412 intersections and 832 roads has 
been used for the optimal management of the HEV 
heterogeneous fleet aimed at obtaining the minimum 
operational cost. Results show that the proposed methodology 
is advantageous in analyzing and enhancing the operational 
performances in navigation systems of HEV fleet with different 
technologies by allowing companies in the service sector to 
address economic and sustainable criteria by encouraging the 
use of clean alternative sources instead of relying on fossil 
fuels. 
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