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ABSTRACT Improved performance electricity demand forecast can provide decentralized energy system
operators, aggregators, managers, and other stakeholders with essential information for energy resource
scheduling, demand response management, and energy market participation. Most previous methodologies
have focused on predicting the aggregate amount of electricity demand at national or regional scale
and disregarded the electricity demand for small-scale decentralized energy systems (buildings, energy
communities, microgrids, local energy internets, etc.), which are emerging in the smart grid context.
Furthermore, few research groups have performed attribute selection before training predictive models. This
paper proposes a machine learning (ML)-based integrated feature selection approach to obtain the most
relevant and nonredundant predictors for accurate short-term electricity demand forecasting in distributed
energy systems. In the proposed approach, one of the ML tools — binary genetic algorithm (BGA) is
applied for the feature selection process and Gaussian process regression (GPR) is used for measuring the
fitness score of the features. In order to validate the effectiveness of the proposed approach, it is applied to
various building energy systems located in the Otaniemi area of Espoo, Finland. The findings are compared
with those achieved by other feature selection techniques. The proposed approach enhances the quality
and efficiency of the predictor selection, with minimal chosen predictors to achieve improved prediction
accuracy. It outperforms the other evaluated feature selection methods. Besides, a feedforward artificial
neural network (FFANN) model is implemented to evaluate the forecast performance of the selected predictor
subset. The model is trained using two-year hourly dataset and tested with another one-year hourly dataset.
The obtained results verify that the FFANN forecast model based on the BGA-GPR FS selected training
feature subset has achieved an annual MAPE of 1.96%, which is a very acceptable and promising value for
electricity demand forecasting in small-scale decentralized energy systems.

INDEX TERMS Binary genetic algorithm, decentralized energy system, electricity demand forecasting, fea-
ture selection, feedforward artificial neural network, fitness evaluation measure, Gaussian process regression,
machine learning, smart grid.

I. INTRODUCTION

Decentralized energy system operators, aggregators, sup-
pliers, managers or other stakeholders are challenged by
several confronts, varying from inadequate electricity sup-
ply to increasing consumption. The electricity demand

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

curves of decentralized energy systems (such as buildings,
energy communities, microgrids, virtual power plants, local
energy internets, etc.) are different from typical electricity
demand curves that represent nation- or region-wide elec-
tricity consumptions. This makes the conventional tech-
niques (developed for national or regional electricity demand
forecasts) inappropriate for their straightforward application
in decentralized energy systems due to two clear reasons.
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In decentralized energy systems, not only the total electricity
demand level is many times less than the regional or national
demand levels, but also the electricity demand profile mani-
fests more fluctuation and does not generally follow the same
profile.

Therefore, the recent deployment of decentralized energy
systems calls for appropriate and applicable feature selec-
tion (FS) tools and forecasting models for economic and
efficient consumption modeling.

Feature selection is a procedure of picking a subset of most
important features (attributes, variables, or predictors) for use
in predictive model development.

Basic knowledge about statistical models may help to
understand an effective feature selection method is important
for the final prediction performance of prediction models.
However, the effective feature selection approach should be
properly designed, implemented and tested for a specific
application in question. In the present age of ‘Big Data’,
datasets are full of information with enormous data gathered
from millions of Internet-of-Things (IoT) apparatuses and
sensors. This makes the data high dimensional and it has
become very common to observe datasets with hundreds
(even thousands) of variables.

The same is true in the power industry sector, since the
concept of smart grids has been developed and being imple-
mented based on the idea of IoT and complex interaction of
data among various stakeholders.

When data is presented with very high dimensionality,
prediction models generally choke since:

1. Training, validation and testing times increase expo-

nentially with number of variables.

2. Prediction models will have increasing risk of overfit-

ting with increasing number of predictors.

3. Prediction accuracy will face cumulative threat of

reducing with increasing number of features.

Therefore, feature selection is a very important element
in Data Scientists’ workflow. Different research groups have
performed various feature selection methods for various
applications and scenarios. However, very few of them have
coupled and investigated feature selection tools and forecast-
ing models. Moreover, there is no standard and universally
agreed feature selection method so far. The R& D for finding
the most effective feature selection tools is still ongoing
by various independent research groups and institutions.
Effective and adaptive feature selection methods shall be
designed, implemented and tested for desired applications
and scenarios all time as new data sources, policies and algo-
rithms are being emerged all time. These are the main reasons,
which have motivated the development and implementation
of the FS work in this paper.

Feature selection strategies are important for the following
main advantages:

« Reduce computation time

o Decrease data storage requirements

« Simplify models, making them user-friendly

« Improve data understandability and interpretability
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« Evade curse of dimensionality

« Enhance generalization, reducing overfitting.

The core argument when applying an FS method is that
the original dataset holds some variables which are either
duplicated or not important, and can therefore be eliminated
without inducing ample damage of information. It has been
proved by several researches that, redundant and irrelevant
features reduce the accuracy and generalization capability of
predictive models.

That is why, nowadays, FS studies has become very popu-
lar in AI, Machine Leaning (ML), Deep Learning (DL), and
Statistics.

Itis demonstrated, by various relevant studies, that the total
energy cost (energy production, operation and purchasing
costs) can be reduced significantly by applying demand
response concept in in small-scale decentralized energy sys-
tems. However, techniques for electricity demand prediction
in decentralized energy systems have not been properly inves-
tigated. Most applicable methods are limited for predicting
the amount of electricity demand at large-scale (nation-
or region-wide) and disregard the specific electricity demand
for smaller entities such as buildings, energy communities,
microgrids, virtual power plants, local energy internets, etc.,
which comprise equivalent significance for energy system
optimization, sustainability and efficiency.

Thus, the goal of this paper is to propose and implement a
feature selection approach for modeling and forecasting the
fluctuating electricity demand in decentralized energy sys-
tems in general and buildings in particular. Results will assist
distributed energy system stakeholders to efficiently use lim-
ited energy resources and regulate dispatchable generation
and flexible demand levels. Prediction accuracy has mainly
been the indispensable target of forecasting studies. It is
soundly revealed in [1] and [2] that the accuracy of prediction
models not only relies on the models’ configurations and
associated learning methods but also on the predictor domain,
which is established via the initial predictor space and FS
techniques. FS is mostly applied in ML implementations
as one of the preprocessing steps where a predictor subset
(independent attributes) is found by removing predictors with
lower or irrelevant information and highly redundant [3].
However, very few forecasting techniques perform FS before
training the prediction models.

Several heuristic optimization approaches have been
effectively implemented as searching technique for FS. For
instance, these methods contain Particle Swarm Optimiza-
tion (PSO) [4], Ant Colony Optimization (ACO) [5] and
Genetic Algorithm (GA) [6].

GA has gained extensive consideration due to its operabil-
ity and robust searching ability. GA is one of the artificial
intelligent (AI) probabilistic searching algorithms, and has
been broadly implemented for several optimization prob-
lems [7]. It was inspired by the survival of the fittest principle
of the Charles Darwin evolution theory and genetics. The GA
search starts from a randomly chosen set of individuals called
initial population. It then iterates to find the best individual
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(solution) through its three main consecutive operators —
selection, crossover and mutation. GA uses a performance
index called fitness function to calculate the fitness of the
individuals over iterations. BGA is a special version of GA
which operates by first representing the given feature space
(chromosomes or candidate solutions) in binary bit-strings.
This makes the BGA well suited for FS problems than the
conventional GA.

This paper proposes a machine learning based hybrid
feature selection method to obtain the most relevant and
nonredundant features for improved short-term forecasting
of electricity demand in decentralized energy systems. In the
proposed method, the Binary Genetic Algorithm (BGA) is
applied for the feature selection process and Gaussian Process
Regression (GPR) is used for measuring the fitness score of
the features.

To the best of our understanding, there exist very few
research works that have performed feature selection work
before fitting or training forecasting models. Moreover, as far
as we have investigated, the BGA-GPR based hybrid machine
learning approach has never been applied for feature selection
problem in the domain of electricity demand forecasting.

In this study, the residual of the GPR model is chosen as the
fitness evaluation measure. GPR is a powerful algorithm for
regression. It is chosen due to its higher capability of fitting
nonlinear input-output relationships based on probabilistic
distributions over functions. It has few parameters to tune and
easily to implement. It can provide a consistent estimation
of its uncertainty. GPR can directly apprehend the model
(input-output or feature-target relationship) uncertainty. For
instance, it directly provides a distribution for the feature
selection fitness measure (error) value, rather than just one
value as the estimate. This uncertainty is not straight appre-
hended by most of the other ML or Al tools. Moreover, GPR
is able to add a previous knowledge and specification about
the behavior of the input-output (feature-target) relationship
by using different kernel functions.

Generally, the paper contributions can be regarded as
(1) modeling, parameterization and implementation of the
BGA and GPR algorithms to suit the feature selection prob-
lem in question, and (2) establishment of seamless combina-
tion of the two algorithms to work in unison for solving the
feature selection problem.

Specifically, this paper has generally the following main
contributions:

« Investigate and suggest the relevance of an effective FS
approach for improved-performance (accurate) electric-
ity demand forecasting;

o Provide effective and efficient hybrid Al-based FS
approach for electricity demand forecasting models;

« Improve electricity demand prediction accuracy through
the application of FS before fitting prediction models.

The remaining sections of the paper are outlined below.
Section II describes the previous relevant works on FS.
Section III describes the dataset and states the feature selec-
tion problem. Section IV presents the brief working principle
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of the binary GA. Similarly, the theory and mathematical
modeling of the GPR model used for the fitness measure in
the binary GA is described in Section V. Section VI presents
the proposed Binary BGA-GPR based FS strategy. The exper-
imental results and validations are presented in Section VII.
Conclusions are finally drawn in Section VIIIL.

Il. RELATED WORKS

FS methods are classified as filter, wrapper and embed-
ded techniques [1]. Filter techniques do not depend on any
prediction model and they sort features depending on sta-
tistical characteristics. They utilize a correlation score to
grade a feature subset. Filter technique based FS methods are
generally fast. The Filter FS approach contains correlation-
based [8], mutual information-based [9], and principal com-
ponent analysis-based methods [10]. Filters are generally
require less computation time than other FS techniques, but
they generate a feature set which is not fitted to a particular
forecast model.

Filter techniques are extensively applied in big data analy-
sis due to their computational efficiency. Wrapper techniques
evaluate predictor subsets based on their worth to a specific
forecaster or classifier. Wrapper techniques assume the FS
as a searching problem that prepares various mixes of pre-
dictors, assessed, and contrasted with other mixes. Common
heuristic Al-based optimization methods stated in Section I
are used to monitor the searching procedure. Compared to
filter techniques, wrapper techniques reveal improved per-
formance since various predictor sets are assessed by a
predictive model or fitting method in every iteration [11].
Embedded techniques merge the feature selection process
into the prediction model training. For instance, regulariza-
tion approaches in model training [1] is one example of
embedded type FS method. The LASSO model which nor-
malizes the parameters of linear models with L; penalties
to reduce uncorrelated coefficients to zero can also be one
example of embedded method.

Table 1 presents recently published FS strategies in the
demand prediction scope for power system and energy
applications.

TABLE 1. Summary of FS strategies.

Application FS Type References
Power systems Filter [8],[12],[13]
Wrapper | [14], [15]
Energy systems | Filter [16]
Wrapper | [17]

From the wrapper techniques outlined in Table 1, the
GA-based feature selection shows best performance in
removing duplicated features. Reference [15] devised an inte-
grated strategy to predict electricity consumption; in this
work, a conventional GA is used to obtain the best predictor
subset hybridized with an adaptive neuro-fuzzy inference
system (ANFIS). Reference [18] devised a combination of
GA and ACO for FS in the electric load demand prediction;

91465



IEEE Access

A.T. Eseye et al.: ML Based Integrated FS Approach for Improved Electricity Demand Forecasting in Decentralized Energy Systems

ANN is employed as a forecaster model to measure the
fitness score of the feature subsets. Reference [19] devised a
GA-support vector regression (SVR) configuration to predict
accommodation-booking demands in hotels, where the GA
is employed for both feature selection and SVR parameter
optimization. Reference [20] implemented a GA-based fea-
ture selection to the demand prediction problems in retail
industries of China. Reference [21] proposed a modified GA
for FS in the demand prediction problem in the health sector
specifically in outpatient department (OPD); deep neural net-
work is employed as a predictive model to evaluate the fitness
score of the feature subsets. In addition to demand predic-
tion, GA-based feature selection is often used for knowledge
exploration in other important sectors, such as financial mar-
ket analysis [22], stock price forecasting [23] and financial
distress forecasting [24]. Reference [25] proposed a binary
GA-based FS for classification problem. It used the k-nearest
neighbors (kNN) algorithm for the GA fitness evaluation
measure.

Designing a suitable fitness evaluation measure is very
important in FS approaches. The fitnesses evaluation measure
is used as a performance index for evaluating the suitability
of candidate features. Predictors are ranked and selected
according to their evaluated values of the fitness function or
measure.

The combination of predictors that results the best value of
the fitness measure is chosen at the end of the FS algorithm
running. This paper uses the residual (error) of the Gaussian
Process Regression (GPR) model as the fitness function of
the BGA. The GPR model is kernel-based probabilistic dis-
tribution over functions. It is chosen in this paper due to
its higher capability of fitting nonlinear input-output rela-
tionships based on assumptions of probabilistic distribution
of given input-output data or function. Besides, it has few
parameters to tune and easily to implement.

Following a comprehensive assessment of the above-
mentioned genetic algorithm based FS techniques, we dis-
cover that a conventional genetic algorithm with the usual
framework (conventional GA configuration) is used in most
researches [15]. For instance, the initial population (initial
chromosome set) is arbitrarily created where the population
variety cannot be guaranteed and the occurrence of duplicated
predictors may influence the quality of the search procedure.
Moreover, the conventional GA works with the continuous
features themselves to minimize the desired fitness function
(FS evaluation measure). This reduces the efficiency of
the algorithm and causes computational complexity and
increased total computation time.

Assuming an intelligent heuristic algorithm should be the
best option to determine the search target; a research problem
exists and shall be addressed by replacing the conventional
GA with the BGA and hybridizing it with robust fitness
evaluation measure (GPR in this paper). BGA first represents
the features as an encoded binary string and works with the
binary strings to minimize the GPR-based evaluation mea-
sure to obtain the most relevant and nonredundant predictor
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subset at the end. BGA is more efficient and stable than the
conventional GA. It also reduces computational complexity
and execution time compared to the conventional GA.

IIl. DATASET AND FEATURE SELECTION PROBLEM

The original feature set is constructed through basic assess-
ment of the characteristics of the electricity consumption in
decentralized energy systems such as buildings and its associ-
ation with historical (prior) consumption and external agents.
The external agents are electricity market price, seasonality
(minute/hour, month and season), weather factors, people’s
interaction (occupancy). The availability of the data sources
for these external agents affecting electricity consumption
is also another major factor to construct the original feature
space.

The complete feature set for electricity demand predic-
tive model in this FS work consists of lagged electricity
demand, seasonal (or calendar) parameters, weather param-
eters, occupancy, and economic factor (electricity price).
Table 2 presents the original feature space or initial dataset for
the FS work in this paper. The variables f;,i=1,2,...,24,
in Table 2 designate the original predictor dataset (feature
space) required for the FS work in this paper. Therefore,
the feature domain of the FS is an R™ matrix, where
m = 8760 is the number of samples, which is a one-year
(2015) hourly observation of the variables and n = 24 is the
size of the feature space (original dataset).

TABLE 2. Feature space of the FS problem.

Feature Feature (f) Unit/Scale Data
Index Category

1 Hour of the day 1-24 Seasonality/calendar

2 Day of the week 1-7

3 Month of the year 1-12

4 Season of the year 1-4

5 Period of the day: 1-3 Occupancy (number

6 Holiday/Weekend 0-1 of people)
indicatorl

7 Holiday/weekend 0-2
indicator2

8 Ambient air temp. °C Weather

9 Dew-point temp. °C

10 Relative humidity %

11 Precipitation mm/h

12 Snow depth cm

13 Ambient air pressure | hPa

14 Horizontal visibility m

15 Wind direction deg

16 Wind speed m/s

17 Gust speed m/s

18 Cloud cover 0-8

19 Global solar radiation | Watt/m?

20 Sunshine duration s

21 Electricity price c£/kWh Economy

22 Previous 24h average | kW Electricity demand
electricity demand

23 24h lagged electricity | kW
demand

24 168h lagged | kW
electricity demand
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In this paper, the following optimization problem is solved
to obtain the best (relevant and nonredundant) predictor sub-
set from the original dataset given in Table 2.

F'S Problem: Given that:

freZt, 1<f, <24 and BeR" 30<pB <100 (1)

where, f; is the number of predictors in the lower-dimension
(reduced) predictor subset and f is the percentage forecast
error. Find a feature subset of f; from Table 2 such that the
objective B and f; are reduced.

IV. BINARY GENETIC ALGORITHM (BGA)

GA is a population-based heuristic type optimization method
that is inspired by the survival of the fittest principle of the
Charles Darwin theory of evolution and genetics [26]. The
GA operating mechanism involves iterative steps processing
a set of chromosomes (candidate solutions) to generate a
new population (offsprings) via genetic operators - selection,
crossover and mutation.

The fitnesses of the nominee solutions (chromosomes)
are calculated employing a function generally called objec-
tive or fitness function. That means, the objective function
provides scores (numeric values) which are employed for
grading the existing solutions in the population. BGA is an
extended version of the standard GA.

The BGA first represents the candidate solutions as
encoded binary strings (binary search space) and works with
the binary strings to minimize or maximize the fitness func-
tion. BGA is more efficient and stable. It also reduces com-
putational complexity and execution time. Figure 1 shows the
flowchart of BGA.

Chromosomes
Po
0101010... i

[—
f NTTITI™ ———
Features | encoding "o decoding Fitness pmilct':f;sosnm
0110001... GRENiT i selection

No | Gen=Gen+1

0101 DE0R

N 1011001... 1101110...
condition? ¢ | — Jv
1011101...

010108
11015000

Yes | decoding

Stoy .
P v mutation

crossover

Best solution

(Final feature subset)

FIGURE 1. Flowchart of BGA for FS.

V. GAUSSIAN PROCESS REGRESSION (GPR)

GPR models nonlinear relationship between input(s) and
target(s) based on probabilistic distributions over functions.
The Gaussian process (GP) describes the distribution over
functions based on the assumption that samples of targets
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obtained at any two or more instants in a function trail a joint
(multi-variate) Gaussian distribution (GD).

In explicit saying, a GP is described as a group of arbitrary
attributes. Any fixed quantity of the attributes can form a joint
(multi-variate) GD [27].

In GPR, the target y of the function f at input-attribute x is
defined as:

y=f@) +e @)

where, ¢ ~ N (0,02) - normal distribution with zero (0)
mean and o standard deviation. This is the same with the
statement stated in linear regression where it is assumed
that a sample contains an independent ““‘function” part f(x)
and “noise” part €. In GPR, on the hand, we consider that
the function part is also an arbitrary variable that trails a
given distribution. The distribution emulates once doubt on
the function. The stochasticity on f can be decreased by
measuring the function target at various instants. The noise
part ¢ emulates the intrinsic uncertainty in the samples that
usually exist regardless of the number of samples made [27].
In GPR, the function f(x) is assumed distributed as a GP:

f &) =GP(mx), k(x,x)) 3)

GP is described by mean and covariance functions. The mean
function m(x) emulates the anticipated functional value at
input-attribute x:

m(x) = E[f (x)] “)

That means m(x) is the mean of all the functions in the dis-
tribution estimated at x. The initial expected value is usually
fixed at zero (i.e., m(x) = 0) to evade costly future calcula-
tions and only make decision through the covariance function.
Practically, fixing the initial value to zero is generally done by
deducting the (initial) mean from each sample. The covari-
ance function k(x, x/) simulates the relationship between the
functional values at various input instants x and x/:

k(x.x)=E[f @) —m@)(f (x)—m ()]

The function k is known as the kernel of the GP [28].

A suitable kernel should be selected considering the facts
for instance evenness and likely patterns anticipated in the
dataset.

A practical consideration is generally to assume the corre-
lation of two instants declines with the distance between the
instants. That is, the nearby instants are likely to act more
in the same way than instants that are far away from each
other. The GPR model in this study employs the squared
exponential kernel function defined below:

1 —d (x —xr 2
k (x, x/|9) = afzexp (—5 Zr:] %) (6)

where, o, denotes the length scale for forecaster r,
r=1,2,...,d and of is the standard deviation of the
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data or signal. The unconstrained parametrization 6 is defined
as:

0, = logoy, forr=1,2,...,d 7
Ba+1 = logoy 3

The parameters o, and of can be regulated to rise or decrease
the initial correlation between instants and hence the incon-
sistency of the function obtained. After the mean and kernel
functions are determined, the GP can be used to obtain pre-
vious function values and future function values based on the
priori samples.

VI. PROPOSED BGA-GPR BASED FEATURE SELECTION

As shown by the flowchart in Figure 2, there are five key
sub-operations in BGA, namely - chromosome encoding,
objective value calculation, selection methods, genetic oper-
ators and stopping condition. The BGA works on binary
search domain (chromosome bitstrings). The GA operates the
finite binary chromosome set based on the survival of the

Input dataset
(Feature space and Target variable)

!

[ Normalize the dataset to the range [-1 1] ]

!

[ Generate 2424 initial population

of binary chromosomes

Fitness evaluation

(Residual from GPR model)

Selection of parent chromosomes
(Tournament selection - size 2)

h 4

Elite
offspring

Crossover

Mutation
offspring offspring

No

Convergence
condition

Best
chromesome

Best feature
subset

Fitness
evaluation

New
population

FIGURE 2. Flowchart of BGA-GPR based FS.
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fittest principle of the evolution theory. A starting population
is generated and assessed using an objective function. For
binary chromosome employed in this paper, a gene value
of ‘1’ indicates that the specific feature pointed by the place
of the ‘1’ is chosen. Else, (if ‘0’), the feature is not chosen for
the fitness evaluation.

Employing the place pointer of the variables pointed by
the ‘1s’, the individuals are then ordered and according to
the orders, the upper k fittest offsprings (Elitism of size k)
are chosen to persist with the succeeding generation. Once
the selected offsprings are moved directly to the succeeding
generation, the other offsprings in the present solution space
are permitted to genetically move via the crossover and muta-
tion operators to create crossover and mutation offsprings
respectively [26]. The three offsprings namely selection,
crossover and mutation then establish the new solution space
(new generation). The crossover operator is a fusion of
two chromosomes to create crossover offsprings. While the
mutation operator is employed for genetic disorder (diversity)
of the genes in the chromosomes by tossing the bits based on
the mutation likelihood. Following the procedures outlined
in Figure 2, the detail operating mechanisms of the proposed
GA-GPR FS are described in the following subsections.

A. INITIAL POPULATION

The GA starting solution space, used in this work, is a matrix
of size p x ¢, where p is the number of chromosomes and
q is the chromosome length (called Genomelength). p equals
the population size and g equals the amount of bits or genes
in each individual. It is recommended to let the number of
chromosomes equals at least chromosomes length such that
the chromosomes in every population encompass the search
domain [29].

B. FITNESS EVALUATION

For the BGA to choose the predictor subset, an objective
function (BGA driver) should be specified to calculate the
discriminative power of each predictor subset. The fitness of
each chromosome in the population is assessed employing
GPR-based fitness function. In this paper, the fitness of the
various subsets of features is evaluated using the MSE (mean
squared error) of the GPR model predictive residuals. The
GPR model f(x) is fitted for every feature subset. Hence,
the MSE of the training target and the GPR model estimate
evaluated for each feature subset in the feature search space
defined in Table 2 is used as the fitness evaluation measure,
and it is defines as follows.

1 —n
fit==3% "  (Ti—f)’ ©)

where, T is a vector of training target (electricity demand) and
n is amount of training samples or observations.

The aim of the BGA is to minimize the fitness function
(MSE) defined in equation (9) by choosing a subset of input
features having the best fitness over subsequent iterations.
In each chromosome a gene value of ‘1’ shows the specific
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variable pointed by the place of ‘1’ is chosen. If it is ‘0’,
the predictor is not chosen for assessment of the chromosome
in question. The chromosomes representing the predictors
are encoded as bitstrings. As the BGA runs, the individual
chromosomes (feature subsets) in the present population are
assessed, and their fitnesses are graded based on the GPR
model residual or error. Chromosomes with smaller fitness
(smaller residual or error) have greater probability of persist-
ing with the next population or mating-pool.

Each iteration of the BGA running guarantees that the
BGA decrease the error level and elites the chromosome with
the lowest (best) objective function value. The individual
chromosome corresponding to the least error level of the
fitness evaluation contains the desired most relevant features.

C. REPRODUCTION

Table 3 presents the parameters of the BGA used in this
paper. From Table 3, the chromosome length equals 24 as
there are an overall number of 24 predictors nominated for
the FS works in this paper. The extreme number of iterations
(generations) is set to 100 to evade the BGA been stuck by
local optimum. Following the fitness evaluation, a new pop-
ulation is produced for the next generation through elitism,
crossover and mutation.

TABLE 3. Parameters of BGA.

Parameter Value
Population size 24
Genomelength 24

Population type Bitstring

Fitness function GPR model residual or error
Number of generations 100

Stalled Generation Limit | 50

Selection mechanism Tournament selection

Tournament size 2

Mutation function Uniform mutation

Mutation rate 0.1

Crossover function arithmetic crossover (logical XOR)
Crossover fraction 0.8

Elite count 2

In BGA, three kinds of sequential offsprings are formed to

create the new population [29]. They are:

1) Elite offspring: A selection mechanism should be
predetermined in BGA to ensure the population is
continuously getting better throughout all the fitness
scores or iterations. The selection method assists the
BGA to disregard worst individuals and keep only
the best chromosomes. There exist several selection
methods for BGA, however the Tournament Selection
Mechanism (with size 2) is used in this study because
of its ease-of-use, swiftness and efficiency [25], [30].
Besides, the tournament selection method imposes bet-
ter selection burdens on the BGA that results in better
convergence rate and ensures the bad candidate solu-
tions are not moved into the succeeding generation.
In size 2 tournament selection, two individuals are

VOLUME 7, 2019

2)

3)

chosen out of the solution space following the with-
drawal of the elite offsprings and the best of the two
individuals, (based on objective function score), is cho-
sen. Tournament selection is carried out repeatedly till
the new population is fully populated. Elite offsprings
are moved automatically to the following generation,
as they are the highest fitted values. However, the num-
ber of elite offsprings is limited by the population size.
It is generally less than the population size. With size
proper setting of the number of elite offsprings (elite
count); the BGA chooses the upper elite count best
individuals and move them directly into the succeed-
ing generation. The amount of elitism used, as given
in Table 3, is two. Hence, the upper 2 offsprings with
the best fitness scores are directly taken into the fol-
lowing generation. Therefore, the quantity of the elite
offsprings (elite count) = O = 2. That is there are 22
(i.e. 24 - O1) chromosomes in the population except the
elite offsprings. From the rest 22 individuals, crossover
and mutation offsprings are then generated.

Crossover offspring: The BGA crossover operator
genetically fuses two chromosomes (parents) to create
offsprings for the following generation. Chromosomes
from two parents are required to perform the crossover
function. These two parents are obtained from tour-
nament selection. The crossover function used in this
paper is arithmetic type, which applies a logical XOR
operation on the chromosomes of the two parents as
they are represented in binary form. The portion of
the following generation, excluding the elite offsprings,
which are created by the crossover operator is known
as crossover offspring. The crossover fraction, which
refers the ratio of the number of the crossover off-
springs (produced by the crossover operator) to the total
number of offsprings other than the elites, used in this
paper is 0.8. There is no mutation offspring in the BGA
when the crossover ratio sets to one. With the crossover
ratio of 0.8, the number of the crossover offsprings is
0O, = round (22%0.8) = 18.

Mutation offspring: Mutation is a genetic disorder
of chromosomes in the population. The BGA imple-
mented in this study used uniform mutation. Using
uniform mutation, the BGA creates a set of uniformly
distributed random numbers whose size equals the
length of the chromosomes. The random number values
are related to the index of the bits in the chromo-
somes. The chromosomes are checked clockwise and
for every corresponding bit, the random number is
crosschecked with the mutation rate. If the random
number at a given index is smaller than the mutation
probability, then the gene (bit) at that index is tossed.
Else, the gene is remains untossed. This continues from
the left most bit to the right most bit of each individual
of the mutation offspring. Mutated offsprings are very
important for the BGA to have a genetic diversity in the
chromosomes, which helps the BGA not to converge to
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local (suboptimal) solutions due to much similarity of
genes in the population.

The quantity of mutation offsprings is O3 = 24— 01 —
0, = 24—2—18 = 4. This verifies O +02+03 = 24.

D. CONVERGENCE CONDITION
The BGA terminates when it converges at the desired optimal
solution. The optimal solution corresponds to the desired
feature subset for the FS problem in question. The termination
condition where the BGA ends running is known as conver-
gence or stopping condition. The two convergence conditions
used in this paper are the following:

1) Maximum number of generations or iterations

2) Stalled generation limit

The values used for these convergence conditions are given
in Table 3.

E. FINAL FEATURE SUBSET

After the BGA attains convergence, the chromosome that
resulted in the best fitness score is chosen and decoded as
the final feature subset, shown in Figure 3.

The fittest chromosome at
the final iteration of the BGA<|:l 110 l ! I 0 [ 0 l 1 I 1 [ ‘

Final feature subset —{ fi, f3, fs, f7, ... ]_

FIGURE 3. Final feature subset decoding.

VII. EXPERIMENTAL RESULTS AND VALIDATION

In this section, the case study for the proposed FS work and
the results obtained are discussed. Comparative validation,
evaluation of FS results for improved forecasting and quanti-
tative relevance analysis of the FS results are also presented
in this section.

A. CASE STUDY

In this paper, the hybrid BGA-GPR based FS approach is
developed and applied to four electricity demand datasets
obtained from four building types (customer classes)
in Otaniemi area of Espoo, Finland. The buildings are
Building A (residential building type), Building B (educa-
tional building type, contains classrooms and laboratories),
Building C (office building type), and Building D (mixed use
building, contains computer laboratories and health care cen-
ter). The buildings have a peak (in 2015) aggregate electricity
demand of 221kW, 592kW, 29kW, and 86kW, respectively.
The feature space for the FS work in this paper is described
in Table 2. The electricity demand datasets of the four build-
ings are the desired target variables in the proposed FS strat-
egy. A one-year (2015) hourly sample, 8760 values, of both
the feature sets and target variables are used for FS work.
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B. FS RESULTS

The devised BGA-GPR based FS algorithm is run for
each of the four datasets (representing four electricity cus-
tomer types) separately. The empirical results found for the
four datasets are presented in Table 4. The fitness values
in Table 4 are calculated using the unnormalized (original
dataset format) values of the selected features.

TABLE 4. FS results.

Customer Selected Features Best Without
(Dataset) Type Fitness FS
Building A 1,2,3,4,5,7,8,9,10, | 41.21 72.16
Residential 13, 15, 16, 17, 19, 20,

21,22,23,24
Building B 1,2,3,4,5,7,8,9,10, | 9.48 268.50
Educational 13, 15, 17, 19, 20, 21,
23,24
Building C - | 1,2,3,4,5,7,8,13,17, | 0.38 11.44
Office 19, 20, 21,22, 23,24
Building D - | 1,2,3,4,5,7,8,9,13, | 0.12 71.87
Mixed-use 16,17,21,22,23,24
All (Union) 1,2,3,4,5,7,8,9,10,13,15,16, 17,19, 20, 21, 22,
23,24

As it is clearly observed from the FS results in Table 4,
the number of predictors chosen by the proposed FS strat-
egy is considerably lower than the size of the feature space
(number of predictors in the original dataset given in Table 2).
This can be due to the availability of irrelevant and redundant
information by most of the variables in the original feature
space. The BGA finally selects the feature subset which
contains the most relevant and nonredundant variables.

Predictors 1, 2, 3,4, 5,7, 8,9, 10, 13, 15, 16, 17, 19, 20,
21, 22, 23, and 24 are selected for Building A.

Similarly, features 1, 2, 3,4, 5,7, 8,9, 10, 13, 15, 17, 19,
20, 21, 23, and 24 are selected for Building B. Variables 1, 2,
3,4,5,7,8,13,17,19, 20, 21, 22, 23, and 24 are selected for
Building C. Attributes 1, 2, 3,4, 5,7, 8,9, 13,16, 17, 21, 22,
23, and 24 are selected for Building D.

Predictors 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15, 16, 17, 19,
20, 21, 22, 23, and 24, which represent hour of the day, day
of the week, month of the year, season of the year, period
of the day, holiday/weekend indicator2 (with 0-2 values),
ambient air temperature, dew-point temperature, ambient rel-
ative humidity, ambient air pressure, wind direction, wind
speed, gust speed, global solar radiation, sunshine duration,
electricity price, previous 24h average electricity demand,
24h lagged electricity demand, and 168h lagged electricity
demand respectively, are selected at least for one of the
building types.

For the purpose of consistency and making use of similar
set of predictors, features selected at least for one of the
buildings can be chosen to form the input dataset for short-
term forecasting of electricity demands in buildings. Hence,
the final selected feature subset consists of 19 features -
hour of the day, day of the week, month of the year, season
of the year, period of the day, holiday/weekend indicator2,
ambient air temperature, dew point, humidity, air pressure,
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wind direction, wind speed, gust speed, global solar radiation,
sunshine duration, electricity price, previous 24h average
electricity demand, 24h lagged electricity demand, and 168h
lagged electricity demand.

Besides, the average computation time of the devised inte-
grated BGA-GPR based FS algorithm with two-years long
hourly sample of 24 initial features is about 30 minutes, using
MATLAB simulation environment on a research worksta-
tion with Intel Core i7-6820HQ Processor, 2.70 GHz CPU,
16 GB RAM.

C. COMPARISON WITH OTHER FS APPROACHES

To validate the BGA-GPR FS work in this paper, the fea-
ture subset results by the proposed GA-GPR FS were com-
pared with feature subset results using other two common
FS approaches, namely: Correlation-based feature selection
(C FS) and Neighborhood Component Analysis Regression-
based feature selection (NCA FS). The Correlation-based FS
first calculates the Pearson and Spearman correlations of each
feature with the target, and it then takes the maximum of
the two correlation coefficients. A feature with correlation
value greater than a given threshold value (0.5 in this paper)
is selected as relevant feature and included in the final feature
subset. The NCA FS operates based on the neighborhood
component analysis (NCA) regression model fitted over the
feature subsets versus target dataset. The NCA FS obtains
the predictor weights (for reduced feature subsets) using a
diagonal adaptation of the NCA regression model. The NCA
model realizes FS by regularizing the predictor weights.

Table 5 provides the performance comparison of the FS
result by the proposed method and other two methods. For
the purpose of suitability of comparison, the same fitness
function (MSE) modeled as the residual of the GPR model
is used. That means each selected feature subset by each
method is evaluated for fitness using the GPR model residual.
Besides, the fitness values are calculated using the unnormal-
ized values of the selected features.

As shown in Table 5, the proposed BGA-GPR based
FS achieved the feature subset with the best fitness value
(lowest MSE). Hence, the feature subset selected by the
proposed FS strategy contains more relevant and nonredun-
dant features than the other evaluated FS methods. That
means, an electricity demand forecasting model whose input
dataset constitute the feature subset achieved by the proposed
BGA-GPR FS strategy can attain accurate forecast results.

D. EVALUATION OF FS RESULTS FOR IMPROVED
FORECASTING

In order to further validate the effectiveness of the
obtained FS results, a Feedforward Artificial Neural Network
(FFANN) based 24h-ahead electricity demand forecast model
was developed for each customer category. The 19 features
selected by the devised BGA-GPR FS, presented in
Section VII B, form the training input dataset for FFANN
forecast model. While the training target variable is the elec-
tricity demand of each building.

VOLUME 7, 2019

TABLE 5. Comparison of FS results.

Customer Selected Features Best Fitness
(Dataset) BGA- NCA C BGA- | NCA | CFS
Type GPR FS FS FS | GPR FS
FS
Building A | 1, 2, 3, | 1,2, 3, | 1, 3, | 41.21 50.47 | 54.96
4,5 7, |4,6,7, | 4,5,
8,9,10, | 89,10, | 21,
13, 15, | 13, 15, | 22,
16, 17, | 16, 17, | 23,
19, 20, | 19, 20, | 24
21, 22, | 21, 22,
23,24 23,24
BuildingB | 1, 2, 3, | 1,2,3, ]2, 3, | 948 14.35 | 18.67
4,5 7, 14,5 7, 14,5,
8,9,10, | 8,9,10, | 6, 7,
13, 15, | 11, 13, | 10,
17, 19, | 15, 17, | 13,
20, 21, | 19, 20, | 19,
23,24 21, 23, | 20,
24 21,
22,
23,
24
BuildingC | 1, 2, 3, | 1,2, 3,1, 2, | 0.38 0.50 0.57
4,5 7, 14,7, 8, |3, 4,
8, 13, | 13, 17, | 5, 6,
17, 19, | 19, 20, | 7,
20, 21, | 21, 22, | 10,
22, 23, | 23,24 13,
24 19,
20,
21,
22,
23,
24
BuildingD | 1,2,3, | 1,2,3, | 1, 2, | 0.12 0.19 0.43
4,5, 7, 14,5 7,1 3, 4,
8, 9,19, 11, |5, 6,
13,16, 12, 13, | 7,
17, 21, | 16, 17, | 13,
22, 23, | 18, 21, | 19,
24 22, 23, | 21,
24 22,
23,
24

A two-year (2015 - 2016) time series hourly data of the
selected features and target variable were employed to train
the FFANN model. The FFANN model parameters was found
experimentally. A hidden layer of 10 neurons was used.
Moreover, the conventional GA was used to find the optimal
parameters of the FFANN weight parameters. The prediction
performance of the developed FFANN forecast model was
verified with a one-year (2017) window length testing data.

Howeyver, to illustrate the forecast results here, the model
testing result is given for randomly chosen four weekdays
and four weekends/holidays representing the weekdays and
weekends of the four seasons of the year: summer weekday
(Wednesday - July 26, 2017), summer weekend (Sunday -
July 16, 2017), fall weekday (Thursday - Oct 12, 2017),
fall weekend (Saturday - Oct 28, 2017), winter weekday
(Monday - January 9, 2017), winter holiday (Sunday -
January 1, 2017), spring weekday (Tuesday — April 18,2017),
and spring weekend (Saturday — April 8, 2017). For the
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purpose of illustration, the forecast results for one of the
buildings, Building B, are shown next. The forecast results
are presented for the random eight testing days with one-hour
time resolution, and they are depicted in Figures 4 and 5, for
the weekdays and weekends/holidays, respectively.

Winter Weekday (Monday - Jan 9, 2017) Spring Weekday (Tuesday — April 18, 2017)
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FIGURE 4. Real vs. forecasted electricity demand for weekdays.

Winter Weekend (Sunday - Jan 1, 2017) Spring Weekend (Saturday — April 8, 2017)
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FIGURE 5. Real vs. forecasted electricity demand for weekends/holidays.

As it can be observed in Figures 4 and 5, the forecasts
follow the actual electricity demand trends with smaller gaps
(errors) between them.

This further verifies the effectiveness of the proposed FS
approach in selecting the best features subset that enables the
forecast model to achieve improved forecasts that are more
accurate.

Moreover, the following criteria were used to evaluate the
accuracy of the obtained forecasts:

e Error
Error = P;, —PZ (10)

where, Pﬁ and Plﬁ are the real and prediction values of
the electricity demand at hour h, respectively.
e Mean absolute error (MAE)

MAE:}%’PZ—P’;‘ (11)

where, N is the forecasting horizon and its value is 24 for
24h-ahead forecast.
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e Mean absolute percentage error (MAPE)
100 N

Py —P,
MAPE = — LR
N h=1 PZ

MAE of 7.20kWh, MAPE of 1.96%, and daily peak MAPE
of 2.04% are obtained for the one-year (2017) forecast using
the proposed BGA-GPR FS results as input dataset for the
FFANN based forecast model of the educational building
(Building B). Figure 6 shows the schematic illustration of
the values of the forecast accuracy evaluation criteria used.
Hence, the obtained numerical results further confirm the
acceptability of the forecast accuracy achieved and effective-
ness of the implemented FS method.

(12)

Error distribution

50 100 150 200 250 300 350
Absolute error distribution
3000
Il Errors
2000 —MAE

1000
0

0 50 100 150 200 250 300 350

Absolute percent error distribution

I Errors
=== MAPE

10 20 30 40 50 60

FIGURE 6. Obtained values of forecast accuracy evaluation criteria.

E. QUANTITATIVE RELEVANCE ANALYSIS OF FS RESULTS
In order to quantify the benefits and relevance of the proposed
hybrid BGA-GPR based FS method and the selected features,
the following metrics are used:

e Computation time reduction:

tyithout_FS — twith_FS

Atcomp = (13)

twithaul_FS
where, twithout Fs 1S the total computation time which
includes data preprocessing, forecasting model train-
ing, validation, and prediction using the original feature
space without FS, tyin_Fs is the total computation time
with the use of the obtained FS results, and A teomp is
the change in total computation time due to FS. Positive
value of A teomp indicates the reduction of computation
time requirement of the electricity demand forecasting
model due to making use of FS results.
e Dimensionality reduction:

mxn _ RMxmr
AD — without _FS with_FS (14)
RXn
without _FS

mxn . . .
wherf:, Rwithout_FS is a matrix of feature space without
FS with m number of samples and n number of features,

R %" is amatrix of the reduced feature space with FS
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with m number of samples and n, number of reduced
features, and A D is the change in data dimension
due to FS. Positive value of A D (n-n;) indicates the
reduction of input data dimension for the electricity
demand forecasting model.

e FS fitness value improvement:

Afit = Jit withous_Fs — Jitwimn_rs

15
ﬁtwithout_FS ()
where, fityimoutr Fs 1S the fitness value of the features
without FS with respect to a predefined fitness func-
tion (MSE of GPR output and actual target formulated
in equation (9)), fitwim_rs is the fitness value of the
selected features with FS, A fit is the change in fitness
value due to FS. Positive value of A fit indicates the
improvement in predictive model fitness value (reduc-
tion in MSE value) due to FS.
e Forecasting accuracy improvement:

ACCyith_FS — ACCyithout _FS

Aacc =

(16)

AacCyithout_FS
Here, accyithout_Fs 1S the accuracy of the forecasts with-
out making use of FS results (using the original feature
space as training input) and accyiw_ps is the accuracy of
the forecasts with FS results (using the reduced feature
space as training input). aCCyithout_FS and acCyjth Fs are
defined as follows:

AacCCyithout_FS = 100 — MAPEwithouthS (17)
accyi_rs = 100 — MAPE ii_Fs (18)

where, MAPEimout_Fs is the mean absolute percent-
age error of the forecasts without FS and MAPE i Fs
is the mean absolute percentage error of the forecasts
with FS. A acc is the change in forecast accuracy due
to FS.

Positive value of A acc indicates the improvement of
forecast accuracy due to making use of FS results in
the forecasting process.

Table 6 presents the values of the metrics defined in equa-
tions (13) to (16) to determine the benefits achieved due to
the implementation of the devised FS method for short-term
electricity demand forecasting.

As clearly shown in Table 6, the implementation of the
FS and its integration to the forecasting model has resulted
in much improvements compared to the forecasting perfor-
mance using the original dataset without FS. For example,
for the residential building (Building A), the enhancement in
fitness value (MSE) using the BGA FS algorithm selected
variables to fit the electricity demand by the GPR model
is 42.9% over the original dataset (without FS). Similarly,
the selected feature subset of the educational (Building B),
office (Building C) and mixed-use building (Building D)
types have given enhancements of 96.5%, 96.7% and 99%,
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TABLE 6. Quantitative relevance analysis of FS results.

Metric Value (%)
Building | Building | Building | Building

A B C D
Computation time 17.7 26.1 34.6 34.6
reduction, Atcomp
Dimensionality 20.8 29.2 37.5 37.5
reduction, AD
Fitness value 42.9 96.5 96.7 99
improvement, Afit
Forecasting 38.7 81.2 81.9 83.0
accuracy
improvement, Aacc

respectively, compared to the original dataset, regarding the
FS GPR-modeled MSE fitness function.

The reduction in data dimensionality over the original
feature space is 20.8%, 29.2%, 37.5% and 37.5% for Build-
ing A, B, C and D, respectively. Likewise, the decrease in
total computation time is 17.7%, 26.1%, 34.6% and 34.6%,
respectively for Building A, B, C and D.

Above all, the improvement of the forecasting accuracy
is the most important and major objective of this study. The
improvement in prediction accuracy using the BGA-GPR FS
selected features to constitute the forecasting model training
inputs is 38.7%, 81.2%, 81.9% and 83.0%, respectively.

Thus, the above quantifications and experimental results
further demonstrate the relevance of the effective FS for the
improvement of the electricity demand forecasting.

VIil. CONCLUSION

This paper proposed and implemented a BGA based fea-
ture selection approach for improved short-term electricity
demand forecasting models. The approach includes the use
of a GPR fitness function to choice a combination of pre-
dictors from a given original predictor space. The proposed
BGA-GPR FS has given a feature subset that resulted in a
better fitness (lower MSE value) than the original dataset
with all the initial features. For comparison and validation,
features selected by other two feature selection methods were
presented. The BGA-GPR features outperformed the other
features with respect to the MSE fitness function defined
in the GPR framework. Moreover, the proposed BGA-GPR
FS was applied to four different electricity demand datasets
representing four different customer types (residential, edu-
cational, office and mixed-use building energy systems).
It achieved the best feature subsets, which can constitute the
input datasets for accurate forecasting of electricity demands
for all the electricity customer groups. Moreover, a FFANN
based 24h-ahead electricity demand forecast model was
developed to evaluate the effectiveness of the FS results. The
electricity demand forecasting model developed using the
obtained FS results has achieved an annual accuracy improve-
ment of 38.7%, 81.2%, 81.9% and 83.0%, respectively for
residential, educational, office and mixed-used building types
compared to forecasting based on the original feature space
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without FS. Therefore, the paper findings verify that the
combination of effective feature selection method and fore-
casting models owns robust forecasting power, compared to
forecasting with arbitrary features without predictor selection
methods. The work is both novel and effective from applica-
tion, algorithms hybridization and performance improvement
perspectives. The study contributes a new and robust feature
selection tool by combining BGA and GPR for improved
performance (more accurate) electricity demand prediction
problem.
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