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a b s t r a c t 

Automatic word count estimation (WCE) from audio recordings can be used to quantify the amount of verbal 

communication in a recording environment. One key application of WCE is to measure language input heard 

by infants and toddlers in their natural environments, as captured by daylong recordings from microphones 

worn by the infants. Although WCE is nearly trivial for high-quality signals in high-resource languages, daylong 

recordings are substantially more challenging due to the unconstrained acoustic environments and the presence of 

near- and far-field speech. Moreover, many use cases of interest involve languages for which reliable ASR systems 

or even well-defined lexicons are not available. A good WCE system should also perform similarly for low- and 

high-resource languages in order to enable unbiased comparisons across different cultures and environments. 

Unfortunately, the current state-of-the-art solution, the LENA system, is based on proprietary software and has 

only been optimized for American English, limiting its applicability. In this paper, we build on existing work 

on WCE and present the steps we have taken towards a freely available system for WCE that can be adapted to 

different languages or dialects with a limited amount of orthographically transcribed speech data. Our system 

is based on language-independent syllabification of speech, followed by a language-dependent mapping from 

syllable counts (and a number of other acoustic features) to the corresponding word count estimates. We evaluate 

our system on samples from daylong infant recordings from six different corpora consisting of several languages 

and socioeconomic environments, all manually annotated with the same protocol to allow direct comparison. 

We compare a number of alternative techniques for the two key components in our system: speech activity 

detection and automatic syllabification of speech. As a result, we show that our system can reach relatively 

consistent WCE accuracy across multiple corpora and languages (with some limitations). In addition, the system 

outperforms LENA on three of the four corpora consisting of different varieties of English. We also demonstrate 

how an automatic neural network-based syllabifier, when trained on multiple languages, generalizes well to novel 

languages beyond the training data, outperforming two previously proposed unsupervised syllabifiers as a feature 

extractor for WCE. 

1. Introduction 

Automatic word count estimation (WCE) from audio recordings can 

be used to investigate vocal activity and social interaction as a function 

∗ Corresponding author at: Unit of Computing Sciences, Tampere University, P.O. Box 553, FI-33101 Tampere, Finland. 

E-mail address: okko.rasanen@tuni.fi (O. Räsänen). 

of recording time and location, such as in personal life logs derived from 

wearable sensors ( Ziaei et al., 2015 , 2016 ). WCE is also a highly useful 

tool in the scientific study of child language acquisition because it can 

help answer questions such as how much speech children hear in their 
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daily lives in different contexts (e.g., Bergelson et al., 2018a ), and how 

the language input maps to later developmental outcomes in the same 

children ( Weisleder and Fernald, 2013; Ramírez-Esparza et al., 2014 ). 

In the present work, we focus on the latter application. 

It is already known that there are substantial differences in language 

exposure between families, socioeconomic environments, and cultures, 

with potential impact on later language development outcomes ( Hart 

and Risley, 1995; Huttenlocher et al., 2010; Rowe, 2012; Weisleder and 

Fernald, 2013 ; see also Hoff, 2006 , for a review). Such differences may 

relate to the quantity and kind of speech children hear, but also to ques- 

tions such as how often the infant is addressed directly, and how often 

they overhear adult conversations (e.g., Lieven, 1994; Shneidman and 

Goldin-Meadow, 2012; Cristia et al., 2017 ). However, many of these 

conclusions have been drawn from short observations of child-caregiver 

interaction recorded in a lab or at the child’s home, providing only a lim- 

ited view into the daily variation children encounter in their linguistic 

input ( Tamis-LeMonda et al., 2017; Bergelson et al., 2018b ). Further- 

more, the vast majority of this research has been carried out in the 

context of limited set of languages and cultural environments, largely 

focusing on so-called WEIRD communities (Western, Educated, Indus- 

trialized, Rich, Democratic; Henrich et al., 2010 ) which limits the gen- 

eralizability of the findings. To better study the input and its effects 

on development, and in response to changing technological availabil- 

ity, language development researchers have increasingly been recording 

children as they go about their daily lives with wearable microphones, 

allowing quantification of language input from data corresponding to 

the natural learning environments of the children. However, since it 

is not realistic to manually annotate hundreds or even thousands of 

hours of audio data from such daylong recordings, automated speech 

processing solutions are needed. This is where automatic WCE systems 

can come to the rescue, as they can provide an invaluable automated 

tool for measuring the number of words children have heard in a period 

of time. 

The existing state-of-the-art solution for the daylong recording 

and analysis task is the LENA 

TM system ( Xu et al., 2008; Gilkerson 

and Richards, 2009 ) developed by the LENA Research Foundation 

( http://www.lena.org ). The LENA setup includes a compact recorder 

that can be placed inside the pocket of a vest worn by the child, and 

software that analyzes various aspects of the child’s daily language expe- 

rience from the audio, including measures such as conversational turns, 

adult word counts, and counts of child vocalizations. Despite its tremen- 

dous value for the language research community, LENA as a software 

solution is not without problems. First, the software is proprietary and 

expensive. Second, only audio captured with the LENA recorder can be 

analyzed with the software, i.e. other audio files cannot be run through 

the same software. In addition, the included algorithms for speech pro- 

cessing are potentially outdated due to aging of the system, the ba- 

sic building blocks having been introduced nearly 10 years ago (e.g., 

Xu et al., 2008 ). Since the algorithms are not open-source, it is also not 

possible to improve the software. Finally, LENA speech processing algo- 

rithms, including the WCE module, have been optimized for American 

English. While the system can be used with recordings in any language, 

its accuracy is not necessarily consistent across different populations, 

complicating any attempt at cross-linguistic comparison. 

Given this background, there is an increasing demand from the re- 

search community to develop an alternative to LENA that would be open 

source, free of charge, compatible with audio data obtained using a va- 

riety of recorders, and robustly applicable to a variety of languages and 

language environments. In order to address this challenge, our ongoing 

collaborative project called Analyzing Child Language Experiences Around 

the World (ACLEW; https://sites.google.com/view/aclewdid/home ) 

aims to develop an open-source software package that would address 

the mentioned shortcomings of LENA (see Le Franc et al., 2018 , for ini- 

tial work). The developed tools will be distributed as a Linux virtual ma- 

chine that can be operated on a variety of computing platforms without 

special technical expertise in installing or operating speech processing 

algorithms (see Metze et al., 2013; Plummer et al., 2014 ). The system 

also aims to be scalable to large data sets with modest computational 

resources, as the aim is to make the tools usable by a broad population 

of researchers using a variety of computing environments. WCE is one 

among several tools under development that we hope to integrate into 

the software package. 

In the present paper, we describe our recent developments for 

the WCE component of the daylong analysis toolkit. After describing 

the WCE problem in more detail (the next subsection), we present 

our basic WCE pipeline. In a nutshell, our solution is based on 

language-independent syllabification of speech, followed by a language- 

dependent mapping from syllable counts (and a number of other acous- 

tic features) to the corresponding word count estimates. Our work 

extends the earlier WCE system by Ziaei et al. (2016) and also ear- 

lier syllable-based speech rate estimators such as those by Wang and 

Narayanan (2007) and Morgan and Fosler-Lussier (1998) . However, 

we go beyond the existing studies by (1) investigating applicability of 

syllable-based WCE to daylong child-centered recordings in several lan- 

guages and in participant samples with varied socioeconomic status, and 

(2) comparing the impact of several speech activity detectors (SADs) 

and syllabifiers on the WCE performance. In addition, we (3) explore 

cross-language generalization of a language-independent supervised syl- 

labification algorithm, thereby potentially replacing the unsupervised 

syllabification algorithms ( Ziaei et al., 2016 ) or acoustic phone models 

( Xu et al., 2008 ) used in the earlier WCE systems. The ultimate aim of 

this study is to identify the best performing WCE system configuration 

that generalizes well to new languages and domains, and to see how it 

compares against LENA performance. 

1.1. The WCE problem 

The key idea of a WCE system is to infer the number of spoken words 

in a given audio signal segment. Ideally the word count estimates would 

already be accurate at the level of individual utterances. However, due 

to the extremely challenging signal conditions encountered in typical 

daylong recordings, this turns out to be a difficult problem in practice. 

Because the recording device (e.g., the LENA recorder) is worn by the 

child and records continuously, the microphone picks up not only speech 

of the child and caregivers, but also any other audible sounds in the envi- 

ronment. These sounds can include varying ambient noises, overlapping 

speech, and non-linguistic vocalizations. Moreover, each sound source 

(including speech of interest) has different channel characteristics due 

to the varying geometries of the spaces and source positions. In addi- 

tion, signal artefacts from clothing scratching against the microphone 

during child movement are also common. A large proportion of the col- 

lected data is also mono (e.g., all LENA output), removing any useful 

directional information that could help in source separation. Finally, re- 

searchers are increasingly collecting daylong recordings with a variety 

of non-LENA recorders, which means the technical characteristics of the 

devices can also differ from one dataset to the next. This means that the 

overall properties of the audio data are largely uncontrolled, calling for 

robust signal processing methods. 

Another central challenge comes from the cross-domain applicability 

of the WCE system: performance of the system should ideally be similar 

in high-resource languages such as English (across all its dialects and 

social environments of the talkers) and in low-resource languages, such 

as Tseltal, a Mayan language included in our experiments. In conjunc- 

tion with the problematic signal conditions, this limits the applicability 

of standard ASR systems for WCE in cross-linguistic developmental re- 

search. Balancing the performance of language-specific ASR systems for 

the different language environments is not trivial, especially considering 

the challenges involved in obtaining sufficiently representative lexicons, 

pronunciation dictionaries, and language models for low-resource lan- 

guages. 

Fortunately, the use of WCE for developmental research may not 

require systems to identify individual words from the speech stream, 
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Table 1 

A list of LENA word count estimation accuracies reported in the literature, as measured between LENA output and manually annotated word counts. N denotes the 

total number of samples used in performance calculation and “segment duration ” refers to the duration of audio in each sample (there can be one or more samples 

per subject). All reported mean (ERR mean ) and median (ERR median ) absolute relative errors across subjects have been derived by the present authors from the word 

count data reported in the publications, or from data obtained from the original authors of the studies through personal communication. See also Section 4.1 for 

details on use of Eqs. (1) and (2) . 

Authors Language r ERR mean ERR median N Segment duration Other notes 

Xu et al. (2009) American English 0.92 N/A N/A 70 1 h Data sampling not specified, 

but most likely the same 1 h 

segments with high speech 

activity as in Xu et al. (2008) . 

Soderstrom and 

Wittebolle (2013) 

Canadian English 0.76 34.1% 27.7% 10 100 min 

Canault et al. (2016) French 0.64 177.0% 36.5% 324 10 min Hand-picked segments with 

high vocal interaction 

Canault et al. (2016) French 0.37 31.2% 27.5% 18 3 h Same as above with data 

pooled across 18 subsequent 

sessions across several days. 

Weisleder and 

Fernald (2013) 

Mexican Spanish 0.80 45.2% 50.2% 10 1 h 

Schwarz et al. (2017) Swedish 0.67 78.4% 59.5% 48 5 min Only 4 subjects. 

Schwarz et al. (2017) Swedish 0.86 42.8% 37.0% 4 1 h Only 4 subjects. 

Elo (2016) Finnish 0.99 75.2% 55.3% 21 1 h Only 2 subjects. 

Gilkerson et al. (2015) Shanghai and 

Mandarin Chinese 

0.73 N/A N/A 22 15 min 

Busch et al. (2018) Dutch 0.88 496.6% 42.9% 65 5 min Derived from 65 × 5 min 

samples provided by Busch 

instead of the 48 samples in 

the original study. 

Busch et al. (2018) Dutch 0.92 32.7% 34.2% 6 54 min Above data, but pooled across 

all 5 min segments per subject 

(4–16 segments, 54 min 

average total duration). 

enabling alternative technological solutions. A typical use case may be 

concerned with questions such as “How many words did this child hear 

per day ? ” (e.g., Weisleder and Fernald, 2013 ) or “How many words does 

the child hear at day care versus at home? ” (e.g., Soderstrom and Witte- 

bolle, 2013 ), and where such aggregate word counts are then related 

to other variables of interest. This means that the relevant time-scales 

are often measured in terms of several minutes, if not hours or days, 

instead of individual utterances or words. This enables the use of statis- 

tical approaches to WCE where estimates of aggregate word counts can 

be derived from features or representations of the signal that, on aver- 

age , depend on the number of words in the data. For instance, the LENA 

WCE module first detects the total number of vowels and consonants in 

the signal using an acoustic phone model, and combines these with mea- 

sured speech duration with and without silences ( Xu et al., 2008 ). These 

features (and their square roots) are then mapped to the expected corre- 

sponding word count using a least-squares linear mapping that has also 

been optimized on American English. Another WCE system recently pro- 

posed by Ziaei et al. (2016) takes a similar approach. However, instead 

of phone counts their system uses syllable counts from an unsupervised 

syllabifier by Wang and Narayanan (2007) as the primary feature. 

In both the phone and syllable-based WCE systems above, the key 

assumption is that speakers of the given language share a lexicon that 

is stationary in terms of average phonemic or syllabic length of words 

at the time-scales of interest. Even though a system might not get the 

estimated word count right for individual utterances (since it does not 

identify individual word forms as such), the estimation error will con- 

verge to zero over time as long as the estimator is unbiased, i.e., as long 

as the system does not systematically under- or overestimate the word 

counts at the utterance-level. In this context, short-term accuracy of the 

estimator will simply determine the rate at which the estimation er- 

ror decreases when more speech is observed. Given unbiased estimators 

with a sufficient accuracy, a WCE system may therefore provide useful 

word count estimates at the time-scales of interest, even if it does not 

know the lexical or phonological properties of the language in detail. 

This is also a property that we utilize in our present system, as will be 

described in Section 2 . 

1.2. State-of-the-art, open issues, and the present contributions 

So far, there are essentially two systems for WCE that have 

been proposed in the earlier literature, LENA and the system by 

Ziaei et al. (2016) , both already mentioned above. While LENA is specif- 

ically designed for analyzing child-centered daylong recordings (includ- 

ing a WCE module for measuring speech heard by the infant), the sys- 

tem by Ziaei et al. was designed to only count the words of the person 

wearing the microphone. Their best performing system variant uses TO- 

Combo-SAD ( Sadjadi and Hansen, 2013; Ziaei et al., 2014 ) for speech 

detection, spectral subtraction for speech enhancement, and an auto- 

matic syllabifier from Wang and Narayanan (2007) for syllable count 

estimation before mapping the counts to word counts. Ziaei et al. evalu- 

ated their system on Prof-Life-Log database consisting of 13 recordings 

from one adult participant wearing the LENA microphone during typi- 

cal working days, with the data manually transcribed for word counts 

( Ziaei et al., 2016 ; see also Ziaei et al., 2013, 2014 ). According to our 

knowledge, applicability of their system to child-centered daylong data 

has not been tested to date. However, our experiments will partially 

address this issue by having one of our WCE system configurations be- 

ing highly similar to theirs (i.e., using TO-Combo-SAD, spectral subtrac- 

tion, the same syllabifier, and a linear model between signal features 

and words). Also, our system generally builds on that work, but as we 

show in the experiments, we also introduce more robust techniques for 

automatic syllabification of speech in daylong recording conditions. 

As for LENA, the key components on the adult WCE pathway in- 

clude detection of adult speech segments with a hidden-Markov model 

that uses so-called Minimum Duration Gaussian Mixture Models, ap- 

plication of a phone recognizer to the segments, and a linear mapping 

of the resulting vowel and consonant counts and speech duration mea- 

sures to word counts as described in the previous subsection ( Xu et al., 

2008 ). Since the introduction of LENA, several studies have evaluated 

LENA WCE performance across a number of languages and participant 

populations (see Table 1 ). The major technical drawback of LENA is its 

reliance on the structure of American English phonology and lexicon in 

the WCE process. As LENA uses an acoustic phone model trained on En- 
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glish and a linear mapping from vowel and consonant counts to words, 

also optimized on English, the estimated word counts can be expected 

to be accurate only for languages that have the same ratio of vowels 

and consonants to words as the American English used in the train- 

ing. In the reported literature, this problem is often masked by the use 

of Pearson’s linear correlation between estimated and hand-annotated 

words as the primary performance metric to measure LENA reliability 

(e.g., Weisleder and Fernald, 2013; Soderstrom and Wittebolle, 2013; 

Canault et al., 2016; Gilkerson et al., 2015; Elo, 2016; Schwartz et al., 

2017 ). Longer stretches of speech in any language also mean more words 

and subword units, so relatively high correlations between LENA out- 

put and manually annotated reference word counts have been reported 

in the literature for a variety of languages, as summarized in Table 1 . 

However, the picture is very different when comparing the estimated 

counts N hypo and true counts N true with a measure that also consid- 

ers the absolute counts, such as the mean absolute relative error used 

by Ziaei et al. (2016) in Eq. (1) or median absolute relative error in 

Eq. (2) used in the present study (more on evaluation in Section 4.1 ). 

𝐸𝑅 𝑅 mean ( % ) = mean 
⎛ 
⎜ 
⎜ 
⎝ 

|||𝑁 hypo − 𝑁 true 
|||

𝑁 true 

⎞ 
⎟ 
⎟ 
⎠ 
∗ 100 (1) 

𝐸𝑅 𝑅 median ( % ) = median 
⎛ 
⎜ 
⎜ 
⎝ 

|||𝑁 hypo − 𝑁 true 
|||

𝑁 true 

⎞ 
⎟ 
⎟ 
⎠ 
∗ 100 (2) 

As an example, Elo (2016) reports a correlation of r = 0.99 between 

LENA and hand-coded word counts for several 1-hour segments from 

two Finnish children. At the same time, the estimated and actual word 

counts differ by 75.2%, most likely due to the highly different phonolog- 

ical and morphological structure of Finnish compared to English. This is 

not to say that LENA would not be applicable to languages different from 

English: a high correlation means that the relative word counts within 

the study population are still accurately measured, allowing word counts 

to be linked to other factors (e.g., developmental outcomes) with high 

validity. However, comparison of word counts across different partici- 

pant populations is more problematic since LENA adult word counts are 

not guaranteed to correspond to actual words in a new language or in a 

substantially different dialect. 1 

In the present paper, we aim to remedy the problem of language- 

specificity by proposing a system that is always adapted to the target 

language using a small amount of orthographically transcribed speech. 

Since nearly all behavioral studies using LENA have checked the valid- 

ity of the automated analyses in a given domain by comparing auto- 

mated system outputs to manual annotations on a subset of the data 

(e.g., Soderstrom and Wittebolle, 2013; Weisleder and Fernald, 2013; 

Canault et al., 2016; Elo, 2016 ), the data transcribed for validity could 

also be used to adapt the WCE system to the domain in question (and 

one can still estimate validity by a cross-fold validation procedure on 

the same data). By implementing this type of low-resource adaptability, 

we aim for our system to be applicable to any language or use domain so 

long as the user is able to provide orthographic transcripts for roughly 

30 min of audible adult speech (not to be confused with the total dura- 

tion of annotated audio), ideally consisting of multiple different talkers 

and families. To validate our approach, we conduct experiments on six 

different corpora and use performance metrics that take into account the 

absolute accuracy of the estimator instead of measuring linear correla- 

tions. The overall purpose is to understand whether the adaptation ap- 

proach is feasible with the amount of orthographically transcribed data 

1 In practice, measuring linguistic exposure across different languages using 

absolute word counts is also problematic due to the large differences between 

languages at various levels of linguistic structure (see, e.g., Allen and Dench, 

2015, for a discussion). However, this discussion is beyond the scope of the 

present study, where we simply aim to achieve similarly reliable WCE across 

languages. 

that are manageable for language researchers to produce, and which 

technical components (SADs, syllabifiers) provide the best performance 

in WCE when overall accuracy and consistency across datasets are used 

as the primary criteria. 

The rest of the paper is organized as follows: Section 2 introduces 

the proposed WCE system and its sub-components. Section 3 describes 

the data used in system training and in the experiments. Section 4 shows 

the results, and Section 5 discusses implications of the current work and 

how the system could (and should) be improved further in future work. 

2. Methods 

2.1. Overall WCE pipeline 

A schematic view of the WCE pipeline, 2 largely based on the earlier 

work by Ziaei et al. (2016) , is shown in Fig. 1 . The system consists of five 

basic components (1) a speech activity detector (SAD), (2) a speech en- 

hancement module (spectral subtraction), (3) automatic syllabification 

of speech input, (4) extraction of statistical descriptors from enhanced 

and syllabified signal representations, and (5) a linear mapping from 

features into corresponding word counts. 

The guiding principles in the overall system design are robustness 

against signal conditions in daylong recordings and adaptability to new 

languages. The use of syllables as the primary feature for WCE is mo- 

tivated by two primary reasons: First, signal-driven syllabification of 

speech can be viewed as a relatively language-independent process. This 

is due to an assumption that holds similarly across languages that syl- 

labic nuclei are perceptually more “sonorous ” than a preceding onset 

and (optionally) following coda ( Whitney, 1874 ; de Saussure, 1916; 

Clements, 1990 ), where sonority is closely correlated with physical sig- 

nal properties such as intensity or loudness (e.g., Price, 1980; Parker, 

2002 ; see also Räsänen et al., 2018 , for an overview). Any syllabification 

process that operationalizes these sonority fluctuations as generic com- 

putational transformations operating on the acoustic signal then remains 

largely language-independent. The second reason for using syllables is 

that the energetic nature of syllabic nuclei also makes them potentially 

robust against signal degradations such as additive noise. As long as the 

alternation between the less and more sonorous speech sounds is present 

in the signal representation, information on the number of syllables is 

also present. 

Our system’s adaptability to new languages is achieved by having 

only a small number of free parameters that depend on the language 

L in question: (a) a syllable detection threshold 𝜃L , (b) feature-specific 

coefficients 𝛃L used in the linear mapping (highlighted in red in Fig 1 ), 

and (c) a correction coefficient 𝛼L for limited recall of the used SAD. 

Given that a dataset with ∼30 or more minutes of orthographically tran- 

scribed adult speech is available as training data, these parameters can 

be adapted to the language in question. A simple linear model is suffi- 

cient if we can assume that the word and syllable counts increase lin- 

early with the duration of speech input at the time-scales of interest for 

WCE analysis (see also Xu et al., 2008; Ziaei et al., 2016 ). Parsimony 

in such a model also reduces the risk of having substantially different 

estimator behavior in different languages and conditions, as it mitigates 

the risks of overfitting the system to limited adaptation data or creating 

far more accurate models for high-source languages. Even if it excludes 

the potential benefits from more complicated nonlinear dependencies 

between signal descriptors and word counts, the previous WCE systems 

have also found linear model as suitable for the task ( Xu et al., 2008; 

Ziaei et al., 2016 ). 

2 MATLAB implementation of the WCE system (source code + Linux/OSX 

Binaries for MATLAB Runtime Environment) are available at 

http://www.github.com/ACLEW/WCE_VM/ , and also as integrated to the 

ACLEW virtual machine at http://www.github.com/SRVK/DiViMe/ . 
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Fig. 1. Overall schematic view of the core WCE system. Input audio is first passed through a SAD that passes through detected speech segments, followed by speech 

enhancement with spectral subtraction. A syllabification algorithm is then used to calculate a “sonority envelope ” y u for each utterance u , from which syllable counts 

n u are then obtained with peak picking. Utterance duration and a number of statistical descriptors of the enhanced audio and sonority envelope are then combined 

with the estimated syllable count to form a fixed-dimensional feature vector f u . Word count estimate of each utterance is finally obtained by applying a least-squares 

linear mapping to f u . Parameters 𝜃L and 𝛃L shown in red font can be optimized separately for each language L . (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.) 

2.2. Processing steps in more detail 

The processing of a (day)long recording starts with the detection 

of speech segments using a SAD. 3 In this work, we compare three al- 

ternative methods for the task: Threshold-optimized Combo-SAD ( “TO- 

Combo-SAD; Sadjadi and Hansen, 2013; Ziaei et al., 2014 ) as used in 

Ziaei et al.’s WCE system (2016), SAD from the widely used OpenS- 

MILE toolbox ( Eyben et al., 2013a, 2013b ), and so-called ‘Noisemes’ 

SAD, which is based on recognition of several classes of environmen- 

tal sounds ( Wang et al., 2016 ), all described in more detail in the next 

subsection. 

All segments classified as speech by the SAD are subsequently pro- 

cessed by a speech enhancement algorithm. Our system uses spectral 

subtraction ( Berouti et al., 1979 ), which Ziaei et al. (2016) found to be 

superior to several other methods in their comparisons on the Prof-Life- 

Log WCE experiments. In the present system, spectral subtraction is car- 

ried out using the noise power spectral density estimation algorithm by 

Martin (2001) , as implemented in the VoiceBox toolbox, 4 where noise 

estimation is performed directly from the SAD output segments with- 

out having to separately specify non-speech regions. This simplifies the 

pipeline, as a SAD may not always reliably differentiate between speech 

and non-speech content (as will be seen in the experiments below). 

In the syllable envelope estimator stage, we compare two un- 

supervised syllabifiers: one by Wang and Narayanan (2007) and 

one by Räsänen et al. (2018) . In addition, we investigate a super- 

vised neural network-based syllabifier based on an initial concept in 

Landsiedel et al. (2011) . In all three, the enhanced acoustic waveform 

corresponding to a SAD output segment ( “utterance ”) u is transformed 

into a unidimensional signal y u ∈ [0, 1] at a 100-Hz sampling rate. Each 

sample in y represents either “sonority ” of the speech input at that in- 

stant (for unsupervised estimators) or pseudo-probability of a syllable 

nucleus at the given time (for the supervised estimator). As a result, 

local peaks in y are assumed to correspond to syllabic nuclei. 

In the feature extraction stage, the number of syllable nuclei n u is first 

extracted from the syllable envelope y u . This is performed using a sim- 

ple peak-picking algorithm that looks for local maxima with amplitude 

differences of at least 𝜃L with respect to the previous local minimum. 

3 We will refer to voice activity detectors (VADs) and speech activity detectors 

(SADs) simply as SADs. 
4 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html , by Mike 

Brooks. 

The threshold parameter 𝜃L is optimized separately for each language 

L (see Section 2.2 ). In addition to n u , the mean and standard deviation 

(SD) of the sonority envelope across the entire utterance are extracted 

as syllabic features s u . The mean and SD of signal power and overall 

SAD segment duration are also extracted as signal-level energy features 

e u . Even though the mean and SD features do not accumulate over time, 

initial experiments suggested that they allow automatic fine-tuning of 

predictions based on overall signal dynamics in the utterances. 

In the final stage, all features n u , s u , and e u are concatenated into 

an utterance-level feature vector f u , and a linear mapping w u = f u 𝛃L 

to the corresponding word count estimate w u is carried out. Similarly 

to 𝜃L , the mapping parameters 𝛃L are separately optimized for each 

language. 

2.3. Adapting the system to new languages 

In order to adapt the system to a new language L , syllable detec- 

tion threshold 𝜃L and linear mapping parameters 𝛃L are estimated from 

utterances X = [ x 1 , x 2, …, x n ] for which the corresponding word counts 

w = [ w 1 , w 2 , …, w n ] are known. The parameters are optimized to mini- 

mize WCE RMSE error on the provided training data. This is achieved by 

first performing syllabification of training utterances at various thresh- 

old values 𝜃 ∈ [0.0001, 1] with small increments and measuring the 

linear correlation r between the resulting syllable counts and ground- 

truth word counts across all the utterances. The threshold 𝜃L with the 

highest linear correlation is then chosen, and the corresponding sylla- 

ble counts n u are added to the utterance-level feature vectors F = [ f 1 , 

f 2 , …, f n ] 
T along with the other features. Ordinary least squares linear 

regression is then carried out to solve 𝛃L from w = F 𝛃L . 

In order to compute word count estimates over longer time-scales 

than individual SAD segments, a correction based on the expected recall 

of the SAD needs to be taken into account. In the experiments described 

in Section 4 , SAD is first used to split the adaptation recordings into 

utterance-like chunks u , and then the proportion 𝛼L ∈ [0, 1] of words 

ending up in the SAD outputs (see Section 4 for details) with respect 

to the total number of words in the adaptation data is measured. All 

aggregate word count estimates are then divided by 𝛼L to account for 

the limited recall of the SAD. 

2.4. Compared speech activity detectors 

Three different SADs were compared in the experiments. The first 

two, TO-Combo-SAD and OpenSMILE SAD, are well established and 
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have been previously tested in a variety of contexts. The third one, 

Noisemes SAD, differs from the other two by attempting to model non- 

speech categories in more detail instead of directly attempting binary 

classification between speech and non-speech. 

2.4.1. TO-Combo-SAD 

TO-Combo-SAD ( Sadjadi and Hansen, 2013; Ziaei et al., 2014 ) is 

based on five signal features (harmonicity, clarity, prediction gain, pe- 

riodicity, and spectral flux) that are linearly mapped into a 1-D rep- 

resentation using PCA, and then clustered into two categories using a 

2-component Gaussian mixture model (GMM) based on the data from 

the analyzed segment. In the basic Combo-SAD, the GMM component 

with the higher mean is then considered to be speech and the other 

component non-speech. The final frame-level decisions are made based 

on the component posteriors after weighing them with factor w (and 1- 

w ) that is a hyperparameter of the algorithm. In the threshold-optimized 

version used in this paper, the higher component mean has to be equal 

to or higher than the mean of 1–D projections of all mean vectors from a 

256-component GMM, where this larger GMM that has been pre-trained 

on a large amount of labeled speech data using the same 5-dimensional 

features. If this condition is not satisfied (i.e., neither cluster resembles 

typical speech), the pre-trained GMM is used as a model of speech in- 

stead. As a result, TO-Combo-SAD is capable of handling audio data 

with highly unbalanced distributions of speech and non-speech content, 

as demonstrated with Apollo space mission data ( Ziaei et al., 2014 ) and, 

in WCE, with the Prof-Life-Log data ( Ziaei et al., 2016 ). In the present ex- 

periments, we use this “threshold-optimized ” ( “TO ”) Combo-SAD with 

its default parameters, as kindly provided by the original authors. 

2.4.2. OpenSMILE SAD 

OpenSMILE SAD ( Eyben et al., 2013a, 2013b ) is included as the sec- 

ond SAD alternative, since the OpenSMILE toolkit is widely used for 

various speech processing applications and is freely available for non- 

commercial use. The SAD of the toolkit uses a Long Short-Term Memory 

(LSTM) neural network model with cepstral coefficients computed from 

RASTA-PLP ( Hermansky and Morgan, 1994 ) and their first and second 

order derivatives. During use, network outputs ( − 1 for non-speech, 1 for 

speech) are thresholded to make a binary speech/non-speech decision 

for each frame. In Eyben et al. (2013a) , the network was trained using 

American English speech corpora of conversational (Buckeye; Pitt et al., 

2005 ) and read speech (TIMIT; Garofolo et al., 1990 ) and using synthetic 

additive noise for improved noise robustness. However, the public ver- 

sion available in the OpenSMILE toolbox uses a more limited training 

dataset that is not separately specified (see OpenSMILE documentation). 

Default hyperparameters of the tool (OpenSMILE version 2.1.0) were 

used in the experiments. 

2.4.3. Noisemes SAD 

Noisemes SAD ( Wang et al., 2016 ) was chosen as the third alter- 

native SAD, since it represents a somewhat different approach to the 

speech detection problem than the previous two: It is, in fact, a 17- 

class environmental sound ( “noiseme ”) classifier with two categories for 

speech and 15 categories for other sound types, such as music, singing, 

cheering, and mumbling. Since in WCE we want to distinguish compre- 

hensible speech from other vocalizations, this type of multi-class mod- 

eling may be beneficial. Technically Noisemes SAD is based on 6669 

low-level signal descriptors extracted using the OpenSMILE toolkit that 

have been compressed to 50-dimensional features using PCA, 5 and fed 

into a one-layer Bidirectional Long Short-Term Memory (BLSTM) net- 

work. The model has been trained on 10 h of web video data from 

Strassel et al. (2012) . To use it as a SAD in our experiments, posteriors 

5 Note that the original method in Wang et al. (2016) used 983 features se- 

lected using information gain criterion, but we used an updated version from 

authors Wang and Metze in this paper. 

for “speech ” and “speech non-English ” classes were summed together 

and all frames where this combination class was higher than the other 

15 categories were considered to be speech. 

2.5. Compared syllabifiers 

The basic idea of tracking sonority fluctuations in speech has given 

rise to several automatic syllabification algorithms proposed in the ex- 

isting literature. Even though there is variation in the exact framing of 

the methods, basing syllable detection on, e.g., amplitude or energy en- 

velopes, loudness contours, or other similar 1-D representations derived 

from the signal (e.g., Mermelstein, 1975; Morgan and Fosler-Lussier, 

1998; Villing et al., 2004; Wang and Narayanan, 2007; Obin et al., 

2013 ), nearly all of the methods are ultimately based on tracking of 

the approx. 3–8 Hz amplitude modulations in the speech signal that go 

hand-in-hand with the temporal alternation between vocalic and conso- 

nantal speech sounds: the syllabic rhythm. 

In the present work, three alternative syllable envelope es- 

timators were compared for WCE: (1) thetaSeg algorithm by 

Räsänen et al. (2018) , originally designed for perceptually motivated 

syllable segmentation from speech, (2) syllable envelope-estimator mod- 

ule from the speech-rate estimator by Wang and Narayanan (2007) , 

and (3) a bi-directional Long Short-Term Memory (BLSTM)-based 

syllabification algorithm based on the initial version described in 

Landsiedel et al. (2011) . While the first two alternatives (thetaSeg and 

WN) are unsupervised methods making use of heuristic signal process- 

ing operations, the BLSTM is directly trained for nucleus detection in a 

supervised manner. All three methods are detailed below. 

2.5.1. thetaSeg 

thetaSeg ( Fig. 2 , top; Räsänen et al., 2018 ) is a straightforward mech- 

anistic model of oscillatory entrainment of the auditory cortex to rhyth- 

mic fluctuations in speech input (approx. 4–7 Hz; so-called “theta-range ”

oscillations), approximating the perception of sonority fluctuations in 

speech. In thetaSeg, the incoming signal is first fed through a 20-channel 

Gammatone filterbank with center frequencies logarithmically spaced 

between 50 and 7500 Hz, followed by downsampling of the amplitude 

envelopes to 1000 Hz. The resulting envelopes are then used to drive a 

bank of harmonic damped oscillators (2nd order electronic resonators 

with shared parameters), one oscillator for each frequency band. For 

each sample, amplitudes of the eight highest-amplitude oscillators are 

combined non-linearly by calculating the sum of logarithmic amplitudes 

of the oscillators. As a result, a time-series called “sonority envelope ” is 

obtained, where harmonic and high-energy in-phase excitation on mul- 

tiple frequency bands is reflected as high amplitude values, whereas 

low-energy and/or incoherent excitation will result in smaller values. 

The damping and center frequency parameters of the thetaSeg were op- 

timized in Räsänen et al. (2018) for maximal syllable segmentation per- 

formance across English, Finnish, and Estonian conversational speech. 

The resulting damping factor Q = 0.6 and center frequency cf = 8 Hz are 

also used in the present paper. 

2.5.2. WN 

WN ( Wang and Narayanan, 2007 ; Fig. 2 , middle) is an algorithm 

originally developed for speaking rate estimation from conversational 

speech, being an improved modification of the mrate-algorithm pro- 

posed by Morgan and Fosler-Lussier (1998) . WN is also used by 

Ziaei et al. (2016) in their WCE system. In WN, the signal is first di- 

vided into 19 frequency bands, followed by downsampling to 100 Hz, 

and selection of the 12 most energetic sub-bands. For each sub-band, 

the envelopes are low-pass filtered with a Gaussian-shaped kernel, fol- 

lowed by computation of temporal within-band correlations up to lag 

of K = 11 frames. The resulting band-specific signals are then combined 

through multiplication ( ∼cross-band correlation), and smoothed again 
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Fig. 2. Block schematics of the syllable envelope estimators compared in the present study. 

in time using a different Gaussian kernel. As a result, a one-dimensional 

sonority-like envelope is obtained, in which peaks are assumed to cor- 

respond to syllabic nuclei. 

Our experiments used a MATLAB implementation of WN that is de- 

scribed in Räsänen et al. (2018) . In that version, the envelope esti- 

mation stage is identical to the original one described in Wang and 

Narayanan (2007) except that a Gammatone filterbank was used in- 

stead of the original second-order Butterworth bandpass filters for the 

frequency analysis. All hyperparameters (number of frequency bands 

and sub-bands, Gaussian kernel sizes etc.) were taken from the origi- 

nal paper, where they were optimized for the conversational Switch- 

board corpus ( Godfrey et al., 1992 ) using a Monte Carlo optimization 

scheme. The original speech rate estimator also uses pitch tracking to 

prune out unvoiced nucleus candidates. However, robust F0 estimation 

with a fixed set of hyperparameters was found to be problematic across 

the variety of signal conditions encountered in our daylong recordings. 

Therefore we only used the envelope estimation stage of the WN, and 

the envelope was used as an input to the same peak picking algorithm 

used by all three syllabifiers (as described in Section 2.2 ). 

2.5.3. BLSTM syllabifier algorithm 

BLSTM syllabifier algorithm ( Fig. 2 , bottom) was developed based on 

the initial work by Landsiedel et al. (2011) who tested BLSTM-based syl- 

labification on English from TIMIT and Switchboard corpora. However, 

instead of a higher-dimensional set of features used in the original pa- 

per, inputs to our model are mean and variance normalized 24-channel 

log-Mel spectra (25-ms frames, 10-ms frame shift). We also doubled the 

number of units in hidden layers to support representation learning from 

the spectral input. As a result, the network uses two bi-directional layers 

with 60 LSTM cells in each forward and backward layer, and where for- 

ward and backward layer LSTM cell activations are combined through 

addition. Sigmoid activation functions are used for each LSTM cell. Af- 

ter merging the final BLSTM layers, there is a fully-connected sigmoid 

layer with one node that converts the BLSTM activations into syllable 

nucleus probabilities, one value for each input frame. 

Training of the BLSTM was carried out using syllable-annotated data 

from several different languages described in Section 3.1 . Target outputs 

for network training consist of 1-D time-series that are otherwise zero 

except for Gaussian-shaped kernels centered on manually annotated syl- 

lable nuclei. More specifically, for each phone that is also a syllabic nu- 

cleus, a Gaussian kernel with a maximum value of one is added to the 

position corresponding to the center of the phone. The standard devi- 

ation of the Gaussian is set to be the corresponding phone duration, 

divided by 3.5. Any values larger than one, basically due to temporally 

overlapping Gaussians, are clipped to have a value of 1. As a result, the 

target signal can be interpreted as a pseudo-probability for the presence 

of a syllabic nucleus in each position (see also Landsiedel et al., 2011 ). 

The use of Gaussians instead of binary targets accounts for the various 

sources of uncertainty in determining the accurate position and dura- 

tion of a syllabic nucleus, including coarticulatory effects and annotator 

variability, and even conceptual problems in defining the exact onset 

and offset of a syllabic nucleus. 

In our experiments, we explore four alternative training strategies 

for the BLSTMs: (1) clean training without dropout, (2) clean training 

with 50% dropout in the hidden layers, and additive noise and varying 

channel augmented training (3) with and (4) without dropout (50%). 

Noise and channel augmentation were carried out by creating two addi- 

tional copies of each clean training signal. For each copy, additive noise 

was added at SNR sampled uniformly and randomly from [ − 10, 40] dB. 

The additive noise signals consisted of randomly sampled extracts from 

ACLEW starter set ( Bergelson et al., 2017a ) consisting of infant daylong 

recordings from various language environments, none of the data drawn 

from the test participants of our experiments. Varying channel charac- 

teristics were simulated by convolving the noised speech samples with 

FIR filters of 20 coefficients ( fs = 16 kHz) randomly sampled from a nor- 

mal distribution with zero mean and unit variance. The resulting signals 

were scaled to have a maximum amplitude of 1. The motivation for the 

data augmentation was to explore whether this type of approach im- 

proves syllabification performance also in case of largely unconstrained 

auditory environments present in our recordings, and also how augmen- 

tation compares with the effects of dropout training in our application. 

3. Data 

Two separate sets of data were used in the development and testing 

of the WCE pipeline: one set of corpora for training the BLSTM syllab- 

ifier, and another set of corpora of daylong child recordings for testing 

of the WCE system. 

3.1. BLSTM syllabifier training data 

The BLSTM syllabifier was trained on data from four corpora that 

have both syllable- and phone-level annotations available: the Pho- 

netic Corpus of Estonian Spontaneous Speech ( “EstPhon ”; Lippus et al., 

2013 ), the Korean Corpus of Spontaneous Speech ( Yun et al., 2015 ), 
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Table 2 

Corpora used in the experiments for WCE evaluation. Audio total = total amount audio annotated for verbal activity; speech total = duration of all 

utterances in the annotated audio; adult speech total = total duration of utterances from male or female adults that contain at least one unambiguously 

transcribed word. Min = minutes. 

ID Corpus name Language Subjects (N) Audio total (h) Speech total (min) Adult speech total (min) Audio per subject (min; avg.) 

BER Bergelson US English 10 5.0 116.7 50.7 30.0 

CAS Casillas Tseltal 10 7.5 212.0 100.8 45.0 

L05 Language 0–5 UK English 10 5.0 95.9 39.1 30.0 

ROS Rosemberg Arg. Spanish 10 5.0 149.3 70.3 30.0 

MCD McDivitt + Can. English 8 4.5 80.9 44.0 33.8 

WAR Warlaumont US English 10 5.0 100.3 39.6 30.0 

Total 58 32.0 755.1 344.5 

the Brent corpus of American English infant-directed speech ( Brent and 

Siskind, 2001 ), and the C-PROM corpus of spoken French ( Avanzi et al., 

2010 ). Together these corpora cover four different languages, several 

speaking styles, and a range of recording conditions from speakers of 

both genders and across a variety of ages. 

From EstPhon we used the studio section of the corpus, which in- 

cludes several spontaneous dialogues with pairs of male and female 

talkers, totaling up to 10,158 utterances in high signal quality (5.2 h of 

audio). The Korean data consists of dialogues between talkers of various 

ages (from teenagers to speakers in their 40 s) and both genders. Since 

this corpus is much larger than the other three, we randomly sampled a 

subset of 12,000 utterances (5.0 h) for training. As for C-PROM, we used 

the entire corpus consisting of 24 multi-minute recordings of various re- 

gional varieties of French from several discourse genres, totaling 1.2 h 

of data. Finally, we used the so-called Large-Brent subset of the Brent 

corpus forced-aligned for words and phones by Rytting et al. (2010) , 

for which automatic syllabification of the resulting phone transcripts 

was carried out using tsylb2-algorithm ( Fisher, 1996 ), as described in 

Räsänen et al. (2018) . This subset of Brent corresponds to 1.9 h of speech 

and 6253 utterances. After combining all the four corpora, the training 

data consisted of 13.3 h of audio with 265,089 syllables. In data augmen- 

tation experiments, this was tripled to 40 h, as described in Section 2.5 . 

3.2. Evaluation data 

The data for WCE system evaluation comes from six different cor- 

pora of child daylong recordings that have been pooled together, sam- 

pled, and annotated as part of the ACLEW project ( Bergelson et al., 

2017b ). These include the Bergelson corpus ( “BER ”) from US English 

families from New York area ( Bergelson, 2016 ), the LuCiD Language 0–

5 corpus ( “L05 ”) consisting of English-speaking families from Northwest 

England ( Rowland et al., 2018 ), the Casillas corpus ( “CAS ”) of Tseltal- 

speaking families from a rural Mayan community in Southern Mexico 

( Casillas et al., 2017 ), the McDivitt and Winnipeg corpora (so-called 

McDivitt + ; here “MCD ”) of Canadian English families ( McDivitt and 

Soderstrom, 2016 ), the Warlaumont corpus ( “WAR ”) of US English 

from Merced, California ( Warlaumont et al., 2016 ), and the Rosem- 

berg corpus ( “ROS ”) of Argentinian Spanish families from Buenos Aires 

metropolitan area ( Rosemberg et al., 2015 ). Some recordings in BER, 

and all recordings in CAS, MCD, and WAR are available from Home- 

Bank repository ( VanDam et al., 2016 ). 

Key properties of these corpora are summarized in Table 2 . Each 

corpus consists of daylong (4–16 h) at-home recordings; each corpus 

samples from a unique community, with language varying across cor- 

pora and socioeconomic environment varying both within and across 

corpora. In each recording, the target child ( “participant ”) wears a mo- 

bile recorder in a special vest throughout a normal day. BER, MCD, 

L05, and WAR recordings were collected with the LENA recorder, while 

CAS was recorded with Olympus WS-382 or WS-852, and ROS was 

recorded with a mix of Olympus, Panasonic, Sony, and LENA recorders. 

All the recorders have high-quality microphones on speech frequency 

band. All data were recorded at a 16-kHz sampling rate or higher 

at 16 bits, and converted to .mp3 for cloud storage on Databrary 

( https://nyu.databrary.org/ ). All data were resampled to 16 kHz before 

further processing. Due to the unconstrained nature of the recordings, 

they contain both near- and far-field speech in various ambient envi- 

ronments and at highly varying SNRs. The approximate 6 average speech 

SNRs for different corpora are BER 2.1 dB, CAS –0.5 dB, L05 3.6 dB, ROS 

–2.6 dB, MCD 0.8 dB, and WAR 2.4 dB. 

Out of the 220 of recorded participants, daylong recordings from 10 

infants from each corpus were chosen for manual annotation, selected 

to represent a diversity of ages (0–36 months) and socio-economic con- 

texts. From those daylong files, fifteen 2-minute non-overlapping seg- 

ments were randomly sampled from the entire daylong timeline for 

manual annotation, corresponding to approximately 10 min of anno- 

tated speech per subject. The only exception to this is the CAS corpus, 

which consists of nine randomly sampled 5-min segments for each of the 

10 children. It also contains 50% more annotated audio than the others, 

since all of its annotations were carried out before determining the final 

sampling protocol for the rest of the corpora. One MCD subject from a 

French-speaking family was excluded from the experiments, as the other 

subjects were from English-speaking families. Due to a sampling error, 

one of the remaining participants was sampled twice. 

All sampled 2- and 5-min segments were annotated for all hear- 

able utterance boundaries, speaker ID, addressee information (child 

vs. adult-directed speech), and vocal maturity of child vocalizations 

(canonical/non-canonical babbling, single-, or multiword utterances), 

and all adult speech was transcribed. All annotations followed a shared 

annotation protocol developed in the ACLEW project for the present type 

of daylong data ( Casillas et al., 2017a, 2017b ). Each corpus was anno- 

tated by (or with) someone proficient in the language in question. To 

ensure standardization in annotation, all annotators passed a test against 

a (separate) reference gold standard annotation before annotating the 

data here. Annotators were trained to transcribe speech corresponding 

to what was actually said instead of the canonical lexical forms (e.g., 

‘ wanna ’, not ‘ want to ’). 

For the WCE experiments, reference word counts were extracted 

from the orthographic transcripts of the utterances. First, all non-lexical 

transcript entries such as markers for incomprehensible speech, non- 

linguistic communicative sounds, and all paralinguistic markers were 

discarded. In addition, for ready comparison to LENA, all transcribed 

words from non-adult speakers were discarded, even though the present 

WCE pipeline does not yet have a mechanism for separating speaker 

identities. As a result, only unambiguously transcribed word forms from 

adult talkers remain in the final gold standard dataset here. Every re- 

maining orthographic entry separated by a whitespace was then consid- 

ered as a word for adapting and testing of the WCE system. 

6 Noise power was estimated as the mean power of non-speech frames within a 

5-s window centered around each annotated speech frame (defaulting to average 

signal noise power if no non-speech frames were within that window). Speech 

power was estimated from speech frames by assuming non-coherent additivity 

of speech and the noise estimate for the given frame. 
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4. Experiments and results 

4.1. Experimental setup and evaluation 

The purpose of the experiments was to evaluate our WCE pipeline 

across the different corpora, and to compare the alternative syllabifi- 

cation and SAD algorithms described in Section 2 . Leave-one-subject- 

out (LOSO) validation was used to perform WCE on the data described 

in Section 3.2 , always adapting the WCE system on all but one of the 

subjects, and then testing WCE performance on the held out subject. 

Adaptation and testing were carried out separately for each of the six 

corpora. 

In addition to the three SADs (TO-Combo-SAD, OpenSMILE, 

Noisemes), we evaluated WCE performance with an ideal segmenta- 

tion based on the utterance boundaries extracted from manual anno- 

tation. We also included a baseline “fixed-frame ” segmentation condi- 

tion where the audio signals were simply divided into fixed 5-s non- 

overlapping windows without any knowledge of the underlying signal 

contents, thereby passing all speech and non-speech audio content to 

the syllabification stage. For all these conditions, the six syllabifiers 

(thetaSeg, WN, and the four BLSTM variants) were compared against 

each other. In addition, a baseline system using only speech duration as 

the feature for least-squares linear regression was included. 

In order to perform WCE adaptation, SAD was always first applied to 

the training data. Since the orthographic transcripts were aligned at the 

utterance (but not the word) level, the following procedure was used 

to assign transcribed words to SAD output segments: First, transcribed 

words of an utterance were assumed to be uniformly spaced across the 

entire duration of the utterance, where word duration was assumed to 

be directly proportional to the number of characters in the word. All 

transcribed words overlapping with the given SAD output segment were 

then assigned to it. Finally, all SAD segments x u with their corresponding 

number of words w u were considered as inputs to the optimization of the 

linear mapping. Correction factor for SAD recall was measured on the 

training data by dividing the number of words assigned to SAD outputs 

by the total number of words in the training data. 

During testing, the time-scale of interest was all the audio data from 

the given subject s , corresponding to 30–45 min of total audio and ap- 

proximately 4–10 min of adult speech per subject ( Table 2 ). Estimated 

word counts from all SAD segments of a test subject were summed to- 

gether to obtain N s ,est and compared against the corresponding total 

number of annotated words N s ,true in order to derive subject-level devi- 

ation ERR s (%) between true and estimated word counts: 

ER R 𝑠 = 

||𝑁 𝑠, est − 𝑁 𝑠, true ||
𝑁 𝑠, true 

∗ 100 (3) 

However, one challenge in this type of evaluation is that not all sam- 

ples in our corpora necessarily contain adult speech ( N s ,true = 0). One op- 

tion is to simply ignore these samples, but that would bias the evaluation 

towards “easier ” cases where a larger proportion of the signal timeline is 

covered by target speech (a problem that would also apply for weighted 

averages based on the reference counts). Another option —the one we 

adopted here —is to replace zeros with ones in the denominator in order 

to get a finite measure for each sample. In addition, we observed that 

the error distribution across subjects tends to be non-Gaussian with typ- 

ically one or two outliers in nearly all corpora, thereby also increasing 

the mean of errors substantially above of the values typical to the over- 

all pool of subjects (see also Table 1 ). As a practical compromise, we 

adopt the use of ERR median in Eq. (2) as the primary performance metric 

across all the subjects in a corpus, as it takes data from all subjects into 

account without assuming normality of the error distribution. 

As for benchmarking against LENA, the English corpora BER, L05, 

MCD, and WAR were fully collected with LENA, and therefore LENA 

automated analysis outputs were available for comparison. Since LENA 

output consists of estimated adult word counts per each automati- 

cally detected conversational turn, these conversational turns had to 

be aligned with the 2-min segments sampled for manual annotation. 

In practice, if x % of a LENA conversational turn overlapped with a seg- 

ment, x % of the LENA word counts from that turn were added to the 

total LENA word count estimate for that segment. Note that the pro- 

portion of partially overlapping turns is only 14% of all conversational 

turns. In addition, any assignment errors (i.e., too few or many words 

added to the given segment) resulting from this type of alignment pro- 

cedure are independent of each other and have an expected value of 

zero, and hence the actual error also approaches zero when all the 15 

segments from a subject are pooled together to get subject-level refer- 

ence counts. Therefore, the performance figures reported for LENA be- 

low can be considered representative, even if exact alignments between 

LENA outputs and the current audio samples were not available. Since 

our proposed system uses adaptation-based scaling of signal and sylla- 

ble features into word counts in each corpus, we also experimented with 

corpus-dependent least-squares linear scaling of LENA word counts us- 

ing the same LOSO protocol. However, this did not lead to consistent 

performance improvements 7 on the held-out data across the four En- 

glish corpora (for which LENA outputs were available), and therefore 

we report LENA performance based on default LENA output. 

4.2. Main results 

Fig. 3 shows the results from the main WCE performance evaluations 

for each SAD, syllabifier, and corpus. In addition Fig. 4 shows the per- 

formance of the BLSTM syllabifier (with augmentation and dropout) on 

the six different corpora as a function of observed speech when ideal 

utterance segmentation is used. 

In case of ideal utterance segmentation ( Fig. 3 , top), all compared 

syllabifiers perform relatively well with the median estimation error be- 

ing below 10% in nearly all cases. The duration baseline also reaches 

relatively good performance levels, but is still on average worse than 

the syllabifier-based approaches. Fig. 4 also demonstrates how the esti- 

mation error decreases practically linearly in the log/log-domain when 

more speech is observed: Even if the accuracy at the level of individ- 

ual utterances is not high (around ERR median = 40–60%), the estimate 

becomes gradually more accurate over time. In general, it appears that 

approximately 100 s of adult speech would be sufficient for approx. 

∼10% relative error in word counts independently of the language, as- 

suming that the SAD used is perfectly accurate. However, one can also 

see from the zoomed-in region of Fig. 4 that the performance improve- 

ments on L05 corpus appear to start to saturate at approx. 10% relative 

error level after one minute of observed speech data. This demonstrates 

in practice the fact that there is no guarantee that the system, when op- 

timized to minimize the WCE error across all the adaptation data, would 

be fully unbiased on any individual subject. 

As can be expected, overall performance is notably lower in the more 

realistic use case with actual SADs ( Fig. 3 , panels 2–4). In addition, clear 

differences between the corpora and SADs can be observed. For instance, 

the use of TO-Combo-SAD leads to relatively good performance across 

the board, except for WAR corpus where the errors are three-fold com- 

pared to the other corpora. In contrast, Noisemes SAD does slightly bet- 

ter than TO-Combo-SAD on WAR, but performs poorly on ROS and MCD. 

OpenSMILE SAD has very good performance on some of the corpora and 

also the best performance of all on WAR, even though performance on 

BER, MCD, and L05 is slightly worse than with TO-Combo-SAD. Interest- 

ingly, fixed-frame segmentation without any speech detection front-end 

outperforms the Noisemes SAD when the BLSTM syllabifier is used. The 

overall pattern of results suggests that none of the tested SADs are well- 

rounded performers, and suitability of the SAD for a given recording 

environment has an effect on overall system performance. OpenSMILE 

7 Performance improved slightly on BER and MCD whereas it got worse on 

L05 and WAR. The average effect of linear scaling across the four corpora was 

0.34% absolute decrease in median absolute relative error rate. 
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Fig. 3. Results from the main experiments. Each panel shows the WCE error rate ERR median for each corpus and syllabifier when using a specific SAD. The mean 

across the corpora is also shown for each syllabifier. Top panel: TO-Combo-SAD. Second panel: OpenSMILE SAD. Third panel: Noisemes SAD. Bottom panel: fixed 

5-s segments. LENA reference performance is shown with black bars where available. 3rd and 7th deciles are shown with vertical bars. Note that LENA performance 

is only shown for reference and does not depend on the SADs tested in the present experiments. 

Fig. 4. Performance as a function of the duration of observed speech when using ideal segmentation into utterances from adult speakers. Results are shown for the 

BLSTM syllabifier trained with data augmentation and dropout. 

SAD has the best average performance of all the alternatives whereas 

Noisemes SAD is clearly not as suitable for the present task. To-Combo- 

SAD would otherwise be on par with OpenSMILE, but the problems with 

WAR cause its mean performance to deteriorate substantially. 

As for the compared syllabifiers, the BLSTM generally outperforms 

the unsupervised methods thetaSeg and WN when either of the two well- 

performing SADs or fixed-frame segmentation is used, especially when 

training data augmentation has been used. WN and thetaSeg perform 

approximately at the same level with the non-augmented BLSTMs with 

or without dropout with some variation across corpora and SADs, but 

fall behind the augmented BLSTMs in overall accuracy and consistency. 

This demonstrates that the multilanguage training of the BLSTM indeed 

works so that the models generalize to novel languages, and that the 

BLSTM is more tolerant against non-speech noise in the signals than 

the unsupervised methods. The results also suggest that training data 

augmentation and dropout training are both useful in the task despite 

the hundreds of thousands of syllable exemplars available in the training 

data. 
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Table 3 

Average SAD performance for different corpora and SADs compared, metrics averaged across all LOSO test sets on the given corpus. P = precision, R = recall, 

F = F -score. 

BER CAS L05 ROS MCD WAR mean 

P R F P R F P R F P R F P R F P R F P R F 

TO-Combo-SAD 0.34 0.45 0.38 0.58 0.59 0.58 0.29 0.48 0.36 0.53 0.51 0.51 0.26 0.43 0.34 0.29 0.44 0.32 0.38 0.48 0.41 

OpenSMILE SAD 0.26 0.86 0.40 0.39 0.88 0.53 0.20 0.88 0.31 0.36 0.80 0.49 0.14 0.85 0.27 0.19 0.84 0.29 0.26 0.85 0.38 

Noisemes SAD 0.51 0.26 0.34 0.66 0.22 0.32 0.39 0.30 0.32 0.56 0.14 0.20 0.30 0.21 0.25 0.38 0.31 0.31 0.47 0.24 0.29 

mean 0.37 0.52 0.37 0.54 0.56 0.48 0.29 0.55 0.33 0.48 0.48 0.40 0.23 0.50 0.29 0.29 0.53 0.30 0.37 0.53 0.36 

Looking at the different languages tested, the proposed WCE sys- 

tem, especially the augmented BLSTM with dropout and TO-Combo- 

SAD, seems to reach similar performance levels in English (e.g., BER, 

L05, MCD), Spanish (ROS), and Tseltal (CAS). When the same syllab- 

ifier is paired with the OpenSMILE SAD, the resulting performance is 

also independent of the language in question. This demonstrates that 

the language as such is not a key factor in determining system perfor- 

mance, and that the adaptation procedure seems to work. However, it 

also seems that one of the English corpora, WAR, is more challenging 

than the others as indicated by higher error rates in comparison. To un- 

derstand why this is the case, we manually investigated the properties of 

WAR and compared it to the other English corpora. Even though it is dif- 

ficult to determine the exact source of the differences, WAR was found 

to have the least adult speech among the corpora, several subjects hav- 

ing extremely few unambiguously transcribed adult words across all the 

audio for the subject. In contrast, the proportion of infant’s own vocal- 

izations, the amount of background electronic speech (e.g., TV or radio, 

not transcribed for words), and the amount of adult singing was found 

to be high for several subjects in WAR, potentially causing problems for 

the SADs and for the WCE that is currently unable to distinguish differ- 

ent sources of speech. Since WAR still has similar performance to others 

in case of ideal utterance segmentation, this suggests that the errors are 

related to the lack of sufficiently well-performing mechanisms for de- 

tecting adult speech from the audio recordings. We also verified that 

the WCE performance of the BLSTM system did not correlate with the 

average SNR of each corpus ( p > 0.05, Pearson correlation), likely since 

the SNR differences between the corpora are small ( Section 3.2 ). 

Finally, comparison to LENA shows that the TO-Combo- 

SAD + BLSTM system outperforms LENA on a number of varieties 

of English (American in BER, British in L05, and Canadian in MCD), 

even though LENA has been optimized for American English. Only in 

the case of WAR, performance is worse in the present system than in 

LENA, again suggesting that the present system’s speaker attribution 

mechanisms are poorer than those of LENA, at least for the present task. 

Unfortunately, no LENA output data were available for the Spanish 

or Tseltal corpora to enable comparison on the non-English languages 

(but see Fig. 8 in Section 5 ). 

4.3. SAD impact on WCE performance 

The main results in Fig. 3 suggest that SAD performance on the test 

data might be one key factor behind the differences in the WCE perfor- 

mance. To study this further, Table 3 shows the performance of the three 

SADs on each of the corpora, declaring as “speech ” the adult utterances 

that contain one or more unambiguously transcribed words and all other 

sections mapping to “non-speech ” or “silence ”. 8 The table reports preci- 

sion (the proportion of speech frames hypothesized to be speech actually 

being speech), recall (the proportion of all true speech frames detected), 

and F-score (the harmonic mean of precision and recall). 

8 Note that this is different from evaluating against all annotated speech seg- 

ments (which further includes speech that is not comprehensible, speech by 

other children, and potential speech by the child with the recorder) or all anno- 

tated vocalizations (which include non-linguistic vocalizations). 

As the data shows, all three SADs have very different operating points 

on the daylong infant data. While TO-Combo-SAD has a more balanced 

precision and recall (though still having problems with precision on L05, 

MCD, and WAR), OpenSMILE SAD reaches a very high recall at the cost 

of precision whereas Noisemes SAD has the highest precision but the 

worst recall. Overall the F-scores of TO-Combo-SAD and OpenSMILE 

are close to each other, and much better than that of the Noisemes SAD, 

reflecting the pattern of the main WCE results. SAD F-scores did not 

correlate with the average SNR of each corpus ( p > 0.05, Pearson cor- 

relation). 

To further quantify how the SAD performance metrics affect WCE 

performance, Fig. 5 shows the WCE performance across all the six cor- 

pora as a function of the SAD precision, recall and F-score. As can be 

observed, increasing recall leads to lower error ( 𝜌 = − 0.45, p < 0.001; 

rank correlation), but there is even a stronger effect of higher F-score 

leading to better performance ( 𝜌 = − 0.65, p < 0.001). Together with 

Table 3 , these results support the idea that SAD performance on the 

given data is related to the corresponding WCE accuracy. 

It may seem surprising that the precision of SAD does not seem to 

correlate with WCE performance, and even recall explains only a lim- 

ited proportion of the variance in the data. However, it is important to 

remember that the system is adapted to the given language in such a 

manner that any systematic under- or overestimation on the adaptation 

data is corrected with the 𝛼L -parameter. Therefore the WCE error should 

converge to zero given enough data, as long as the test data have the 

same properties as the adaptation data. This also applies to the SAD: As 

long as performance of the SAD is similar in adaptation and testing, the 

error should diminish over time due to this correction mechanism. In 

contrast, if the recall or precision suddenly change due to adaptation, 

be that change an improvement or decline, it could be harmful to WCE 

performance. This is because the later stages of the system have no way 

of knowing if the distributional characteristics of the input coming have 

changed radically. Alternatively, sudden improvements in SAD perfor- 

mance could still boost the overall WCE accuracy: as the quality and/or 

quantity of target speech data captured by the SAD improves, the cor- 

responding accuracy improvements in the uncorrected word count esti- 

mates may outweigh the problems caused by the changing distributional 

properties of the data. 

In order to see whether changes in SAD performance (positive or neg- 

ative) impact WCE errors, correlations between adaptation-normalized 

SAD performance and corpus normalized WCE performance were measured 

at the level of individual test participants, defined as follows: For TO- 

Combo-SAD and OpenSMILE SAD and each corpus, participant-specific 

SAD performance numbers (precision, recall, and F-score) were z-scored 

using the mean and variance of the adaptation data (i.e., excluding the 

subject itself from the dataset), and then transformed to the absolute 

value of the z-scores. As a result, 0 stands for test-case SAD performance 

typical to the adaptation data and positive values for increasingly dif- 

ferent performance from the adaptation data. Participant-level relative 

WCE errors ( Eq. (3) ) were also z-scored in an analogous manner across 

all the test folds to quantify the error on a given participant compared to 

the performance on other subjects in the pool (negative value for below- 

average and positive value for above-average WCE error). The normal- 

ized errors were averaged across all the six syllabifiers, and the data 
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Fig. 5. WCE error as a function of SAD precision (left), recall (middle) and F-score (right). Different symbols indicate different SADs and colors indicate different 

syllabification algorithms. The shown 2nd order polynomial fit and the reported rank correlation r are calculated across all data points. A small amount of x-axis 

jitter has been added to the data to improve visual clarity. 

Fig. 6. Correlation between normalized WCE- 

performance ( y -axis) and normalized absolute 

change in the SAD performance ( x -axis) from 

adaptation data to test data. Red squares cor- 

respond to TO-Combo-SAD and blue circles to 

OpenSMILE. Significant correlations ( p < 0.05) 

for pooled data from both SADs are highlighted 

in red. Each row corresponds to a different cor- 

pus, as labeled on the right. 

from TO-Combo-SAD and OpenSMILE SAD were pooled before correla- 

tion calculation to focus on the shared effects of SAD behavior. Results 

of this analysis can be seen in Fig. 6 . 

The analysis with normalized data reveals that the changes in SAD 

performance between adaptation and testing do explain some of the 

WCE errors, but that the link between changes in SAD performance 

and WCE performance is not as straightforward as hypothesized above. 

Changes in recall correlate with WCE errors in CAS ( r = 0.46, p = 0.044) 

and WAR ( r = 0.61, p = 0.004), and now also precision change is cor- 

related with WCE error in L05 ( r = 0.53, p = 0.017). In addition, larger 

changes in F-score result in larger errors in L05 ( r = 0.63, p = 0.003). 

However, precision, recall, and F-score changes have no effect in 14 out 

of the 18 cases investigated, and even the observed effects on L05 and 

CAS are relatively weak. In fact, only one the effects (WAR) would per- 

sist if a strict Bonferroni correction for multiple comparisons was carried 

out. This is despite nearly all corpora having several participants who 

have substantially different SAD behavior in testing than what has been 

observed during adaptation. 

To see if the direction of SAD performance change is more infor- 

mative of the WCE error, Fig. 7 shows the same analysis as above, 

but now using z-score normalized SAD scores but without taking the 

absolute value. In this case, negative SAD performance score means 

below- adaptation-average performance on the given test subject and 

positive SAD performance scores the opposite. Changes in precision 

have a clearer effect now: on L05, ROS, and WAR, participants with 

the largest errors also have notably worse precision than the rest of the 

participants, correlation reaching as high as r = 0.74 ( p < 0.001) on L05. 

Conversely speaking, improvements in precision are associated with a 

decreasing error. A similar trend is also observed for the other three cor- 

pora, even though the effects are not significant. As for recall, there is 
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Fig. 7. Correlation between z-score normalized WCE-performance ( y -axis) and z -score normalized change in the SAD performance ( x -axis) from adaptation data to 

test data. Red squares correspond to TO-Combo-SAD and blue circles to OpenSMILE. Significant correlations ( p < 0.05) or pooled data from both SADs are highlighted 

in red. Each row corresponds to a different corpus, as labeled on the right. 

no longer an effect on WAR, but the two participants with the worst per- 

formance have either substantially lower or higher recall than majority 

of the population. For an unknown reason, MCD shows a pattern where 

worse recall is associated with a smaller WCE error. Overall, there is 

no clear pattern where decreases or increases in recall would map to 

systematic changes in WCE performance. Relative improvements in F- 

score are generally associated with better WCE performance, reaching 

significance on L05, ROS and WAR, but these seem to be largely driven 

by the improvements in precision. 

Taken together, the results in Figs. 5–7 reveal that the SAD and WCE 

performance are partially connected. However, the connection is more 

complicated than simply stating that changing SAD performance would 

always map to worse WCE performance, or that any improvements in 

SAD performance would always lead to better WCE. What we can say 

is that (1) high and consistent SAD performance is naturally desired 

(see also top panel in Fig. 4 for performance if the SADs were ideal), 

(2) sometimes overall changes in recall from adaptation to testing are 

associated with larger estimation errors, and (3) improving precision 

from adaptation to test appears to be connected to improved perfor- 

mance. Still, it is important to remember that in all these cases, SAD 

and WCE performance numbers and their changes are ultimately re- 

flecting some kind of qualitative properties of the audio signals them- 

selves. A more detailed understanding of the sources of error would 

require a better understanding of what is actually happening in the au- 

dio data, but this type of analysis is beyond the scope of the present 

work. 

4.4. Parameter variation across syllabifiers and languages 

As a final step, we investigated how the adapted parameters 𝜃L and 

𝛃L vary across the tested syllabifiers and languages when using TO- 

Combo-SAD or OpenSMILE SAD. Full data on the analysis is shown in 

Appendix A , and the main findings can be summarized as follows: 

(1) With TO-Combo-SAD, parameter 𝛽1 controlling the relationship 

between estimated syllable counts and word counts performs as 

would be expected, having a similar value for the three well- 

performing English corpora (BER, MCD, L05). 𝛽1 is lower for 

Tseltal and Spanish due to the higher number of syllables per 

word in these languages. For OpenSMILE SAD, there is a more 

complicated corpus-dependent pattern for the use of syllable 

counts and other alternative features in the word count predic- 

tions. 
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Fig. 8. Performance of the current WCE system ( “ACLEW ”; solid colored dots) plotted together with LENA performance on the same data (black dots) and in a 

number of earlier studies (other colored markers) using the ERR median (%) as the performance metric (see also Table 1 ). The dashed red line shows a line fit to the 

data on LENA performance on non-English data. A slight amount of jitter is added to x -axis values to improve clarity. 

(2) Syllable detection thresholds 𝜃L of the BLSTM-based syllabifier 

variants are similar across all corpora (approx. 0.6; remember 

that these values are nucleus likelihoods in range 0–1), suggest- 

ing that a fixed threshold could be used across languages. Vari- 

ation of the optimal thresholds in WN and thetaSeg have much 

larger relative changes compared to the mean optimal value, cor- 

responding to large qualitative changes between highly sensitive 

( 𝜃L ≈ 0) and much more conservative ( 𝜃L > 0.1) syllabification 

strategies (note that the absolute values are not directly compa- 

rable with the BLSTMs). 

(3) In BLSTMs, speech duration is not used as a positive evidence 

for words, but is replaced by syllable count, mean sonority, and 

sometimes sonority SD. WN uses more varying weighing of the 

features depending on the corpus, sometimes using duration as 

a major predictor with more conservative syllabification strategy 

and vice versa. 

(4) Parameter variation across training folds is typically limited 

within a corpus, as can be expected because roughly 90% of the 

data are the same in each training fold. 

5. Conclusions and future work 

The aim of this study was to describe a basic framework for auto- 

matic word count estimation from daylong audio recordings of sound 

environments of language-learning infants, and to test its applicability 

to multiple languages and language environments. We also compared 

a number of speech activity detectors and automatic syllabifiers as po- 

tential modules in the pipeline and studied the applicability of super- 

vised neural network training for language-independent syllabification 

of speech, as evaluated in terms of overall WCE system performance. 

One of the key aims was to have a system that performs similarly in 

high- and low-resource languages, as the existing commercially avail- 

able LENA system is expected to perform better on English than other 

data. To place the present work in a context, Fig. 8 shows the cur- 

rent WCE system performance (with OpenSMILE SAD and augmented- 

training BLSTM syllabifier) together with LENA performance metrics on 

English from the same study. In addition, LENA performance on a vari- 

ety of other languages from a number of earlier publications is shown. 

With the exception of the WAR corpus, the present system achieves 

lower relative word count error rates on all tested language samples 

compared to what LENA has achieved in the previous studies. It also 

outperforms LENA on three of the four varieties of English tested in the 

present experiments. Importantly, the performance on English, Argen- 

tinian Spanish, and Tseltal is very similar despite the wide variation 

in language and recorder types. In contrast, LENA accuracy has histor- 

ically varied enormously depending on the language being recorded, 

with non-English data having substantially worse word count accuracies 

than English data ( Fig. 8 ). This demonstrates that the basic approach 

consisting generic out-of-the-box SAD, language-independent syllabifi- 

cation, and domain-specific adaptation of a small number of parame- 

ters works both in principle and in practice. The current performance is 

far from ideal, but is still better than the static English-based acoustic 

model and mapping to word counts used in LENA. Unfortunately, our 

non-English corpora were not able to be processed with the LENA sys- 

tem, and therefore direct comparisons on exactly the same data is not 

possible. 9 It should also be noted that LENA word count estimates can 

also be linearly scaled to obtain more accurate word count estimates on 

novel languages and dialects, given that a suitable conversion coefficient 

is known or estimated from annotated data. In our experiments with the 

different varieties of English, linear scaling of LENA outputs based on 

the leave-one-subject-out adaptation protocol did not provide system- 

9 As mentioned in the introduction, LENA software processing is restricted to 

LENA-recorder outputs. 
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atic performance gains beyond the default LENA output ( Section 4.1 ). 

However, LENA word count scaling is highly recommended for other 

languages if one wishes to use LENA to measure not only relative but 

also absolute word counts in an accurate manner. 

From a technical point of view, the study demonstrates the applica- 

bility of supervised training of a neural network-based syllabifier. When 

multiple different training languages are used at the same time, such a 

syllabifier is also capable of reaching consistent behavior in languages 

not included in the training data. Furthermore, the BLSTM syllabifier 

outperformed two previously used syllabification methods, including 

the WN algorithm used in the WCE system of Ziaei et al. (2016) , which 

had outperformed multiple alternative syllabifiers in the experiments of 

Ziaei et al. In addition, training data augmentation using a variety of 

realistic additive noise types and channel variability (based on random 

FIR-filters) was found to consistently improve syllabifier performance 

in the WCE task where signal conditions are extremely difficult com- 

pared to any typical speech processing problem. This suggests that neu- 

ral network-based supervised syllabifiers could also work well in other 

tasks requiring syllable detection from speech. However, direct evalua- 

tion of syllabification accuracy instead of WCE performance was beyond 

the scope of the present study, and should be carried out separately. 

5.1. Limitations and future work 

The pattern of results shows that basic idea of adapting the system 

to a new language or dialect by using 30–60 min of annotated adult 

speech works in principle, and that the WCE performance does not criti- 

cally depend on the language in question. Instead, the main performance 

problems, especially transparent on the WAR data, seem to be associated 

with at least two central factors: (1) the current lack of a reliable com- 

ponent for separating different sources and styles of vocal activity from 

each other, and (2) limited SAD performance on the daylong data. 

In the present WCE system, all speech passing through a generic 

SAD is treated as equal, whereas for child language research it would 

be important to distinguish adults, siblings, the key child, and, e.g., 

sources of electronic speech (TV, radio) from each other since prior 

work shows that child-directed speech, particularly from adults, is pre- 

dictive of children’s later linguistic development (e.g., Shneidman and 

Goldin-Meadow, 2012 ). In addition, some content such as singing or 

non-linguistic communicative vocalizations (e.g., laughter) can be cat- 

egorized as speech, but its acoustic features do not have the same rela- 

tionship to spoken word counts that normal speech does. To allow direct 

comparison with LENA, we chose to only evaluate our system against 

transcribed speech from adult talkers. However, now that the basic con- 

cept and its functionality have been validated, the next efforts should 

be directed toward the development and testing of a robust speaker 

diarization module required for speaker attribution. Although the cur- 

rent ACLEW virtual machine published in Le Franc et al. (2018) already 

contains one such a tool, DiarTK ( Vijayasenan and Valente, 2012 ), its 

performance was found to be lacking on child daylong data (see also 

DiHARD diarization challenge 10 where DiarTK scored at the bottom 

among all the submissions; see also Le Franc et al., 2018 ). In order to 

maintain focus on SAD and syllabifier comparisons, no separate experi- 

ments with diarization tools were included in the present report. More 

work is needed to identify the best ways to tackle the problem of who 

is speaking (and whether it is an electronic device or a live person), 

and preferably also what the style of speech is (infant-directed, adult- 

directed, singing, shouting, etc.). 

It is also obvious that the performance of all compared SADs is far 

from ideal on the present type of daylong data, as WCE from SAD out- 

puts falls far behind the performance of a system using oracle utterance 

boundaries. This problem could be approached in several ways in the 

future. One option is to start using a SAD that can also be adapted to 

10 https://coml.lscp.ens.fr/dihard/index.html . 

the target domain, or at least to re-train the current SADs on a large 

amount of child daylong recordings instead of using the original mod- 

els provided by the algorithm authors. An alternative solution would 

be to integrate SAD with the speaker diarization or syllabification al- 

gorithms, and seek ways to efficiently train or adapt this unified model 

to the daylong data. Speech enhancement and/or statistical normaliza- 

tion as a front-end for SAD should be also investigated, as the strategy 

used so far was to apply enhancement only to SAD output segments in 

order to save computational costs. In general, more intelligent, robust, 

and adaptable systems towards the highly variable signal conditions and 

signal statistics encountered in unconstrained daylong recordings are re- 

quired. 

The final important factor to mention is that the gold standard word 

counts derived from orthographic annotations are not always unani- 

mous due to several factors, and this problem applies to WCE evalua- 

tion both in the current system and in LENA. In the current corpora, all 

speech that the annotators could transcribe based on repeated listening 

had been transcribed, while the unclear vocalizations are simply marked 

as “cannot transcribe ”. In practice, there is a continuum from clear near- 

field speech to hardly audible noisy content that is only partially com- 

prehensible. Since the current datasets do not provide any information 

on the clarity of the input for the transcribed words, all transcribed to- 

kens from this continuum are treated as equally relevant targets for the 

WCE. Another potential source of uncertainty comes from the potential 

differences in how faithfully spoken language maps into orthographic 

transcripts, and especially how well whitespaces in the orthographic 

transcripts can be used to define word boundaries in the running speech 

in different languages compared. Importantly, however, there is no ob- 

vious reason why uncertainties in the gold standard word counts would 

specifically favor any of the compared system configurations. Instead, it 

is simply important to be aware that the performance figures for word 

count accuracies hide a number of factors that may artificially inflate or 

deflate the error rates, ultimately depending on how the actual target 

word counts are transcribed and defined for the evaluations. 

In sum, this study is the first to test publicly available speech tools 

for word count estimation on daylong child recordings in different lan- 

guages in comparable settings, and, to the best of our knowledge, the 

first to demonstrate the applicability of language-independent super- 

vised syllabifiers of speech. More work is still needed to come up with a 

comprehensive set of open-source tools for analyzing linguistic content 

in daylong real-world recordings. The present relatively straightforward 

system for word count estimation is only the first step in that direction. 
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Appendix A: Parameter variation across corpora and subjects 

Fig. A1 shows the linear mapping parameter values across different 

syllabifiers and corpora when using TO-Combo-SAD. Fig. A2 shows the 

same parameters for OpenSMILE SAD. 

Fig. A1. Learned mapping parameters 𝜃L and 𝛃L of different syllabifiers on the different corpora (with TO-Combo-SAD). Different color bars stand for different 

syllabifiers (see the legend) and red error bars denote parameter standard deviation across all training folds on the given corpus. Mean parameter values across all 

the corpora are shown, for which standard deviation of the parameter across the corpora is shown with black error bars. Top panel: number of detected syllables 

per word. Second panel: duration of speech (in seconds) per word. Middle panel: mean of the sonority envelope. Fourth panel: SD of sonority envelope. Fifth panel: 

mean of signal power. Sixth panel: SD of signal power. Bottom panel: syllable detection threshold. 
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Fig. A2. Learned mapping parameters 𝜃L and 𝛃L of different syllabifiers on the different corpora (with OpenSMILE SAD). 
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