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A B S T R A C T

Industry 4.0 and Industrial Internet of Things (IIoT) technologies are rapidly fueling data and software solutions
driven digitalization in many fields notably in industrial automation and manufacturing systems. Among the
several benefits offered by these technologies, is the infrastructure for harnessing big-data, machine learning
(ML) and cloud computing software tools, for instance in designing advanced data analytics platforms. Although,
this is an area of increased interest, the information concerning the implementation of data analytics in the
context of Industry 4.0 is scarcely available in scientific literature. Therefore, this work presents a process data
analytics platform built around the concept of industry 4.0. The platform utilizes the state-of-the-art IIoT plat-
forms, ML algorithms and big-data software tools. The platform emphasizes the use of ML methods for process
data analytics while leveraging big-data processing tools and taking advantage of the currently available in-
dustrial grade cloud computing platforms. The industrial applicability of the platform was demonstrated by the
development of soft sensors for use in a waste-to-energy (WTE) plant. In the case study, the work studied data-
driven soft sensors to predict syngas heating value and hot flue gas temperature. Among the studied data-driven
methods, the neural network-based NARX model demonstrated better performance in the prediction of both
syngas heating value and flue gas temperature. The modeling results showed that, in cases where process
knowledge about the process phenomena at hand is limited, data-driven soft sensors are useful tools for pre-
dictive data analytics.

1. Introduction

The global competition in industrial manufacturing, for instance to
increase productivity, product quality [1], process safety in addition to
economic and environmental sustainability has led to the development
of modern process monitoring and data analytics systems. The current
developments concerning industrial internet of things (IIoT) technolo-
gies, machine learning algorithms and big-data availability provide
platforms for the realization of sophisticated process data analytics.
There are several cloud computing platforms available for use in in-
dustrial internet of things and big-data analytics. Key players include
cloud service providers (like Microsoft Azure, Amazon Web Services,
IBM, Intel etc.), enterprise solution vendors (notably PTC and Oracle),
networking companies (such as Cisco and AT&T) and industrial en-
gineering companies (namely General Electric, Siemens and Bosch),
among others. A number of these platforms are available under pro-
prietary licenses with a few others being accessible as open source

projects.
In predictive data analytics in process industry, soft sensors are in-

valuable tools for providing insights into the state of process operations
especially in cases where the direct measurement of key process vari-
ables is extremely difficult, nearly impossible or even unreliable [2,3].
For instance, in waste-to-energy (WTE) plants knowing the heating
value of solid fuel is a very important aspect for smooth plant opera-
tions, which often leads to fewer fluctuations in the power generated
and a longer lifetime for the plant equipment. However, due to the
heterogeneous nature often associated with source materials of solid
fuel, most notably composition, the real-time quantification of the
heating value of solid fuel is considerably difficult. Moreover, with
stringent environmental regulations, WTE plants are constrained to
control particulate and gaseous emissions, such as the NOx content in
the flue gas effluent. Some researchers [4] have reported studies con-
cerning the use of data-driven soft sensors as an alternative tool for the
estimation of gaseous emissions in combustion processes. Soft sensors
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can be developed by implementing mathematical process models, for
instance, those based on mass and energy balances or the application of
data-based statistical models as well as the use of more sophisticated
machine learning algorithms and hybrid systems taking advantage of
both methodologies. Soft sensors offer an affordable alternative to
physical measuring devices and real-time prediction of process vari-
ables and can be easily utilized in parallel or integrated with the
measuring equipment.

In the recovery of energy from biomass, a few researchers have
developed soft sensors to predict the heating value of biomass solid fuel.
For instance, Kortela et al. [5,6] reported a soft sensor to evaluate the
heating value of the biomass material fed to the BioGrate furnace based
on the oxygen requirement in the combustion unit process. The same
authors also estimated the outlet temperature of flue gas after the
combustion reaction using the mass and energy balances around the
combustion chamber [6]. Belkhir and Frey [7,8] also presented a soft
sensor to estimate the heating value of the wood based biomass solid
fuel in a combustion process similar to the earlier work [5]. In their
work, the virtual sensor for the solid fuel heating value was derived
from the energy balance of the furnace under steady state conditions,
where the model can also be used to predict the temperature of flue gas
after combustion. However, flue gas temperature can also be derived
from the energy balance around the boiler [9].

Data-driven soft sensors are also widely applied in different process
industrial operations [10]. Recently, the remarkable performance of
machine learning (ML) methods particularly deep learning based al-
gorithms in areas such as pattern recognition, computer vision and
robotics, offer other options to realize more sophisticated data-based
soft sensors. Such soft sensors are capable of leveraging industrial big-
data, leading to enhanced variable prediction. In combustion processes,
deep learning based soft sensors have been reported for the prediction
of key variables in the form of gaseous components. Such variables are
difficult to measure directly during process operations. For instance, the
addition of oxygen to the combustion process is a critical variable for
efficient fuel combustion. In this respect, a number of researchers have
developed deep learning based soft sensors to predict the oxygen con-
tent in flue gases exiting the combustion process units [2,11]. Else-
where, deep learning algorithms have been applied in soft sensors in the
estimation of NOx emission from a coal-fired furnace [12] and in the
quantification of heat outflow in a step-grate boiler [13]. Besides data-
driven soft sensors based on deep neural networks, other commonly
known machine learning algorithms or statistical methods are often
employed in modeling process phenomena in biomass combustion
processes. For instance, Ögren et al. [14] applied Gaussian process re-
gression and a shallow artificial neural network to develop a vision-
based soft sensor for the prediction of syngas composition from the
gasification process. In similar works, Pandey et al. [15] and Xiao et al.
[16] reportedly used multi-layer feed forward neural networks in the
modeling of lower heating value (LHV) of syngas and other gasification
products like tars and char, in the gasification process of municipal
solid waste. The process phenomena in biomass gasification processes
have also been modeled using dynamic neural network models [17],
notably the neural network-based nonlinear autoregressive with exo-
genous input (NN-NARX) model [18].

The concept of industry 4.0 and its benefits for industrial data
analytics is highlighted in this paper by developing a unique platform
based on the latest IIoT software tools and ML algorithms for industrial
use in process monitoring. The platform emphasizes the use of state-of-
the-art ML methods, big-data tools and industrial internet cloud com-
puting platforms for the development of robust data-driven soft sensors
among other data-driven models. The platform further highlights the
use of IIoT technologies in data acquisition and the employment of
statistical methods for data pre-processing, soft sensor development,
real-time process monitoring and offline data analytics. Moreover, data-
driven soft sensors for estimating syngas heating value and flue gas
temperature for a WTE industrial case study were developed and their

performance was compared with the corresponding overall steady state
energy balance models. This work contributes to the existing knowl-
edge of process data analytics in modern process automation systems by
emphasizing the use of readily available open source or proprietary
software tools to develop sophisticated data analytics platforms for
industrial process applications. Furthermore, the data analytics plat-
form presented here contributes to scientific research aimed at the
realization of smart integrated solid waste management systems from
waste collection to WTE technologies within the framework of industry
4.0.

2. State-of-the-art platforms for process data analytics

Currently, a number of hardware and software tools for handling
process data analytics are available from industrial automation vendors
and other computing services vendors. These tools are increasingly
being used to develop data analytics platforms for different process and
manufacturing industries; one notable example is the Outotec® ACT
platform [19]. Therefore, in this Chapter, a brief review of the existing
industrial internet of things, machine learning and big-data software
platforms are discussed from the perspective of process data analytics.
Moreover, with the use of different state-of-the-art software tools, a
platform for process data analytics in the modern process automation
system is demonstrated.

2.1. Description of the process data analytics platforms

The platforms presented in this work, follow the general data-based
process monitoring procedures, which include data acquisition, data
pre-processing, model design and model maintenance. The data ac-
quisition layer allows measurements from different local devices in the
process to be collected for purposes that may include data inspection or
visualization, analysis and storage. In industrial processes, data acqui-
sition can be accomplished through a number of interfaces, for instance,
the use of OPC UA, OPC, Modbus and various network protocols like
MQTT, CoAP, REST and HTTP. Currently, various internet of things
(IoT) platforms can be implemented for data collection from industrial
devices, notably through edge computing and IoT cloud getaways. The
choice of a data acquisition interface also influences the possibility of
real-time process monitoring. Thus, in cases where high-latency beha-
vior in data acquisition dictates, only offline or batch data analysis are
appropriate. The most common steps applied in data pre-processing are
data visualization, selection of relevant datasets, outlier removal,
scaling and data filtering. Other additional data pre-processing mea-
sures may include resampling, delay estimation and compensation, data
transformations and dimensionality reduction. Model design involves
the selection of an appropriate model followed by model training, va-
lidation and testing. The steps involved in data pre-processing and
model design criteria are implemented using various statistical
methods. The choice of the appropriate method in each case depends on
the nature of the process phenomenon at hand among other factors.
Fig. 1 describes the key components of the proposed data-driven soft
sensor development environment, which takes advantage of the state-
of-the-art machine learning algorithms, big-data tools and industrial
cloud computing platforms. Details about the key components of the
platform such as data acquisition, Industrial IoT platforms and ML
software tools, among others are discussed below.

2.2. Data acquisition

In data acquisition, measurements from different local devices in the
process are collected for purposes that may include data inspection or
visualization, analysis or storage, among others. In industrial process
applications, data acquisition is achieved via several interfaces for in-
stance the use of OLE Process Control Unified Architecture (OPC UA),
OPC, Modbus and through various supported network protocols.
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Particular data acquisition environments support real-time and/or
batch data collection and data analysis. For example, in case of real-
time process monitoring, industrial automation interfaces like OPC UA,
OPC, Modbus and MT Connect are applicable. Data from smart devices
like sensors can be acquired through network protocols such as MQTT,
CoAP, HTTP and several others. In the industrial internet of things
(IIoT) architectures, IoT getaways are employed for data acquisition
from smart devices, control systems and so forth [20].

2.3. Industrial IoT cloud platforms

The availability and use of low-cost sensors have enabled modern
industrial equipment, machines and other devices to generate large
amounts of data. However, to leverage such data, it is important for
industrial plants to integrate their operations with the digital world.
Digitalization makes it easier to acquire, link and manage the raw-data
before it can be thoroughly analyzed [21]. Nowadays, several com-
mercial grade industrial IoT platforms suitable for industrial automa-
tion are available, notably Predix, MindSphere [21] and Sentience
cloud platforms. In addition, there are many multi-purpose IoT cloud
platforms, which are available from cloud service providers, for in-
stance, Amazon web services, Microsoft Azure, Google cloud and IBM’s
Watson IoT. Most of these platforms offer distributed computing, big-
data analytics, data and device management tools, machine-to-machine
interaction and many other functionalities. The connectivity of devices
to IoT cloud platforms can be achieved in different ways, for instance,
through “plug and play” [21], use of open communications standards
for industrial automation notably the OPC Unified Architecture (OPC
UA) and network protocols like MQTT. Cloud computing platforms also
provide large and affordable data storage capacity and flexibility for
client demands, plus offering highly scalable computing power.
Therefore, they are able to accommodate industrial set-up workloads.
In addition, industrial grade IoT platforms emphasize secure device
connectivity as well as cyber-security. The security aspects are among
the key elements of the industrial cloud computing platform [22].

2.4. Edge computing

Edge computing [23] is gaining notable attention for the realization
of real-time data analytics on premises. This is expected to lead to more
efficient process monitoring than with the use of current plant auto-
mation systems. With edge computing, the conventional plant

automation architecture can be by-passed and the plant devices are
directly connected to the industrial IoT cloud from the edge for in-
stance, by using a 5G [24] communication network. The edge interface
offers real-time data processing including data filtering and basic data
analytics, in addition to machine-to-machine communication (M2M),
all at the plant premises and near the data sources. This means that fast
process monitoring can be achieved on premises with the help of soft
sensing models and anomaly detection models, among others. However,
edge computing is only possible if the process devices in question have
built-in capabilities, hardware and software to do so. Nonetheless,
currently, several industrial IoT vendors like Siemens and Honeywell
are developing devices, which are capable of supporting edge com-
puting. Mobile edge computing (MEC) is among the currently available
edge computing technologies within the industrial IoT.

2.5. Machine learning and big-data

There are several machine learning software tools available both
commercial and open source software. Popular commercial machine
learning software is provided as machine learning as a service (MLaaS).
The leading proprietary MLaaS include Amazon machine learning
(Amazon ML), Microsoft Azure machine learning, Google machine
learning and IBM Watson machine learning. Often, machine learning
tools are accessible through respective cloud platforms or under third
party cloud application services. They offer highly scalable environ-
ments and a variety of machine learning algorithms for data pre-pro-
cessing, dimensionality reduction, predictive data analytics and plenty
of other functionalities [25].

Moreover, most of the commercial machine learning frameworks
also provide deep learning libraries and big-data computing software
tools like Apache Spark, Hadoop, etc. In addition, there are several
machine learning software tools, libraries and frameworks that are
freely accessible under open source licenses. Also, these can be im-
plemented through either the cloud environment or on the premises.
Examples of open source machine learning software tools are Apache
Spark MLlib, Scikit-learn, TensorFlow, H2O.ai, BigML, Accord.NET,
Apache SystemML, Apache Mahout, Oryx 2, just to mention but a few.
Some of these libraries can be accessed through proprietary machine
learning platforms. For instance, both Apache Spark MLlib and H2O.ai
are available in Microsoft Azure HDInsight, a big-data analytics cloud
service platform [26].

On the other hand, a number of commercial deep learning software
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Fig. 1. A schematic representation of a monitoring platform for the development of data-based soft sensors using available machine learning and big-data software
tools in a cloud computing environment.

J.C. Kabugo, et al. Electrical Power and Energy Systems 115 (2020) 105508

3



platforms are available from several technology firms. Examples in-
clude IBM PowerAI platform, NVIDIA DGX-1 Software Stack, Intel
Nervana platform, Skymind intelligence layer and so forth. There are
also many available open source deep learning frame works and li-
braries that offer different deep learning models for big-data analytics.
Notable examples are H2O.ai, Tensorflow, Chainer, MXnet, Keras,
BigDL, Microsoft Cognitive toolkit (CNTK) and many more.

Most of the industrial automation cloud platforms such as Predix
and MindSphere offer application services for data analytics. For in-
stance, MindSphere currently provides built-in application program-
ming interfaces (APIs) for outlier and anomaly detection [27]. Apart
from the built-in APIs, in many cases, clients have the opportunity to
deploy their own applications into the cloud platform. Therefore, more
efficient machine learning algorithms can be implemented in data
analysis. Furthermore, general cloud service providers like Microsoft
Azure [26] and Amazon Web services provide machine learning and
deep learning services and big-data software tools like Apache Spark,
Hadoop, Apache Storm and so forth.

2.6. Process automation and industrial IoT technologies

In addition to the existing process monitoring platforms within the
process automation system, modern technologies (including edge and
IoT cloud computing) can be utilized for process data analytics. The
combination of state-of-the-art industrial automation systems coupled
with industrial IoT technologies is expected to become the norm for
industrial automation according to the proponents of industry 4.0 [1].
As demonstrated in Fig. 2, data acquisition from devices can be done
through the plant automation system and via edge computing en-
vironments. With the help of IoT cloud gateways, streaming data or
historical data is ingested into the industrial IoT cloud platform. In-
dustrial IoT vendors normally provide IoT cloud getaway connections.
For instance, Siemens’s MindSphere offers MindConnect Nano and
MindConnect IoT 2000 getaways, which ensure secure information
sharing. On the other hand, as indicated in Fig. 1, there are a number of
data streaming frame works like Apache Storm and Apache Spark,
which can be employed for real-time stream data analytics. Besides,
depending on the IoT platform applied, proprietary stream analytics
platforms such as Azure Stream Analytics and Amazon’s Kinesis, are
also available, as illustrated in Fig. 1. In some instances, streamed data

is collected and stored in cloud storage data centers such as data lakes
or SQL databases, among others, to archive or to carry out batch data
analytics using batch big-data tools alongside ML algorithms. Industrial
IoT cloud platforms like Siemens’ MindSphere [21] also provide a
number of applications, which may include visualization dashboards
for stream jobs, reports, managing workflows back to the process, di-
gital twins and ML data analytics tools as well as offering an interface
for custom application development. For instance, in the Azure Stream
Analytics query [26], JavaScript user-defined functions can be im-
plemented when executing complex computations.

3. A waste-to-energy plant case study

A waste-to-energy plant was studied here as an example of the ap-
plication of the above proposed IIoT-based data analytics platform. In
this case study, data-based soft sensors for the prediction of syngas
heating value and hot flue gas temperature in a biomass WTE process
were developed.

Biomass is one of the current sources of renewable energy [28–30].
The other popular renewable energy sources include hydropower, solar,
wind and geothermal power. The availability and accessibility of the
major renewable energy sources tend to vary according to geographical
locations. For instance, cold regions normally experience short periods
of sunlight, which makes the feasibility of solar power generation in
such areas to be low in comparison with those in warm environments.
In addition, the availability of some renewable energy sources like wind
and solar is naturally intermittent. Hydropower is considered the most
frequently used renewable energy in many countries. China is the world
leader in hydropower generation due to its abundant hydropower re-
sources [28]. However, weather changes, like long periods of drought,
normally affect the availability of hydropower. In addition, the con-
struction of hydropower dams tends to have negative environmental
impacts on the surrounding natural ecosystems. On the other hand,
among the advantages of biomass over the other renewable energy
sources include its availability: it is readily available in all countries in
different types, such as agricultural waste, wood residues and municipal
solid waste, among others. Furthermore, biomass energy can be readily
stored for later use, for instance, in the form of biofuel. Also biomass
energy is considered a reliable renewable energy source compared with
either wind or solar. For this reason Tajeddin and Roohi [30] proposed
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a wind-biomass hybrid system to improve the reliability of a wind farm.
There are also constraints concerning the utilization of biomass as a
renewable energy source. For example, the challenges in waste collec-
tion, pollutant emissions like NOx and SO2, high investment costs, the
risk of deforestation and so on.

With the increasing global population, urbanization and in-
dustrialization, waste generation is also rapidly increasing around the
world, leading to global health and environmental concerns [31].
Hence, waste management systems, such as WTE technologies, are
being increasingly implemented to address the arising problems, in-
cluding global warming and climate change, through sustainable en-
ergy recovery and environmentally friendly waste disposal. In general,
WTE technologies fall under biochemical, physicochemical and ther-
mochemical waste treatment methods [32,33]. Nowadays, waste
management through the use of thermal treatment processes with en-
ergy recovery has become popular in the US, Europe and East Asia and
is rising in the other parts of the world. Thermal treatment technologies
can be categorized as pyrolysis, gasification and incineration processes
[31]. Waste-to-energy plants usually treat different kinds of solid waste
materials, which may include municipal solid waste (MSW), industrial
sludge, sewage sludge, agricultural waste, wood waste, plastic waste
and so forth. The heterogeneity of solid fuel, health and environmental
constraints, profitability, among other limitations, make the design and
operations of the WTE plant considerably complex. For instance, the
complexity of thermal treatment-based WTE plants can be attributed to
the application of more efficient pyrolysis, gasification, combustion and
flue gas cleaning technologies [34].

Municipal solid waste is one of the major sources of solid fuel for
WTE plants especially in countries with large urban centers [32,35].
Currently, incineration processes are widely applied in the thermal
treatment of municipal solid waste [36]. In today’s municipal solid
waste incineration (MSWI), moving grate, fluidized bed and rotary kiln
incinerators are employed. Among these, moving grate incinerators are
the most commonly used due to their ability to handle higher
throughputs even without prior shredding and sorting [31,33]. In ad-
dition to heat and energy recovery in combined heat and power plants,
WTE plants also employ sophisticated technologies for flue gas cleaning
to satisfy emission control policies. In Europe and in countries like
Estonia, Denmark, Sweden and Finland, WTE by incineration accounts
for over 50% of the municipal solid waste. In East Asia, thermal WTE
plants are also becoming popular, particularly in countries like China,
Japan and South Korea [31]. For instance, according to Bourtsalas et al.
[34], in South Korea, a total of 35 WTE plants contribute about 8% and
potentially 0.6% of the country’s district heating and electricity de-
mands, respectively.

In the literature, there are not many cases where IIoT, big-data
analytics and cloud computing technologies have been implemented in
solid waste management systems, especially in WTE processes.
However, within this research area, a few researchers have investigated
the use of internet of things (IoT) platforms for enabling waste collec-
tion in the so-called smart cities [37,38]. For example, Aazam et al.
[38] proposed a cloud-based waste management system, enabled by
built-in smart sensors in waste bins. With the smart sensors, the level of
the waste bins can be monitored and the collected data uploaded into
the cloud platform from where it’s accessible to the stakeholders for
analysis, including waste collection route optimization and planning.
Moreover, with smart waste bins, edge computing can be implemented
[39]. In a similar work, Anagnostopoulos et al. [37] reviewed IoT
technologies for the real-time monitoring of waste collection, trans-
portation and disposal. In addition, they conceptualized a waste man-
agement system based on three key components: the physical infra-
structure, the IoT platform and the software analytics tools. The
physical infrastructure in here refers to things like waste bins, trucks,
depots and dumping sites and so on. Whereas the IoT technology is
enabled by sensors, actuators, wireless sensor networks (WSNs), Radio
Frequency Identification (RFID) tags, Near Field Communications

(NFC), global positioning systems (GPS), cameras and so forth. Software
analytics tools, provide algorithms that are applicable in modeling
dynamic scheduling and routing problems and a decision support
system used by stakeholders among others things. More recently, Po-
pa et al. [40] reported an IoT-based automated waste collection system
(AWCS) built using Microsoft Azure IoT cloud. With Azure IoT Hub,
measurement data from different devices is connected to the Microsoft
Azure cloud. Numerous functionalities provided by Microsoft Azure,
such as Azure stream analytics, Azure machine learning, logic apps and
data storage can be utilized. For example, Azure logic apps can be used
for the anomaly detection of the AWCS and event reporting. The use of
IoT platforms in solid waste collection has also been investigated
elsewhere, including studies concerning state-of-the-art IoT archi-
tectures [41] and algorithms for the optimization of waste collection
operations [39].

According to the above-mentioned short review of the most recent
research concerning the application of industry 4.0 technologies in
waste management, it can be seen that the emphasis has been put on
the development of efficient waste collection systems. Using IIoT
technologies, from waste collection to WTE plants, still requires more
research.

3.1. Process description

In this process, solid waste fuel is fed into the Outotec Advanced
Staged Gasifier, where it is combusted to produce heat. The heat gen-
erated is used to produce steam for electric power generation. The
operations of this particular WTE plant are summarized in Fig. 3. The
main process unit is the Outotec Advanced Staged Gasifier, which is
divided into two parts, the lower and upper sections. In the lower
section, gasification takes place in a bubbling fluidized bed where a
sand bed and solid waste particles are fluidized by air. The gasification
stage produces syngas, which is directed to the upper section for
combustion. Any metallic components and large-sized particulates are
removed by discharging part of the bed material through the bottom
cone of the fluidized bed. However, after cleaning, the bed material is
recycled back to the gasifier. In the upper section of the Outotec Ad-
vanced Staged Gasifier, the combustion of syngas is carried out in the
presence of air. Reagents for NOx reduction, such as ammonia are added
in the upper section. Such reagents react with NOx compounds to form
harmless nitrogen and water. The flue gas typically exits the gasifier at
a temperature of 930 °C. Heat is recovered from the hot flue gas stream
using the boiler to produce super-heated steam for electric power
generation. After the boiler, flue gas undergoes a series of cleaning
stages as well as further heat recovery measures before it is discharged
into the environment. At the same time, during flue gas cleaning,
subsequent solid particulates in the form of ash are collected for dis-
posal or for further treatment and use.

3.2. Monitored key process phenomena

The study was aimed at developing data-based soft sensors to
quantify the heating value of syngas and hot flue gas temperature for a
WTE plant. The heating value of syngas generated after the gasification
of solid fuel is difficult to quantify directly during process operations in
the absence of the required measurements, which are challenging and
expensive. A data-driven soft sensor in that case would be very useful to
predict the syngas heating value online. The heating value of syngas is
among the key performance indicators of this particular WTE process.
On the other hand, the combustion chamber outlet temperature affects
various downstream process operations, including the turbine power
output and the emissions of harmful gaseous compounds. Therefore, a
good prediction model for the flue gas temperature at the outlet of the
combustion chamber would also be useful in process control strategies,
process optimization and process monitoring. For instance, a soft sensor
for flue gas temperature would be applicable in fault detection if the
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temperature sensor and soft sensor outputs disagree too much and
hence, create alarms.

3.2.1. Syngas heating value
The heating value of syngas can be estimated based on the energy

balance around the syngas combustion chamber or it can be determined
from the combustion reactions [7,42–44]. Hence, a suitable model can
be selected depending on the availability of the required measurements.
Here, the overall steady-state energy balance of the combustion section
is described by Eq. (1), where hv (kJ/kg) is the heating value of syngas
(enthalpy of combustion reactions), ms is the syngas mass flow (kg/s),
Qa is the air heat flow (kJ/s), Qs is the syngas heat flow (kJ/s), Qf is the
flue gas heat flow (kJ/s) and Ql collectively represents the heat losses
(kJ/s).

+ + = +Q Q m h Q Q.a s s v f l (1)

Besides nitrogen, the primary components of syngas normally in-
clude CO, CO2, H2, CH4 and H2O. It is important to note that Eq. (1) was
developed as a simple but useful physical model based on the available
process knowledge. In practice, syngas heating value will vary de-
pending on the solid fuel flow and the amount of air added to the ga-
sification process.

3.2.2. Flue gas temperature
There is a restriction on the temperature inside the syngas com-

bustion chamber with a minimum required value of 850 °C, required
and the gas retention time above that temperature must be at least two
seconds, according to the ‘EU Waste Burning Directive’ [45]. This re-
quirement is important for controlling the gaseous emissions, including
volatile organic compounds. According to the process operations, the
hot flue gas temperature can be estimated from the energy balance
around the gasifier and the boiler. Considering a stationary energy
balance around the waste heat boiler, the hot flue gas temperature Tf in,
can be estimated according to Eqs. (2) and (3).

= − = − +Q m h h m h m h Q( )f f f in f out st st out w w in l, , , , (2)

=
− +

+T
m h m h Q

m c
h
cf in

st st out w w in l

f in p f in

f out

p f in
,

, ,

, ,

,

, (3)

where, m is the mass flow (kg/s), h is the stream enthalpy (kJ/kg), Q is
the stream heat flow (kJ/s), cp is the specific heat capacity (kJ/kg/K)
and subscripts, f , st , w and l represent flue gas, live steam, boiler feed
water and heat losses respectively. However, due to the complex pro-
cess dynamics surrounding the operation of the boiler, the accurate

determination of flue gas temperature using energy balance models is
notably difficult. For example, in this case study, some part of the heat
flow used to evaporate the water is not transferred in the waste heat
boiler but in the combustion chamber itself. Hence, from a modeling
point of view, the energy balance model in Eq. (2) is not a proper re-
presentation of reality. Moreover, in this case, the heat losses Ql were
unknown, and thus, Eq. (3) was modified. The heat losses were esti-
mated as a fraction of the heat flow of live steam as follows:

= −Q η Q(1 )l st , where η is the boiler efficiency. This is a rough esti-
mate, which was assumed in order to test the performance of the
steady-state energy balance model against data-driven models. During
the testing of the energy balance model, boiler efficiency was assumed
to be high, above 90%.

3.3. Data-driven models

Kumar et al. [46] and other previous authors [47,48] extensively
reviewed a number of ML algorithms and their use in the development
of data-driven models. Either individual ML methods or their hybrids
are often employed when solving industrial data analytics problems.
The selection of a suitable method for a particular case, often depends
on the nature of the data analytics task in addition to other techni-
calities associated with the data handling and its processing. Siow et al.
[49] in their work about internet of things based data analytics plat-
forms, classified the nature of possible data analytics problems into five
categories, which include descriptive, diagnostic, discovery, predictive
and prescriptive data analytics. The soft sensors considered in the
present industrial use case, fall under predictive data analytics. In
predictive data analytics, the models assist in understanding the future
behavior of the system based on historical data and regression based ML
methods [50] are used to develop such predictive models.

Data-driven predictive models find wide applications in different
industrial operations for example in soft sensing, process monitoring
and quality prediction tasks. From the viewpoint of using ML algo-
rithms to model operations in industrial power plants and other energy-
related systems, several research works have been reported in litera-
ture. For instance, Tüfekci [50] applied fifteen different machine
learning regression methods using WEKA software to predict the full
load electrical power output of a particular power plant. In that case, a
decision tree based regression method performed better than the rest.
Moreover, as a concrete industrial example, Fast and Palmé [51] re-
ported the online use of an artificial neural network (ANN) model to
predict turbine power output in a combined heat and power (CHP)
plant. The ANN model was found to accurately predict the system

Flue gas

Ammonia flow

Oversize solids

Multi-clone

Flue gas effluent
Steam to power generation

Sootblowing 
valves

Saturated 
steam

Outotec Advanced 
Staged Gasifier

Ash 
Gasification

section

Combustion
section

Solid waste 
feed

Air

Air Boiler
Other Gas 

Cleaning & Heat 
Recovery Stages

Ash 

Fig. 3. A simplified process scheme for a WTE plant showing relevant streams and variables studied in this present work.
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behavior.
There are several ML regression algorithms, which could be used to

develop predictive models. These include variants of linear regression
methods, support vector regression (SVR), Bayesian networks regres-
sion, variants of artificial neural networks (ANNs), decision trees re-
gression, random forest regression, k-nearest neighbor (K-NN), prin-
cipal component analysis (PCA) based methods, adaptive boosting
method and so on [46–48]. Again most of these machine learning al-
gorithms are available through several ML software frameworks and
libraries with examples presented in Fig. 1. For instance, Ahmed et al.
[52] predicted and forecasted energy consumption for a smart grid
system using support vector regression, linear regression and artificial
neural network methods with the help of the IBM Cloud machine
learning tools. The selection of the appropriate ML algorithm is often
based on data characteristics, model complexity and prior knowledge
about the system behavior, among other criteria [53]. For instance, if
the system exhibits strong non-linearity, then the selection of highly
nonlinear models such as ANNs and SVR algorithms would be appro-
priate. Alternatively, for dynamic systems, either nonlinear or linear,
dynamic models would be required and so on.

In this work, the ML methods studied comprised of linear methods,
which included multivariable linear regression (MLR), principal com-
ponent regression (PCR) and partial least squares regression (PLSR) and
a nonlinear method, the neural network-based NARX model. The linear
methods, which were selected are often used in process industry to
develop soft sensors and also applied in process monitoring [53]. On
the other hand, the NN-NARX model is suitable for modeling highly
nonlinear and dynamic system behaviors. The neural network-based
NARX model was also selected because of its capability to handle tasks
concerning the forecasting of time series data for dynamic systems. The
selected methods were used to predict the heating value of syngas and
the hot flue gas temperature and the performance of each method in
comparison with the other methods was assessed.

3.3.1. MLR, PCR and PLSR models
A multivariable linear regression (MLR) model can be demonstrated

by Eq. (4) [54], where Y is a n-dimensional response vector, X is a
design matrix of predictor variables ( ⋯x x, , )m(1) ( ) with dimensions of

×n p (and = +p m 1), θ is a p-dimensional vector containing esti-
mated parameters andε is an n-dimensional vector of estimated error.
The dimensions n and m correspond to the number of samples and
variables respectively. The superscript T in all equations denotes the
transposition of the respective matrix.

= + = −Y θX ε where θ X X X Y, ( )T T1 (4)

The performance of the regression model is often assessed based on
the estimated coefficient of determination, R2 and root mean squared
error (RMSE) according to Eq. (5) and Eq. (6), respectively. In the
following equations, yi is the observed output variable, ̂yi is the pre-
dicted output variable and ȳi is the mean of the output variable.
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Unlike in the MLR model, which directly uses the input variables to
predict the output variable, the principal component regression (PCR)
and partial least squares regression models, apply new predictor vari-
ables called components to predict the output variable. However,
parameter estimation of the PCR and PLSR models is done in the same
manner as in the MLR model described in Eq. (4).

In the case of the PCR model, the new predictor variables are ob-
tained after principal component analysis (PCA) on the original dataset
of input variables. The PCA method describes the linear relationship

between variables in a dataset and maps them to a set of linearly un-
correlated variables. The derived uncorrelated variables are referred to
as principal components or scores and these are obtained without using
the output variables. The first principal component represents data with
the largest variations, followed by the component with the second
largest variations and so forth. The PCA method is briefly illustrated
mathematically below, considering a dataset of independent variables
represented as a matrix X of dimensions ×n p, for which the covar-
iance matrix C is calculated. The covariance matrix can be determined
using the singular value decomposition (SVD) method according to Eq.
(7),

=
−

=C
n

X X P P1
1

ΛT T
(7)

where P is the loading matrix of size ×p p and = ⋯diag λ λ λΛ ( , , , )p1 2
is a diagonal matrix containing the eigenvalues of matrix C presented in
the descending order. Usually, just a few principal components are
enough to describe a given dataset of independent variables according
to Eq. (8) [55].

= +X TV Em
T (8)

where T is the X -scores matrix, Vm is comprised of m eigenvectors,
which describe most of the variations in the input data and E is the
residual matrix. Therefore, only a certain number of principal compo-
nents are retained for parameter estimation of the PCR model. There are
several techniques available to handle this task and among them is the
cumulative percentage of variance (CPV) method [56], which was ap-
plied in this work.

The partial least square method is also a commonly used statistical
method in building predictive models, for instance, in cases where there
are many variables or in the presence of strong collinear behavior be-
tween variables [57], among others. Moreover, the PLS model can also
help address the over-fitting problem, which maybe encountered if the
MLR model was applied instead. Like PCA, the PLS method extracts
latent factors (or scores) responsible for the observed variation in the
dependent variables. The ultimate target is to apply the extracted fac-
tors to predict future responses. Unlike in the PCA method, the PLS
method applies both the original predictor and response variables to
obtain predictor scores and output scores, respectively. In the PLSR
method, latent variable matrices, T and U , corresponding to the pre-
dictor variables matrix, X and the response variables matrix Y , re-
spectively, are extracted. The extracted factors,T (X-scores) are utilized
to predict U latent variables (Y-scores). The obtained Y-scores are then
used to make predictions of output variables. The decomposition of X
and Y variables to determine T and U latent variables follows Eq. (9)
and Eq. (10), respectively.

= +X TP ET (9)

= +Y UQ FT (10)

where P and Q are orthogonal matrices of regression coefficients, also
referred to as loadings, and E and F are error matrices with respect to
X and Y variables. The decomposition of X and Y variables is done so
that the covariance ofT andU is maximized. The variables X and Y are
related according to Eq. (11) [57],

= +Y TBQ FT (11)

where B is a diagonal matrix composed of the weights of regression.
The appropriate number of latent variables to be retained in the PLS
model can be estimated using a cross-validation algorithm.

3.3.2. Neural network NARX model
In this work, an artificial neural network-based nonlinear auto-

regressive model with external input (NN-NARX) was implemented.
Equation error models similar to the NN-NARX mode are widely known
in the prediction and control applications [58]. Among the advantages
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of this method over the previous methods include its applicability in
dynamic and non-linear systems as well as in time series forecasting.
The NARX model estimates the observed response based on the pre-
vious input and output variables as described in Eq. (12).

= − ⋯ − ⋯ − ⋯ − − + +

y t

f y t y t n u t n u t n n e t

( )

[ ( 1), , ( ), , ( ), , ( 1)] ( )a k k b

(12)

where y t( ) is the output variable at time t , f is the nonlinear function,
u t( ) is the input variable at time t , na is the number of poles, nb is the
number of zeros plus unit, nk is the delay with respect to the input
variable and e t( ) is a white noise disturbance. Initially, the non-linear
function f is unknown. However, it is approximated in the training
phase of the feedforward neural network model. The architecture of the
neural network NARX model is comparable to the shallow feedforward
multilayer perceptron (MLP) model. In the feedforward neural network
model, the output from the jth neuron in the hidden layer is calculated
following Eq. (13) [59].

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟

=

z t f w t x t b( ) ( ) ( )j k j
i

p

ji k i k j
1 (13)

where p is the number of input layer nodes, xi is a vector of input
variables, wji is the weight associated with the connection of ith input
node to the jth hidden node and bj is a bias term also known as the
activation threshold for the jth hidden node. The function f j is an ac-
tivation function for the hidden layer nodes and is usually a sigmoid
function, such as a logarithmic sigmoid function and a hyperbolic
tangent function. The final outputs from the output layer neurons are
then computed according to Eq. (14) [59],
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q

lj k j k
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where q is the number of nodes in the hidden layer, wlj is the weight
associated with the connection of the jth hidden node to the lth output
node in the output layer and fl is a linear activation of the lth output
node.

The neural network NARX model can be implemented using open-
loop or a closed-loop architecture [60]. The open-loop architecture
favors online process monitoring, whereas with the closed-loop archi-
tecture, future process outputs can be estimated offline, for example,
through process simulation [18]. The two architectures of the NARX
model, which were employed in this work, are demonstrated in Fig. 4.

After model training using optimization algorithms like back-
propagation training methods, the performance of the NN-NARX model
is evaluated based on the results of the loss function. For this work the
performance of the neural network NARX model was monitored using
the mean squared error (MSE) method, which is described in Eq. (15)
[61].

̂∑= −
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n

i i
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where yi is the measured output variable, ̂yi is the predicted output
variable and n is the number of measurements.

4. Results and discussion

4.1. Experimental data and testing environment

The data used in the modeling of syngas heating value and flue gas
temperature was obtained from the Outotec process simulator and it
represented a period of three months of plant operation with a one-
minute time interval, equivalent to about 126,500 sample data points.
For the MLR, PCR and PLSR models, data was split manually into two
sets, for model training and testing at 80% and 20%, respectively. In the

case of the neural network model, the data was randomly divided into
three parts, for training, validation and testing at 70%, 15% and 15%,
respectively. All the work, including data pre-processing and modeling
was conducted using MATLAB 2018a software. The neural network
toolbox in MATLAB was utilized in the implementation of the NN-
NARX model. The results reported represent the performance of the
individual data-based model on the respective test data set.

4.1.1. Data pre-processing
Raw data pre-processing is an important step before using the data

for model development. This is because raw data such as process data is
often associated with noise, disturbances, uncertainties, measurement
errors, different orders of magnitude in different signals and so forth,
which tend to affect the results obtained after data analysis. Therefore,
the use of appropriate data pre-processing methods helps to improve
the quality of data thereby enhancing the accuracy and efficiency of
data analysis methods. In this work, data pre-processing involved, the
removal of outliers, filtering and data scaling by normalization.

In the detection and removal of outliers, the Hampel identifier
method was implemented. This method is known to be quite effective in
the removal of outliers from datasets [62]. Moreover, with this tech-
nique, it is not necessary to know the distribution of the data in ad-
vance, which is often important in the selection of a suitable method for
outlier removal. In the next step, data filtering was done using a median
filter of the seventh order. This was found to be appropriate in terms of
minimizing noise in the data and avoiding the loss of important in-
formation from it. Due to varying data scales, data standardization was
carried out before further data analysis. Data scaling is a common
procedure before applying most of the ML algorithms, such as principal
component analysis (PCA), partial least squares (PLS) and artificial
neural networks, among others. Data standardization prevents data
analysis methods from being biased toward the variables that exhibit
large variances.

4.1.2. Variable selection for the prediction of syngas heating value and flue
gas temperature

The selection of predictor variables was done based on data corre-
lation analysis and process knowledge. First, data correlation analysis
was performed on all available process variables around the gasifier.
The correlations between the independent and dependent variables
were examined from the correlation matrix, and highly correlated in-
dependent variables against the target dependent variables were se-
lected for further analysis. Process knowledge was used to eliminate
independent variables, which were strongly correlated with the de-
pendent variables but were already known as poor predictor variables
according to process operations.

The original independent variables and calculated variables, which
exhibited stronger correlation behavior against the output variables,
syngas heating value and flue gas temperature, were used in the de-
velopment of the respective prediction model. For instance, in flue gas
temperature prediction, calculated variables derived based on the ideal
gas equation, that is, the product of the volumetric flowrate of air and
the corresponding air pressure were utilized in the model development.
On the other hand, computed variables based on the relationship be-
tween volumetric flowrates and respective valve openings were also
employed in the modeling of syngas heating value. In this case, the
product of the volumetric flow of air and the extent of the valve
opening was found to be a good predictor variable after correlation
studies. The use of computed variables in data-driven models offers
several advantages, which may include capturing some of the non-
linear behavior of the system at hand, indicating faults in variable
measurements and understanding system disturbances, among others
[55]. The original and computed variables used in the data-based
prediction models are shown in Table 1.
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4.1.3. Training of the NN-NARX model
The NN-NARX model, which comprised of an input layer, one

hidden layer and an output layer, was implemented all through the test
work. The input and feedback delays were varied, as well as the number
of nodes in hidden layers as part of the tuning procedure of the neural
network parameters. Moreover, in the training of the model, the per-
formance of different training algorithms, including the Levenberg-
Marquardt (LM) algorithm and the Bayesian regularization (BR) algo-
rithm, among others were compared before the selection of the ap-
propriate method. The training of the model was limited to a maximum
of 1000 epochs. However, in most cases, model convergence was
achieved after about 100–500 epochs, as demonstrated in Fig. 5. After
training, validation and testing the model in the open-loop (series-
parallel) architecture, a closed–loop architecture was adopted to ex-
amine the performance of the trained model in time series forecasting.
The training of the model in the closed-loop (parallel) architecture was

done utilizing a separate dataset, which was originally reserved for this
purpose. After the closed–loop NARX model, the forecasted output
values were compared with the actual expected output values. The
performance of the NARX model was assessed based on the mean
squared error (MSE) and monitoring the outputs of the error auto-
correlation and the input-error cross-correlation functions in MATLAB.

4.2. Prediction of syngas heating value

In the prediction of syngas heating value, seven input variables
x x x x x x x( , , , , , , )1 2 3 4 5 6 7 from Table 1 were retained in the building of the
prediction models. These variables showed a significant correlation

Fig. 4. The architecture of the NARX model applied in this work: TDL denotes tapped delay lines, wis a respective input or output weight, b is the bias term and f (1)

and f (2) are activation functions in the hidden and output layer, respectively.

Table 1
List of the investigated variables and their descriptions.

Variable Description

x1 Syngas temperature
x2 Fluidized bed inlet air volumetric flow
x3 Combustion chamber inlet air volumetric flow
x4 Fluidized bed air valve opening
x5 Combustion chamber air valve opening
x6 Product of the combustion chamber air volumetric flow and valve

opening
x7 Product of the fluidized bed air volumetric flow and valve opening
x8 Combustion chamber inlet air pressure
x9 Solid fuel feed valve opening
x10 Product of the combustion chamber air volumetric flow and pressure
x11 Boiler feed water
y1 Syngas heating value
y2 Combustion chamber outlet flue gas temperature

Fig. 5. A typical convergence plot observed for the NN-NARX model showing
the behavior of MSE during model training, validation and testing with respect
to the number of epochs (while using the LM training algorithm).
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with the syngas heating value and were selected as the predictor vari-
ables. The performance of the trained MLR, PCR and PLSR models on
the test dataset is shown in Fig. 6, which shows that the three models
were comparable in the prediction of the syngas heating value. The
MLR model showed a correlation coefficient R2 of 0.868, whereas the
PCR and PLSR models both showed a value of 0.870. However, based
on the measure of the percent variance explained in the predicted
output, the PCR and PLSR models required at least six components out
of seven to predict the syngas heating value fairly well. Otherwise,
model prediction error increases with the use of a lower number of
component variables. Thus, the use of either the PCR or PLSR model
was not so effective in this particular case.

First, in the application of the NARX model, the parameters of the
neural network were chosen after investigating multiple alternative
parameters and evaluation of the model performance. For instance, the
number of neurons in the hidden layer, as well as the time delays for the
input variables and the feedback output variable were varied while
using the LM training algorithm. Based on the results in Table 2, a
neural network architecture with 10 neurons and delays of 7min was
adopted. The selection was based on the observed mean squared error
values for each scenario, accounting for other performance measures
such as the time consumed in the model training, error autocorrelation
and the input-error cross-correlation behaviors. For instance, it was

ensured that the results of the error autocorrelation and the input-error
cross-correlation functions in MATLAB were within the recommended
95% confidence limits. Otherwise, the model was re-trained until ac-
ceptable results were obtained.

The neural network NARX model showed better prediction accuracy
of the measured values of output variables compared to all the other
methods studied. Fig. 7 shows the performance of an open-loop NARX
model in the prediction of the syngas heating value. An average value of
mean squared error (MSE) of 0.0021 and a regression correlation
coefficient, R2 of 0.988 were observed after model testing. In this
model, the LM training algorithm was implemented. Other training
algorithms were also studied under similar conditions, in which time
delays of 7min and one hidden layer of 10 nodes were employed. The
performance of the model on the test dataset in each case was mon-
itored. In Table 3, the results of the four training methods were com-
parable based on the mean squared error values. Only the adaptive
learning rate gradient descent method showed a relatively higher pre-
diction error among the five studied methods. In this case, the LM and
BR methods both performed slightly better than the rest. However, only
the former was selected for further use because the latter required more
computation time for training the model, as seen in Table 3.

The neural network NARX model was also tested to forecast the
syngas heating value. Since syngas heating value is not continuously

Fig. 6. Modeling of syngas heating value in a WTE plant using data-driven regression methods: (a) with the use of multivariable linear regression, (b) using principal
component regression and (c) for partial least squares regression.

Table 2
Performance results of the neural network NARX model in the determination of the appropriate time delays and number of nodes within the hidden layer (after five
parallel experimental runs).

Hidden layer number of nodes Time delays, min Mean squared error (MSE) Regression coefficient, R2 Average training time, min

Mean value Standard deviation Mean value Standard deviation

7 7 0.00209 3.19E-05 0.9879 2.76E-04 1.52
10 7 0.00205 1.67E-05 0.9881 3.07E-04 2.35
14 7 0.00202 1.76E-05 0.9880 1.82E-04 4.23
10 5 0.00207 5.16E-05 0.9878 2.54E-04 2.61
10 10 0.00203 9.57E-06 0.9880 1.40E-04 3.75
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measured during the process operations, such time series forecasting
would be useful in monitoring the performance of the combustion
process. Forecasting was carried out by switching the trained open-loop
neural network to the closed-loop mode. With the new set of input data
for only the predictor variables, the closed-loop network was used to
predict the corresponding output values. The predicted output was
compared with the target output, which in this case was already known.
Fig. 8 shows the results obtained after configuration of the model to
forecast syngas heating value. The model performed considerably well
in the forecasting of the heating value of syngas for more than two days’
operation with an average value of a mean squared error of 0.0120 and
a regression coefficient R2 as high as 0.931.

4.3. Prediction of flue gas temperature

The temperature of flue gas exiting the combustion chamber was
modeled using seven predictor variables x x x x x x x( , , , , , , )2 3 4 8 9 10 11 from
Table 1. Similarly to the previous case, the predictor variables were
selected based on their significant correlations with the output variable.
Fig. 9 demonstrates the performance of the MLR, PCR and PLSR models
against the test data. Looking at the results in Fig. 9, again, the three
models performed fairly and comparably to each other with regression
correlation coefficients R2 of about 0.89, 0.87 and 0.90 for the MLR,

PLSR and PCR models, respectively. In this case, the PCR and PLSR
models were developed using five components out of seven beyond
which no significant improvement in the model prediction capacity was
noticed. The results showed that any of these models could be used for
this particular purpose, even though the PLSR method appeared to
perform slightly better than the rest.

The open-loop NARX model performed quite well in the prediction
of hot flue gas temperature, as illustrated in Fig. 10. In this case, the
observed average values of the mean squared error (MSE) and corre-
sponding correlation coefficient R2 after model testing were × −6.23 10 4

and 0.998, respectively. The settings of the neural network model in-
cluding the network architecture, time delays and training algorithm
remained the same as in the previous case.

Again, in order to forecast the flue gas temperature, the trained
model from the open-loop architecture was transformed into a closed-
loop form and a new dataset of predictor variables was used to forecast
the respective output values. The results are shown in Fig. 11, where
the forecasted flue gas temperature is compared with the target output
values, which were already known prior to forecasting. As illustrated in
Fig. 11, the model forecasted the temperature of hot flue gas for the
studied future period of about two days fairly well. The average values
of the observed mean squared error and correlation coefficient, R2 were
0.0204 and 0.936, respectively. Although the determined mean squared

Fig. 7. Prediction of syngas heating value for a WTE plant using a neural network NARX model.

Table 3
Evaluation of the performance of different algorithms in the training of the neural network NARX model (after five parallel experimental runs).

Training algorithm Mean squared error (MSE) Regression coefficient, R2 Average training time, min

Mean value Standard deviation Mean value Standard deviation

Levenberg-Marquardt 0.00205 1.67E-05 0.9881 3.07E-04 2.35
Bayesian regularization 0.00204 1.80E-05 0.9881 2.07E-04 11.37
Scaled conjugate gradient 0.00224 3.49E-05 0.9868 3.02E-04 0.49
BFGS quasi newton 0.00221 2.71E-05 0.9872 2.90E-04 0.61
Adaptive learning rate gradient descent 0.00577 6.83E-04 0.9667 3.49E-03 0.09

Fig. 8. Forecasting of syngas heating value in a WTE plant using the neural network NARX model.
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Fig. 9. Modeling of hot flue gas temperature at the exit of the combustion chamber in a WTE plant: (a) multivariable linear regression, (b) principal component
regression and (c) partial least squares regression.

Fig. 10. Prediction of hot flue gas temperature in a WTE plant using a neural network-NARX model.

Fig. 11. Forecasting of hot flue gas temperature in a WTE plant using a neural network NARX model.
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Fig. 12. Modeling of syngas heating value in a WTE plant using a steady state energy balance.

Fig. 13. Prediction of hot flue gas temperature in a WTE plant using a steady state energy balance-multivariable linear regression model.

Fig. 14. Sensitivity analysis showing the relative importance of each independent variable in different data-driven models in the prediction of: (a) syngas heating
value and (b) hot flue gas temperature.

Table 4
Model performance in the prediction of syngas heating value.

Test case Root mean squared error (RMSE) Regression coefficient, R2

MLR PLSR PCR NN-NARX MLR PLSR PCR NN-NARX

Case 1 0.098 0.098 0.098 0.045 0.872 0.872 0.872 0.988
Case 2 0.098 0.114 0.116 0.046 0.870 0.814 0.806 0.988
Case 3 0.156 0.156 0.156 0.047 0.415 0.415 0.415 0.987
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error increased in the forecasting of flue gas temperature compared to
the case without future output prediction, in general the performance of
the NARX model was quite good.

4.4. Comparison of steady state energy balances and data-based models

In this section, steady-state energy balances described in Eqs. (1)
and (3) were tested and their results compared to the performance of
data-driven models in Section 3.3. The heating value of syngas was
determined according to Eq. (1). It was assumed that the major com-
ponents of the syngas mixture flow were N2, CO, H2, CO2, CH4 and H2O.
Nitrogen was considered the most abundant due to the air addition of
air into the gasification process. Therefore, the composition of the
syngas mixture was assumed to be 70 wt% N2, 16 wt% CO, 6.5 wt% H2,
6.0 wt% CO2 with CH4 and H2O amounts of< 0.1 wt% in each case.
These assumptions were based on the literature studies of different
biomass-derived syngas and on rough estimates for the average pro-
portion of each individual component in syngas [14]. On the other
hand, the flue gas composition was assumed to be mainly CO2, O2 and

H2O. The content of oxygen in the flue gas was known. Thus only the
H2O was assumed to be<0.1 wt%, and the CO2 composition was cal-
culated. The enthalpies of the gaseous streams were determined with
the help of the Outotec HSC Chemistry software thermodynamic data-
base.

The behavior of the calculated syngas heating value against the si-
mulated process value is presented in Fig. 12, which shows that the
energy balance model predicted the heating value of syngas gas fairly
well. However, its performance was relatively low as compared to the
data-based model results, especially when using the neural network
NARX model. Nevertheless, considering the fact that syngas composi-
tion was not known, together with the amount of solid fuel fed into the
gasifier, it can be said that the model performance was quite reason-
able. Moreover, the energy balance model did not account for any heat
losses around the combustion chamber due to a lack of enough in-
formation. Furthermore, since only the steady-state model was applied
here, any dynamic behavior of the process could not be sufficiently
described by the model.

The prediction of flue gas temperature using the steady-state model

Table 5
Model performance in the prediction of hot flue gas temperature.

Test case Root mean squared error (RMSE) Regression coefficient, R2

MLR PLSR PCR NN-NARX MLR PLSR PCR NN-NARX

Case 1 0.126 0.131 0.133 0.0249 0.898 0.889 0.884 0.998
Case 2 0.138 0.139 0.157 0.0253 0.869 0.865 0.815 0.998
Case 3 0.182 0.180 0.181 0.0251 0.688 0.686 0.658 0.998

Fig. 15. Performance of the MLR model in Case 1: (above) syngas heating value and (below) hot flue gas temperature.
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described in Eq. (3) could not yield good results due to the severe in-
fluence of heat losses and could not be modeled well. Therefore, to
improve the performance of the energy balance model, a multivariable
linear regression method was applied after rearranging Eq. (3) into two
calculated variables, one of which represented the roughly estimated
heat losses. Here, the MLR method was implemented to improve heat
loss estimation and to account for the uncertainties in the calculated
variables. Temperature prediction improved with a regression correla-
tion coefficient R2 of 0.75 versus 0.54 for the actual energy balance
model. However, temperature prediction was still relatively low, as
seen in Fig. 13, indicating that the energy balance model applied was
insufficient in describing the studied process. Therefore, a more robust
process model similar to the one discussed in [44] would be required to
describe the process dynamics involved in the operations of the syngas
combustion and boiler unit processes. Furthermore, it can be said that,
in this case, the data-driven models performed very well in relation to
the applied steady-state energy balance model.

4.5. Sensitivity analysis

Sensitivity analysis was performed to establish the most important
independent variables with respect to the applied data-driven predic-
tion model. There are several sensitivity analysis methods, which can be
employed to study the relative importance of input variables in pre-
diction models, as demonstrated by previous authors [14,18,63,64]. In
this particular work, the stepwise technique [64] was utilized in a
backward manner. First, all variables in the original dataset were used
and the respective prediction error (RMSE) was recorded. The proce-
dure was repeated with only one independent variable eliminated from

the model. This was done with respect to all input variables. To
quantify the sensitivity to each variable, the difference in RMSE ob-
served between the model with all input variables and a model corre-
sponding to a particular eliminated independent variable, was calcu-
lated. The error difference was expressed as a fraction as described in
Eq. (16).

= −−ε ε ε
εd

n i n

n (16)

where εd is the error difference as a fraction, −εn i represents the RMSE
when input variable i is eliminated from the model and εn is the RMSE
corresponding to the model with all the originally selected n input
variables. The open-loop NN-NARX model was re-trained in each case
at least five times after the initial run. The results are presented in
Fig. 14, where the relative importance of each independent variable is
described by the percent error difference calculated from Eq. (16).

In the prediction of syngas heating value (Fig. 14a), variables x1 and
x4 were observed to be less important in the design of PCR, PLSR and
MLR models, and one of these variables can be removed from each
model without significant loss in model performance. Again, for these
three models, variables x2 and x3 showed a significant contribution to
model prediction performance in each case. The sensitivity analysis of
input variables in the NN-NARX model in syngas modeling generally
showed that each variable exhibited small individual contributions
within the model. For instance, either variable x3 or x7 could be
eliminated from the model and still maintain very good model predic-
tion results. Considering the modeling of flue gas temperature
(Fig. 14b), variablesx2, x4 and x10 showed low to no importance within
the models. Variables x3 and x11 showed strong influence in the PCR,
PLSR and MLR models but far less contribution within the NN-NARX

Fig. 16. Performance of the MLR model in Case 3: (above) syngas heating value and (below) hot flue gas temperature.
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model. However, in all models, variable x9 was observed to play a
significant role. To summarize, sensitivity analysis studies revealed that
some input variables could be eliminated from models due to their
insignificant positive contribution to the overall performance of the
respective model. Furthermore, it was observed that the dynamic NN-
NARX model was far less sensitive to the individual input variables, and
in all cases model prediction remained high compared with the other
models. Therefore, this implies that fewer input variables could be
applied while using the NN-NARX model and still maintain high pre-
diction accuracy. The following section further quantifies this ob-
servation.

4.6. Performance evaluation of the selected data-driven methods

According to the sensitivity analysis results in Fig. 14, it was ob-
served that the number of the selected predictor variables could be
reduced with respect to the data-driven method. Therefore, in this
section the number of input variables has been reduced accordingly and
the performance of each prediction model was evaluated. Three sce-
narios were considered, Case 1, Case 2 and Case 3, respectively. The
first scenario represents the original sets of predictor variables for each
dependent variable as shown in Fig. 14. The second scenario represents
a reduced number of input variables, which included x2, x3, x5, x6 and
x7 for syngas heating value prediction and x3, x8, x9 and x11 in the
prediction of flue gas temperature. In the third scenario, variables x1,
x2, and x4 were used to predict syngas heating value while variables x3,
x8 and x9 were applied in the prediction of flue gas temperature. The
performance of each model was evaluated according to the root mean
squared error (RMSE) and the regression coefficient R2. The results
after model testing are summarized in Tables 4 and 5, for syngas

heating value and flue gas temperature, respectively. For the NN-NARX
model, average values from five experiments after model training are
given. In all scenarios and for both output variables, the NN-NARX
model consistently showed high prediction accuracy. On the other
hand, the MLR, PLSR and PCR models performed poorly when Case 3
was implemented and especially in the prediction of syngas heating
value as observed in Table 4.

However, in the second scenario, Case 2, the MLR, PLSR and PCR
model, also displayed good prediction performances and the results
were comparable to those achieved when using the originally selected
variables, in Case 1. Though it was observed that, the effectiveness of
using either the PLSR or PCR model depreciated as fewer number of
input variables were applied. Nevertheless, as shown in the Tables 4
and 5, the three models, MLR, PLSR and PCR showed comparable re-
sults in all cases. To further justify the better performance exhibited by
the NN–NARX model when compared with the rest of the studied data-
driven methods, detailed results for the MLR and NN-NARX models in
Case 1 and Case 3 are presented. Fig. 15 shows the results of the MLR
model in Case 1. As previously seen in Sections 4.2 and 4.3, both syngas
heating value and flue gas temperature were modeled fairly well. Al-
though the model showed a reasonably good prediction of flue gas
temperature, both the training and test datasets still showed a notable
model bias. In Case 3, the MLR model poorly predicted the heating
value of syngas and also showed significant bias in the estimation of the
flue gas temperature according to Fig. 16.

In contrast, as shown in Tables 4 and 5, the performance of the NN-
NARX model remained consistently high and similar in all cases.
Therefore, only the results obtained in Case 3 are presented here and
compared with the MLR model. The results of the MLR model also fairly
represents the performance of the PLSR and PCR model in all cases.

Fig. 17. Performance of the NN-NARX model in Case 3: (above) syngas heating value and (below) hot flue gas temperature.
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Fig. 17 shows the results for the NN–NARX model corresponding to
Case 3. Again, it can be seen that the model exhibited high prediction
accuracy for both output variables. Even with three predictor variables,
the model performed better than the other studied models. Looking at
the flue gas temperature prediction, the bias effect, observed in Figs. 15
and 16 was eliminated when the NN-NARX model was applied as de-
monstrated in Fig. 17. Similarly, the model also predicted the heating
value of syngas in Case 3 with high accuracy unlike in the case of the
other models as seen in Figs. 16 and 17.

5. Conclusions

In this particular work, software platforms applicable in developing
and implementing process data analytics in modern process automation
systems were reviewed, and a concept of a process monitoring platform
was developed. The platform highlights the use of the state-of-the-art
machine learning methods coupled with big-data processing tools and
cloud computing technologies in process data analytics. With such an
environment, different data-driven models can be realized. The appli-
cation of the platform was demonstrated by developing data-driven soft
sensors, which can be employed to monitor a WTE plant.

Data-driven soft sensors to predict syngas heating value and hot flue
gas temperature in a WTE plant were studied. The work compared the
performance of the static linear methods with a nonlinear dynamic
method. The linear methods included multivariable linear regression,
principal component regression and partial least squares regression. All
these static methods performed quite well and were comparable to each
other in the prediction of both syngas heating value and hot flue gas
temperature. In comparison to the above statistical methods, a neural
network-based NARX model showed better performance in the predic-
tion of both dependent variables. The neural network-NARX model was
able to describe the dynamic behavior of the combustion process quite
well. Moreover, the neural network-NARX model also performed well in
forecasting the syngas heating value as well as the flue gas temperature.
The NN-NARX model was also less sensitive to the selected individual
input variables compared with the other tested models. Furthermore,
the study also showed that, although energy balance based soft sensors
can be utilized for such purposes, developing a reliable physical model
based soft sensor would require detailed knowledge about the process
phenomena at hand. Hence, in cases where process knowledge is
scarcely available, as in this present work, a data-driven soft sensor
would be an invaluable alternative tool for predictive analytics and for
use in process monitoring.
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