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Abstract

Beating is a simple physical phenomenon known for long in the context of sound waves but remained
surprisingly unexplored for light waves. When two monochromatic optical beams of different
frequencies and states of polarization interfere, the polarization state of the superposition field exhibits
temporal periodic variation—polarization beating. In this work, we reveal a foundational and elegant
phase structure underlying such polarization beating. We show that the phase difference over a single
beating period decomposes into the Pancharatnam—Berry geometric phase and a dynamical phase of
which the former depends exclusively on the intensities and polarization states of the interfering
beams whereas the sum of the phases is determined solely by the beam frequencies. Varying the
intensity and polarization characteristics of the beams, the relative contributions of the geometric and
dynamical phases can be adjusted. The geometric phase inherent in polarization beating is governed
by a compact expression containing only the Stokes parameters of the interfering waves and can
alternatively be obtained from the individual beam intensities and the amplitude of the intensity beats.
We demonstrate both approaches experimentally by using an interferometer with a fast detector and a
specific polarimetric arrangement. Polarization beating has a unique character that the geometric and
dynamical phases are entangled, i.e. variation in one unavoidably leads to a change in the other. Our
work expands geometric phases into a new domain and offers important novel insight into the role of
polarization in interference of electromagnetic waves.

1. Introduction

Beatingis a temporal interference phenomenon in which waves of different frequencies form a superposition
with periodically varying characteristics. The effect is often encountered in the field of acoustics but also exists in
the context of light waves [1], e.g. in laser mode locking [2], heterodyne detection [3], frequency stabilization

[4, 5], and optical velocimetry [6]. In addition, electro-optic and acousto-optic modulators create frequency
shifts enabling beating of light waves observable with modern detectors [7, 8]. In electromagnetic optics,
however, not only does the intensity experience beating but also (or only) the polarization state may vary
periodically giving rise to the effect of polarization beating [9, 10].

The Pancharatnam—Berry geometric phase emerges when the polarization state of light traces out a closed
in-phase loop on the Poincaré sphere [11-13]. The phase is caused by the geometry of the curved polarization
space and is equal to half the solid angle subtended by the polarization trajectory. This remarkable result, first
formulated in 1956 by Pancharatnam [14], has been the subject of extensive research [11, 15] after Berry
discovered a topological phase that appears in dynamical quantum systems [16] and demonstrated its similarity
with Pancharatnam’s optical phase [17, 18]. However, earlier studies in optics have focused on the geometric
phase in the spatial domain when light traverses a sequence of optical elements, or when photons are made to
complete a series of changes in their propagation directions (spin-redirection phase) [19-24]. Very recently, the
geometric phase was assessed in the context of surface plasmon waves [25] and Young’s double-pinhole
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experiment, where interfering electromagnetic fields emanating from the apertures form a spatially periodic
polarization pattern [26]. The notion of Pancharatnam—Berry phase also appears extensively in connection of
the so-called geometric phase metasurfaces [27-29].

In this paper, we consider the Pancharatnam—Berry phase in the time domain and in a completely new
context, namely polarization beating of two monochromatic electromagnetic beams of different frequencies.
During a single beating period, the normalized Poincaré vector is shown to traverse a closed circular loop on the
Poincaré sphere leading to a geometric phase which is in a simple manner connected to the Stokes parameters of
the interfering beams. We further show that the phase can alternatively be found by considering the individual
beam intensities and the amplitude of the intensity beats. Both methods are demonstrated experimentally. The
geometric phase in polarization beating depends only on the intensities and polarization states of the interfering
beams, while the sum of the geometric and dynamical phase is solely determined by the beam frequencies. The
beating of vector light waves therefore features a fundamental entangled character of the geometric and
dynamical phases. This novel property allows one to adjust either of the two phases via the intensities and the
polarization states of the waves, which may have practical consequences in electromagnetic interferometry and
other phase-sensitive measurement techniques. In general, our work reveals a new, unexpected phase structure
pertaining to the temporal interference of vector light beams.

2. Temporal electromagnetic interference

We begin by examining the temporal interference of two monochromatic (deterministic) electromagnetic
beams of different frequencies, taken to propagate along the z axis. The fields can be written as

Em(t) = Emexp(_iwmt)) m € {1’ 2}) (1)

where w,, is an angular frequency and ¢ refers to time. The vector E,, = [E,, , E,,,|" is the electric field
amplitude composed of the transverse x and y components E,,, ,, E,,, , and T denotes the transpose. Above, the
explicit dependency on the spatial coordinate was dropped as we consider the fields at a fixed point. The
superposition of the two monochromatic beams can be expressed in the form

Exexp(iAwt/2) + E,, exp (—iAwt/Z)]

Ey, exp(iAwt/2) + E,, exp(—iAwt/2) )

E(t) = E(t) + Ex(1) = eXP(—iwl‘)[
where Aw = w, — w; (Weassume w, > wy)and w = (w; + w,) /2 are the frequency difference and the average
frequency, respectively.

The traditional (instantaneous) Stokes parameters of the superposition are given in terms of the components
of E(t) as

So(t) = EX(1)Ex (1) + EJ()E, (1), (3a)
Si(t) = EX(H)Ex (t) — Ef()E, (1), (3b)
S,(t) = EX(DE, (1) + Ef()E, (1), (3c)
S3(t) = i[E(1)Ex (1) — EX(E, (1], (3d)

where the asterisk denotes the complex conjugate. The first parameter, So(#), is the instantaneous intensity of the
field, while the other three, S;(), S,(¢), and S5(#), characterize its time-varying polarization state [30, 31].
Substituting from equation (2) into equations (3a)—(3d), the Stokes parameters of the total field become

Su(t) = S, + 8! + 2R[S, exp(—iAwt)], n € {0,..., 3}, (4)

where fR stands for the real part. The terms S, and S,/ denote the Stokes parameters of the individual beams
E,(¢) and E,(¢), respectively, whereas the (complex) quantities S, are

So=E\Eyx + EEy s (5a)
S =E*E, —EYE,, (50)
S, =EEy +E'E ., (5¢)
Sy = (B By x — Ef\Eay). (5d)

The intensity-normalized versions of these quantities are of the form

Tn = Sﬂ , hE {03~--7 3} (6)
\/S(;S(;/

The quantities in equations (5a)—(54) are analogous to the two-point Stokes parameters introduced for random
light beams and discussed, e.g. in [32, 33] but evaluated here between two deterministic fields.
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Inserting S, from equation (6) into (4) leads to

Sp(@) = S, + S/ + 2SS 7] cos [arg(y,) — al, n € {0, ..., 3}, (7)

where arg(z) denotes the argument (phase) of a complex number zand we introduced @ = Awt. Notice that S,
S/, and 7, are independent of time for all n € {0, ..., 3} and the only time dependence is in the c term. The above
result is a temporal electromagnetic interference law for two monochromatic light beams of different
frequencies describing how the interference modulates the intensity and the polarization state. In particular, the
last term in equation (7) indicates that the modulation is sinusoidal at angular frequency Aw and temporal
period T = 27/ Aw. When the frequencies are identical, the modulation vanishes. The modulation may occur
either for intensity or polarization state or for both simultaneously, depending on the polarization states of the
constituent beams as expressed by 7,,, n € {0, ..., 3}, whose magnitudes specify the modulation amplitudes. We
refer to this periodic temporal variation as beating of electromagnetic waves or, especially, polarization beating if
the effect takes place for the polarization state. Notice that the beating of S, (), S>(x), and S5(«x) does not
necessarily indicate a temporal variation of the polarization state. In particular, if the polarization states of the
interfering beams are identical, some or all of the polarization-state Stokes parameters may vary periodically
with time but the related polarization state remains invariant. More precisely, the intensity-normalized Stokes
parameters, s, = S,(«)/So(ex), withn € {1,2, 3}, are constant and only the intensity exhibits beating. We remark
that electromagnetic interference laws analogous to equation (7), but in the context of random light, have been
considered earlier [9, 10, 34, 35].

3. Pancharatnam—-Berry phase in temporal interference

Polarization beating of two monochromatic light waves leads to the generation of Pancharatnam—Berry
geometric phase between the total fields separated by the time period T. In this section, we derive an expression
for this phase in terms of the polarization-state and intensity information of the interfering beams. We also show
that, alternatively, the phase is obtained by measuring the individual beam intensities and the amplitude of the
intensity beating.

3.1. Polarization path analysis
Equation (7) implies directly that the polarization state of the superposition field is a periodic function of v.
Accordingly, the Poincaré unit vector [30, 31]

. P $1S $2S §3S

Pla) = 2@ _ 815(D) + 8:5() + 8:55() ®)

S 0 (Oé) S 0 (Oé)

which specifies the instantaneous polarization state, is also periodic. Here P(«) is the unnormalized Poincaré
vector and §,,, 1 € {1, 2, 3}, are the orthogonal unit vectors in the polarization space defined by the Poincaré
sphere depicted in figure 1. Making use of equations (7) and (8), the unit vector P(a) can be expressed as

P/ + P” + 2./5,S) [R(y)cos a + T(y)sina]
S!+ S! + 2:/S08¢ [R (o) cos o + T(yo)sinal

P(a) = ©)
where P’ and P” are the Poincaré vectors of the individual beams, v = §;7; + 8,7, + 837;,and J denotes the
imaginary part. The above equation gives an explicit expression for the periodic path that the Poincaré unit
vector traces on the Poincaré sphere when two monochromatic electromagnetic beams interfere. If the
denominator of equation (9) is zero at some point, P(v) is undefined. This corresponds to a circumstance in
which the interfering beams are in the same state of polarization and no polarization beating takes place. This
situation is excluded from the following analysis.

The periodic in-phase change in the polarization state gives rise to a Pancharatnam—Berry phase whose
magnitude is equal to halfthe solid angle enclosed by the path of P(«) on the surface of the Poincaré sphere
[12, 13]. Thus the shape of the polarization trajectory given in equation (9) determines the phase generated over
a single beating period. In order to analyze the path of P(c) in more detail, it is necessary to introduce certain
relationships between the quantities presented above. First, it follows at once from the definitions that

Sy = IP'l, S = [P"], (10a)
o2 + A = 2. (10b)
Second, use of equations (9)—(10b), the fact that |[P(a)| = 1, and the uniqueness of the Fourier-series
representation yield the following four relations
PP =2y — 1, (11a)
v (P + P) = (S5 + S, (11b)
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Figure 1. Poincaré unit sphere in the polarization space formed by the three Stokes parameters S;, S,, and S;. The sphere is centered at
the origin and the basis vectors §;, §,, and §; are orthonormal. Each point on the sphere uniquely specifies a polarization state as
represented by the normalized Poincaré vector P(a). Linear and spherical polarization states are located on the equator and the poles,
respectively, while elliptical polarization states are distributed between them.

Figure 2. Notation used in deriving the Pancharatnam—Berry phase associated with polarization beating. The blue line corresponds to
the circular path of P(«), while C = (P, + P,) /2 denotes the center point of the circle. The angle between the two vectors is {(cv) and
his the height of the spherical cap.

¥ =7 (11¢)
RO - I(y) = R(0)T(0), (11d)

where the terms P’ and P correspond to the normalized Poincaré vectors of the constituent beams.

In the following we show that P(«v) forms a circle on the Poincaré sphere as a function of v. Such a property
can be proven by finding a constant vector C which satisfies C - P(a) = |C| cos[€ ()] = constant, where &(av)
is the angle between C and P(«). As llustrated in figure 2, geometrically this requires that £(cr) remains
unchanged as av varies. As will be shown, a vector that satisfies the above condition is

1 A ~
C= E(Pl + Py), (12)

where P, = P [arg(y)]; p,="P [arg(y,) £ 7], and the sign is chosen such that the argument of P remains within
the half-open interval [0, 27). Thus, Cis located halfway between the points P, and P,. On substituting
equation (9) into (12) and employing equations (10a) and (11a), we may express C in the form

4



10P Publishing

New J. Phys. 21 (2019) 083030 A Hannonen et al

_ @ PO+ S = 4580 [RORGo) + I TGl

c |PI _ P//|2

13)

To evaluate the dot product, we make use of equations (13) and (9)—(1 1¢). After straightforward steps, we find
that

(Sy — S¢)?

C-Pl) = IP/ _ P//|2 >

(14)
which is indeed constant. Hence, it is clear that the points of P(«)arelocated on acircle, at least when C = 0

and P’ = P hold. In view of equation (12), C is the center point of the circle and P, and P, form a pair of
antipodal points. In the case of C = 0, itis possible to show that the path traced by the Poincaré unit vector
becomes a great circle (as seen also from figure 2 in the limit C — 0) and equation (14) remains valid. In the
situation when P’ = P”, the polarization states of the interfering beams are identical and no polarization beating
takes place; the case was already excluded.

So far we have shown that the points of P(v) are located on a circle on the Poincaré sphere. To prove thata
closed path is obtained we first notice that according to equation (8) the vector P(«)is continuous. Additionally,
we should show that all the values of o are mapped to different points, i.e. that P(a) is a bijective function from
the set [0, 27) to the points of the circle. To prove such a property, we must demonstrate that the equality
P(ay) = P(ay) holdsif, and onlyif, & = a,. Onassuming that P(a;) = P(ay)itat once follows from
|P(a)] = 1that P(ey) - P(a)) = 1. Inserting from equation (9) and invoking equations (10a)—(1 1), we find the
following relationship

(ol — 1) + cos(ay — a)(1 — |yol*) = 0. (15)

This expression is satisfied if || = 1or cos(oy — ) = 1. According to equation (11a), the former condition
leads to the excluded case of identical polarization states of the beams. Consequently, the latter solution must
hold, requiring that a; = av,. As P(cv) is continuous we thus find that every point of the circle is mapped to a
unique value of cv.

According to Pancharatnam’s connection [13, 17], two arbitrary fields E; and E, are in phase when their
superposition has the maximum possible intensity. This corresponds to a situation where R(E} - E,) > 0and
J(EY - E;) = 0 or,equivalently, arg(E - E; ) = 0. In the present case, at any point on the polarization path we
may write

AlimO[E*(a) - E(a + Aa)] = EX) - E(a) = So(@) > 0, (16)
a—
implying that lima,_.¢arg[E*(c) - E(aw + Aa)] = 0. Hence, when the Poincaré unit vector P(«) traverses
from one point to another, the electric field E(«r) obeys Pancharatnam’s connection and experiences in-phase
evolution.

Now it is possible to derive an expression for the Pancharatnam—Berry geometric phase. By taking the
squared magnitude of C in equation (13) and employing equations (10a)—(114d), the length of vector C turns out
tobe

_ 15— 8l

ICl = / TN
|P" — P”|

17)
The surface area of a spherical dome is A = 27rh, where ris the radius of the sphere and h is the height of the
dome (see figure 2). Since we are considering a unit sphere,r = 1, h = 1 — |C|, and the solid angle €2 subtended
by P(«v) is simply equal to the surface area of the cap. The geometric phase, |pppl = €2/2, related to the in-phase
polarization evolution over a single beating period therefore takes the form

1S5 — Sol

) 18
|P/ _ P//l ( )

|pppl =7 — 7
In accordance with the definition of Pancharatnam, the phase is positive when P(«) traces the path
counterclockwise and negative otherwise [14]. The magnitude of the geometric phase is determined by the
intensities and the polarization states of the two beams. For example, we see from equation (18) that if the
intensities of the two beams are equal, then independently of the polarization states, |¢p5| = 7 and the
polarization path is a great circle. In general, when the intensities are unequal, the magnitude of ¢pg can take on
any value between 0 and 7.

3.2.Phase evaluation

Next we show that an alternative way to obtain the Pancharatnam—Berry phase over a single beating period is in
terms of the intensities of the interfering beams and || specifying the amplitude of the intensity beating. The
beating period from ty to ty + T'is divided into N small intervals with N being a large integer so that the fields
E(t,),t, = to + nT/Nwithn € {0, ..., N}, undergo a polarization change with E(t;) and E(ty) having identical
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polarization states. The total phase difference between E(fy) and E(ty) is given by arg[E*(¢tx) - E(to)] [13, 14]. In
general, the phase difference consists of two parts: one is a dynamical phase, Gayn> Whereas the other is the
Pancharatnam—Berry geometric phase, ¢pg. From this point of view, it is possible to evaluate ¢pgp by determining
how the phase of the electric field is acquired from the incremental parts arg[E*(t,,) - E(¢,_1)].

We begin by writing the electric fields as E(,,) = exp(—it),,)E'(#,,), where 1), are phases chosen such that
E/(t,) obeys Pancharatnam’s connection [13, 17], i.e. arg[E'*(¢,,) - E'(t,,_1)] = Oforalln€ {1, ..., N}.
Consequently, the geometric phase can be expressed as

¢pp = arg[E*(tn) - E(t))] — Pyyn> (19)

where
N
Payn = »_ arg[E*(t,) - E(tn-— )] = ¥n — . (20)
n=1

Making use of equation (2) and the fact that the beating periodis T = 27/Awand hence t,, = t, + 27n/AwN,
withn € {0, ..., N}, we obtain the total phase as

arg[E¥(ty) - E(t)] = w(ty — to) £, ey

where tyy — ty = Tand £7 = arg(—1). Analogously, after some algebra we find that
arg[EX(t,) - E(t,_ )] = w(t, — t,_1) + arg{Sé exp(_Tm) + S exp (%)

2
+ 2S6S¢ |olcos [arg (o) — Awty — oy 1] . (22)
N N
On substituting equations (21) and (22) into (19) and (20), respectively, the Pancharatnam—Berry geometric
phase incurred over one beating period can be expressed as

N . .
=47 — Y argd S/ ex (i)—i—S”ex (1_7r)
Gpp Z g{ 0 €Xp N o ¢Xp N

n=1

+ 2S48 1Yol cos [arg (Y0) — Awty — 2mn + 1]}, (23)
N N
where the sign of 7 is chosen to conform to the restriction |¢p5| < 7. Because the sum is over the whole beating
period, all terms inside the cosine function that are independent of # can be omitted. When the summation is
performed numerically for large N, the geometric phase obtained is seen to be fully consistent with equation (18).
The parameter 7, in the above equation is directly related to the amplitude of the intensity beating. According to
equation (7), withn = 0, we find that

So(t) — (S¢ + S
70l cos [arg(y0) — a(t)] = o(®) (/o 0)

The geometric phase can thus be extracted from equation (23) by measuring Sj and S§ and determining ||
from the temporal intensity modulation via equation (24).

Equations (21) and (23) (or (18)) show that all information on the length of the beating period is in the
dynamical phase. We also find the characteristic feature of the geometric phase inherent in polarization beating.
More precisely, as evidenced by equation (18) the Pancharatnam—Berry phase is determined exclusively by the
intensities and polarization states of the interfering beams while, according to equation (21), the sum of the
geometric and dynamical phases depends on the wave frequencies only. Hence, a change in the geometric phase
necessarily leads to an alteration of the dynamical phase. As far as we know, such an entanglement of geometric
and dynamical phases has not been reported in other contexts.

24

4. Experiment

In this section, we consider the measurement of the Pancharatnam—Berry phase in polarization beating by
utilizing the interferometer illustrated in figure 3. A monochromatic, x-polarized beam (achieved by polarizer P)
from a diode-pumped solid state laser (wavelength 532 nm) is directed to an acousto-optic deflector (AOD,
IntraAction AOD-150), set to operate at 100 MHz. Along with a beam of the original frequency wyin arm 1, the
deflector creates abeam of a shifted frequency wy + w’inarm 2. In order to obtain the maximum diffraction
efficiency for the frequency-shifted field, the input-beam incidence on the AOD is at the Bragg angle. The
polarization state of the beam in arm 2 may be rotated with a half wave plate (HWP), while the intensity of the
beam in arm 1 can be varied with an adjustable neutral density filter (ND). The optical path lengths traversed by
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M2 s
M1-5: Mirrors

BS: 50:50 beam splitter
P: Polarizer
D HWP: Half wave plate
j SP BS M4 ND: Neutral density filter
—]| S AOD: Acousto-optic deflector
L - s % D: Detector
HWP SP: Spatial filter
AOD ND = ST1-4: Stokes-parameter
Laser —] measurement elements
Arm1l _ o, Polarizer

- ” N@\ Quarter wave plate
1 Arm 2 ;
P % —J W, + @
X -

M3

Figure 3. Setup for the measurement of the Pancharatnam—Berry phase. Linearly polarized laser light incident on an acousto-optic
deflector generates two monochromatic beams of frequencies wy and wy + w’. Both beams travel equally long optical paths and are
combined with a beam splitter. The intensity of thelight in arm 1 is modified with a neutral density filter, and the linear polarization of
the frequency-shifted beam is rotated with a half wave plate. The superposed beam is spatially filtered and directed onto a fast detector
where the temporal variation of the intensity is recorded. Removable mirror M5 is used to guide the combined beam to a Stokes-
parameter measurement system.

both beams are set equal with a movable mirror M2. This is necessary in order to observe the beating effect at the
detector since the AOD induces significant randomness to the frequency-shifted beam, reducing the time
interval over which the two beams correlate. However, by considering equal-time interference, the effect of
reduced temporal coherence is not relevant and the deterministic-field formalism of the previous section can be
employed. Both beams are combined with a nonpolarizing 50:50 beam splitter and directed towards two
different detection systems selectable with a removable mirror M5.

In the first measurement system, the beams enter a spatial filtering system (SP) after which they are directed
(with lenses) to a high-speed optical detector (D, Newport 818-BB-21) attached to an oscilloscope which records
the intensity beating. The spatial filtering is necessary since, in addition to reduced temporal coherence, the
AOD decreases the transverse spatial coherence as well. Consequently, the intensity beats at different positions
on the detector would not be in phase and the temporal intensity modulation could not be accurately measured.

The second measurement system is used to determine the Stokes parameters using four polarization
elements (ST1-ST4) and a CCD camera. The elements consist of combinations of polarizers and quarter wave
plates. The polarizer orientations with respect to the polarization direction of the input beam (x axis) are set to
fp = (0°, +90°, +45°, +45°), while the quarter wave plate fast-axis angles are dqwp = (+45°, —45°, +90°,
+90°). The element ST4 is flipped and the beams hit the quarter wave plate first. While the orientations of the
wave plates in the other three elements do not affect the intensity measurement, they are included to compensate
the intensity losses in the fourth element. Denoting the intensity distribution recorded with a CCD camera after
theelement STnby I,,(f), n € {1, ..., 4}, the Stokes parameters are obtained as [36]

So(t) = L(t) + L(?), (25a)
Si(1) = h(t) — L(1), (25b)
S2(t) = 2L(¢) — L(t) — L(b), (25¢)
S3(t) = 214(t) — L(t) — L(1), (25d)

which are evaluated at each camera pixel.

4.1. Experimental results

First we assess the change in the Pancharatnam—Berry geometric phase when the polarization state of the
frequency-shifted beam is rotated and the intensity ratio of the two beams is held at an arbitrarily chosen value
S¢/S{ = 2.10. We start with M5 removed and the beams having orthogonal (linear) polarization states
corresponding to the HWP fast axis set to § = 45° with respect to the x axis. The intensities S) and S’ are
measured by blocking the beam in the other arm, followed by recording the temporal intensity modulation,
So(t), when both beams are allowed simultaneously to the detector. After the reduction of the background noise
from the measured data, we subject the beating signal to a sine fitting procedure and extract |y,| in accordance
with equation (24). This is then used to calculate the geometric phase from equation (23) with N = 200. We
repeat the measurements several times and obtain the average value ¢pg = 0.6417 % 0.0017, where the error is
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Figure 4. (a) Measured Pancharatnam—Berry phases when the linear polarization state of the frequency-shifted beam rotates but the
intensity ratio of the interfering beams is fixed at S§ /S¢ = 2.10. The horizontal axis shows the fast-axis angle 6 of the HWP inarm 2.
The circles and triangles illustrate the geometric phases obtained with equations (18) and (23), respectively, and the bars indicate the
related errors. The solid line gives the theoretical value of the phase for an ideal wave plate. (b) An example of the measured intensity
beating signal (dashed curve) and the applied sinusoidal fitting (solid curve) at @ = 9°.
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Figure 5. (a) Measured Pancharatnam—Berry phases when the intensity ratio S/ /S; of the interfering beams varies but the
polarization states are fixed such that the HWP orientation isat @ = 30°. The circles and triangles show the phases computed with
equations (18) and (23), respectively, whereas the bars denote the errors. The solid line illustrates the theoretical value. (b) An example
of the measured temporal beating signal and the sine function fitting for S /SJ = 1.36.

estimated via standard deviation. Next we use the second measurement system, with mirror M5 in place, to
measure the Stokes parameters for the individual beams. Using the CCD array camera, we record the spatial S
and S distributions as well as the Poincaré vectors P’ and P”’ at pixels where S; /S] = 2.10. The Pancharatnam—
Berry phase is then obtained from equation (18). Averaging the phases over multiple points gives ¢pg = 0.6347 £
0.0117, where the error is again obtained from standard deviation.

The above procedure is applied to a case in which the linear polarization of the beam in arm 2 is tilted by
rotating the HWP from 6 = 45° (orthogonal polarizations) to § = 0° (nearly parallel polarizations) in steps of
9°. The related geometric phases obtained with equations (18) and (23) are shown in figure 4(a) with circles and
triangles, respectively, along with a representative example of the intensity beating (dashed curve) and the
sinusoidal fitting (solid curve) in figure 4(b). In the latter figure (and in figure 5(b)), the extra high-frequency
variations originate from weak, fast intensity oscillations (520 MHz) of the laser diode we used. In figure 4(a)
the solid curve gives the theoretical phase behavior when an ideal wave plate rotates the polarization. We
immediately see that the two experimental methods are in good agreement with each other and with the theory,
especially when the polarization states approach orthogonal situation. The differences are more noticeable when
the polarization states are (nearly) parallel, a case where even a small change in || can significantly alter the
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estimate for the geometric phase. As an example, setting Sj /S;’ = 2.10 and employing equation (23) with
[%] = 0.98 and |y,| = 0.99 implies ¢pg = 0.1147and ¢pg = 0.062, respectively.

In the second experiment, the polarization state of the beam in arm 2 is fixed with the HWP setat § = 30°
while the intensity ratio of the beams is changed with the ND filter in arm 1. We modify the ratio S; /S, between
0.69 and 2.32 and measure the geometric phase in the two ways described above. The results are shown in
figure 5(a) where again the circles and triangles correspond to the phases obtained with equations (18) and (23),
respectively, and the solid curve depicts the theoretical value. Figure 5(b) represents an example of the measured
beating signal (dashed curve) for the intensity ratio Sy /Sy’ = 1.36 as well as the associated fitting (solid curve).
Notice that for the various ND filter strengths, we considered the CCD pixels at which 0.69 < S; /S < 2.32
and used these positions to compute the Pancharatnam—Berry phase. The set of dots in figure 5(a) refers to these
pixel-wise phase values (for clarity only every tenth value was retained in the figure). We see that, in general, the
two experimental methods are in good agreement with each other and with the theoretical prediction.
Deviations from the theoretical value are observed to slightly increase with increasing intensity difference.

5. Conclusions

We studied theoretically and experimentally the Pancharatnam—Berry phase associated with the polarization
beating produced by the interference of two monochromatic electromagnetic optical beams of different
frequencies—a context where a geometric phase has not been considered before. The geometric phase originates
from the periodicity of the polarization Stokes parameters whose normalized Poincaré vector was proven to
traverse a closed circular trajectory on the Poincaré sphere during a single beating cycle. The related field
variations were confirmed to satisfy Pancharatnam’s connection over the path. The Pancharatnam—Berry phase,
obtained as half the solid angle covered by the polarization loop on the Poincaré sphere, assumed a compact
form in terms of the intensity and polarization information of the interfering beams. In addition, we
demonstrated that the geometric phase can equally be evaluated from the intensities of the individual beams and
the amplitude of the intensity beating. The validities of the two methods to extract the Pancharatnam—Berry
phase were verified experimentally using an interferometer with a fast detector and a specific polarimetric setup.
Akey finding of our work was that while the total phase difference across a beating period depends only on the
frequencies of the interfering beams, the geometric and dynamical phases comprising the phase difference

both depend on their polarization states and the intensities. Thus, contributions of the geometric and dynamical
phases can be adjusted by varying the intensities and polarization characteristics of the beams. A change in

one phase leads to a change in the other indicating an entangled nature of the two, a feature characteristic to
polarization beating. Our results offer new foundational insight into geometric phases and the role of
polarization in temporal electromagnetic interference. In particular, our work reveals an extraordinary

rich phase structure connected to a seemingly simple physical phenomenon of beating.
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