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Abstract
Beating is a simple physical phenomenon known for long in the context of soundwaves but remained
surprisingly unexplored for light waves.When twomonochromatic optical beams of different
frequencies and states of polarization interfere, the polarization state of the superpositionfield exhibits
temporal periodic variation—polarization beating. In this work, we reveal a foundational and elegant
phase structure underlying such polarization beating.We show that the phase difference over a single
beating period decomposes into the Pancharatnam–Berry geometric phase and a dynamical phase of
which the former depends exclusively on the intensities and polarization states of the interfering
beamswhereas the sumof the phases is determined solely by the beam frequencies. Varying the
intensity and polarization characteristics of the beams, the relative contributions of the geometric and
dynamical phases can be adjusted. The geometric phase inherent in polarization beating is governed
by a compact expression containing only the Stokes parameters of the interferingwaves and can
alternatively be obtained from the individual beam intensities and the amplitude of the intensity beats.
We demonstrate both approaches experimentally by using an interferometer with a fast detector and a
specific polarimetric arrangement. Polarization beating has a unique character that the geometric and
dynamical phases are entangled, i.e. variation in one unavoidably leads to a change in the other. Our
work expands geometric phases into a newdomain and offers important novel insight into the role of
polarization in interference of electromagnetic waves.

1. Introduction

Beating is a temporal interference phenomenon inwhichwaves of different frequencies form a superposition
with periodically varying characteristics. The effect is often encountered in the field of acoustics but also exists in
the context of light waves [1], e.g. in lasermode locking [2], heterodyne detection [3], frequency stabilization
[4, 5], and optical velocimetry [6]. In addition, electro-optic and acousto-opticmodulators create frequency
shifts enabling beating of light waves observable withmodern detectors [7, 8]. In electromagnetic optics,
however, not only does the intensity experience beating but also (or only) the polarization statemay vary
periodically giving rise to the effect of polarization beating [9, 10].

The Pancharatnam–Berry geometric phase emerges when the polarization state of light traces out a closed
in-phase loop on the Poincaré sphere [11–13]. The phase is caused by the geometry of the curved polarization
space and is equal to half the solid angle subtended by the polarization trajectory. This remarkable result,first
formulated in 1956 by Pancharatnam [14], has been the subject of extensive research [11, 15] after Berry
discovered a topological phase that appears in dynamical quantum systems [16] and demonstrated its similarity
with Pancharatnam’s optical phase [17, 18]. However, earlier studies in optics have focused on the geometric
phase in the spatial domainwhen light traverses a sequence of optical elements, or when photons aremade to
complete a series of changes in their propagation directions (spin-redirection phase) [19–24]. Very recently, the
geometric phase was assessed in the context of surface plasmonwaves [25] andYoung’s double-pinhole
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experiment, where interfering electromagnetic fields emanating from the apertures form a spatially periodic
polarization pattern [26]. The notion of Pancharatnam–Berry phase also appears extensively in connection of
the so-called geometric phasemetasurfaces [27–29].

In this paper, we consider the Pancharatnam–Berry phase in the time domain and in a completely new
context, namely polarization beating of twomonochromatic electromagnetic beams of different frequencies.
During a single beating period, the normalized Poincaré vector is shown to traverse a closed circular loop on the
Poincaré sphere leading to a geometric phase which is in a simplemanner connected to the Stokes parameters of
the interfering beams.We further show that the phase can alternatively be found by considering the individual
beam intensities and the amplitude of the intensity beats. Bothmethods are demonstrated experimentally. The
geometric phase in polarization beating depends only on the intensities and polarization states of the interfering
beams, while the sumof the geometric and dynamical phase is solely determined by the beam frequencies. The
beating of vector light waves therefore features a fundamental entangled character of the geometric and
dynamical phases. This novel property allows one to adjust either of the two phases via the intensities and the
polarization states of thewaves, whichmay have practical consequences in electromagnetic interferometry and
other phase-sensitivemeasurement techniques. In general, our work reveals a new, unexpected phase structure
pertaining to the temporal interference of vector light beams.

2. Temporal electromagnetic interference

Webegin by examining the temporal interference of twomonochromatic (deterministic) electromagnetic
beams of different frequencies, taken to propagate along the z axis. Thefields can bewritten as

w= - Î( ) ( ) { } ( )t t mE E exp i , 1, 2 , 1m m m

whereωm is an angular frequency and t refers to time. The vector = [ ]E EE ,m m x m y, ,
T is the electric field

amplitude composed of the transverse x and y componentsEm,x,Em,y andTdenotes the transpose. Above, the
explicit dependency on the spatial coordinate was dropped as we consider the fields at afixed point. The
superposition of the twomonochromatic beams can be expressed in the form

w
w w
w w

= + = -
D + - D
D + - D

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )t t t t

E t E t

E t E t
E E E exp i

exp i 2 exp i 2

exp i 2 exp i 2
, 2

x x

y y
1 2

1, 2,

1, 2,

whereΔω=ω2−ω1 (we assumeω2>ω1) and w w w= +( ) 21 2 are the frequency difference and the average
frequency, respectively.

The traditional (instantaneous) Stokes parameters of the superposition are given in terms of the components
ofE(t) as

* *= +( ) ( ) ( ) ( ) ( ) ( )S t E t E t E t E t a, 3x x y y0

* *= -( ) ( ) ( ) ( ) ( ) ( )S t E t E t E t E t b, 3x x y y1

* *= +( ) ( ) ( ) ( ) ( ) ( )S t E t E t E t E t c, 3x y y x2

* *= -( ) [ ( ) ( ) ( ) ( )] ( )S t E t E t E t E t di , 3y x x y3

where the asterisk denotes the complex conjugate. Thefirst parameter, S0(t), is the instantaneous intensity of the
field, while the other three, S1(t), S2(t), and S3(t), characterize its time-varying polarization state [30, 31].
Substituting from equation (2) into equations (3a)–(3d), the Stokes parameters of the totalfield become

 w= ¢ +  + - D Î ¼( ) [ ( )] { } ( )RS t S S t n2 exp i , 0, , 3 , 4n n n n

whereR stands for the real part. The terms ¢Sn and Sn denote the Stokes parameters of the individual beams
E1(t) andE2(t), respectively, whereas the (complex) quantities n are

* * = + ( )E E E E a, 5x x y y0 1, 2, 1, 2,

* * = - ( )E E E E b, 5x x y y1 1, 2, 1, 2,

* * = + ( )E E E E c, 5x y y x2 1, 2, 1, 2,

* * = -( ) ( )E E E E di . 5y x x y3 1, 2, 1, 2,

The intensity-normalized versions of these quantities are of the form


g =

¢ 
Î ¼{ } ( )

S S
n, 0, , 3 . 6n

n

0 0

The quantities in equations (5a)–(5d) are analogous to the two-point Stokes parameters introduced for random
light beams and discussed, e.g. in [32, 33] but evaluated here between two deterministic fields.
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Inserting n from equation (6) into (4) leads to

a g g a= ¢ +  + ¢  - Î ¼( ) ∣ ∣ [ ( ) ] { } ( )S S S S S n2 cos arg , 0, , 3 , 7n n n n n0 0

where arg(z) denotes the argument (phase) of a complex number z andwe introducedα=Δωt. Notice that ¢Sn,
Sn , and γn are independent of time for all nä {0,K, 3} and the only time dependence is in theα term. The above

result is a temporal electromagnetic interference law for twomonochromatic light beams of different
frequencies describing how the interferencemodulates the intensity and the polarization state. In particular, the
last term in equation (7) indicates that themodulation is sinusoidal at angular frequencyΔω and temporal
periodT=2π/Δω.When the frequencies are identical, themodulation vanishes. Themodulationmay occur
either for intensity or polarization state or for both simultaneously, depending on the polarization states of the
constituent beams as expressed by γn, nä {0,K, 3}, whosemagnitudes specify themodulation amplitudes.We
refer to this periodic temporal variation as beating of electromagnetic waves or, especially, polarization beating if
the effect takes place for the polarization state. Notice that the beating of S1(α), S2(α), and S3(α) does not
necessarily indicate a temporal variation of the polarization state. In particular, if the polarization states of the
interfering beams are identical, some or all of the polarization-state Stokes parametersmay vary periodically
with time but the related polarization state remains invariant.More precisely, the intensity-normalized Stokes
parameters, sn=Sn(α)/S0(α), with nä {1, 2, 3}, are constant and only the intensity exhibits beating.We remark
that electromagnetic interference laws analogous to equation (7), but in the context of random light, have been
considered earlier [9, 10, 34, 35].

3. Pancharatnam–Berry phase in temporal interference

Polarization beating of twomonochromatic light waves leads to the generation of Pancharatnam–Berry
geometric phase between the totalfields separated by the time periodT. In this section, we derive an expression
for this phase in terms of the polarization-state and intensity information of the interfering beams.We also show
that, alternatively, the phase is obtained bymeasuring the individual beam intensities and the amplitude of the
intensity beating.

3.1. Polarization path analysis
Equation (7) implies directly that the polarization state of the superposition field is a periodic function ofα.
Accordingly, the Poincaré unit vector [30, 31]

a
a
a

a a a
a

= =
+ +ˆ ( ) ( )

( )
ˆ ( ) ˆ ( ) ˆ ( )

( )
( )

S

S S S

S
P

P s s s
, 8

0

1 1 2 2 3 3

0

which specifies the instantaneous polarization state, is also periodic. HereP(α) is the unnormalized Poincaré
vector and ŝn, nä {1, 2, 3}, are the orthogonal unit vectors in the polarization space defined by the Poincaré
sphere depicted infigure 1.Making use of equations (7) and (8), the unit vector aˆ ( )P can be expressed as

g g
a

a a

g a g a
=

¢ +  + ¢  +

¢ +  + ¢  +
ˆ ( )

[ ( ) ( ) ]

[ ( ) ( ) ]
( )

R I

R I

S S

S S S S
P

P P 2 cos sin

2 cos sin
, 90 0

0 0 0 0 0 0

where ¢P and ¢¢P are the Poincaré vectors of the individual beams, g g g g= + +ˆ ˆ ˆs s s1 1 2 2 3 3, and I denotes the
imaginary part. The above equation gives an explicit expression for the periodic path that the Poincaré unit
vector traces on the Poincaré sphere when twomonochromatic electromagnetic beams interfere. If the
denominator of equation (9) is zero at some point, aˆ ( )P is undefined. This corresponds to a circumstance in
which the interfering beams are in the same state of polarization andno polarization beating takes place. This
situation is excluded from the following analysis.

The periodic in-phase change in the polarization state gives rise to a Pancharatnam–Berry phase whose
magnitude is equal to half the solid angle enclosed by the path of aˆ ( )P on the surface of the Poincaré sphere
[12, 13]. Thus the shape of the polarization trajectory given in equation (9) determines the phase generated over
a single beating period. In order to analyze the path of aˆ ( )P inmore detail, it is necessary to introduce certain
relationships between the quantities presented above. First, it follows at once from the definitions that

¢ = ¢  = ¢¢∣ ∣ ∣ ∣ ( )S S aP P, , 100 0

gg + =∣ ∣ ∣ ∣ ( )b2. 100
2 2

Second, use of equations (9)–(10b), the fact that a =∣ ˆ ( )∣P 1, and the uniqueness of the Fourier-series
representation yield the following four relations

g¢ ¢¢ = -ˆ · ˆ ∣ ∣ ( )aP P 2 1, 110
2

g g¢ + ¢¢ = ¢ + · ( ) ( ) ( )S S bP P , 110 0 0
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g g= ( )c, 112
0
2

g g g g=( ) · ( ) ( ) ( ) ( )R I R I d, 110 0

where the terms ¢P̂ and ¢¢P̂ correspond to the normalized Poincaré vectors of the constituent beams.
In the followingwe show that aˆ ( )P forms a circle on the Poincaré sphere as a function ofα. Such a property

can be proven by finding a constant vectorCwhich satisfies a x a= =· ˆ ( ) ∣ ∣ [ ( )]C P C cos constant, where ξ(α)
is the angle betweenC and aˆ ( )P . As illustrated infigure 2, geometrically this requires that ξ(α) remains
unchanged asα varies. Aswill be shown, a vector that satisfies the above condition is

= +( ˆ ˆ ) ( )C P P
1

2
, 121 2

where g=ˆ ˆ [ ( )]P P arg1 0 , g p= ˆ ˆ [ ( ) ]P P arg2 0 , and the sign is chosen such that the argument of P̂ remains within

the half-open interval [0, 2π). Thus,C is located halfway between the points P̂1 and P̂2. On substituting
equation (9) into (12) and employing equations (10a) and (11a), wemay expressC in the form

Figure 1.Poincaré unit sphere in the polarization space formed by the three Stokes parameters S1, S2, and S3. The sphere is centered at
the origin and the basis vectors ŝ1, ŝ2, and ŝ3 are orthonormal. Each point on the sphere uniquely specifies a polarization state as
represented by the normalized Poincaré vector aˆ ( )P . Linear and spherical polarization states are located on the equator and the poles,
respectively, while elliptical polarization states are distributed between them.

Figure 2.Notation used in deriving the Pancharatnam–Berry phase associatedwith polarization beating. The blue line corresponds to
the circular path of aˆ ( )P , while = +( ˆ ˆ )C P P 21 2 denotes the center point of the circle. The angle between the two vectors is ξ(α) and
h is the height of the spherical cap.
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g gg g
=

¢ +  ¢ +  - ¢  +
¢ - 

( )( ) [ ( ) ( ) ( ) ( )]
∣ ∣

( )R R I IS S S S
C

P P

P P

4
. 13n0 0 0 0 0

2

To evaluate the dot product, wemake use of equations (13) and (9)–(11c). After straightforward steps, wefind
that

a =
¢ - 
¢ - 

· ˆ ( ) ( )
∣ ∣

( )S S
C P

P P
, 140 0

2

2

which is indeed constant. Hence, it is clear that the points of aˆ ( )P are located on a circle, at least when ¹C 0
and ¢ ¹ ¢¢P P hold. In view of equation (12),C is the center point of the circle and P̂1 and P̂2 form a pair of
antipodal points. In the case ofC=0, it is possible to show that the path traced by the Poincaré unit vector
becomes a great circle (as seen also from figure 2 in the limit C 0) and equation (14) remains valid. In the
situationwhen ¢ = ¢¢P P , the polarization states of the interfering beams are identical and no polarization beating
takes place; the case was already excluded.

So farwe have shown that the points of aˆ ( )P are located on a circle on the Poincaré sphere. To prove that a
closed path is obtainedwe first notice that according to equation (8) the vector aˆ ( )P is continuous. Additionally,
we should show that all the values ofα aremapped to different points, i.e. that aˆ ( )P is a bijective function from
the set [0, 2π) to the points of the circle. To prove such a property, wemust demonstrate that the equality
a a=ˆ ( ) ˆ ( )P P1 2 holds if, and only if,α1=α2. On assuming that a a=ˆ ( ) ˆ ( )P P1 2 it at once follows from
a =∣ ˆ ( )∣P 1 that a a =ˆ ( ) · ˆ ( )P P 11 2 . Inserting from equation (9) and invoking equations (10a)–(11d), we find the

following relationship

g a a g- + - - =(∣ ∣ ) ( )( ∣ ∣ ) ( )1 cos 1 0. 150
2

1 2 0
2

This expression is satisfied if g =∣ ∣ 10 or a a- =( )cos 11 2 . According to equation (11a), the former condition
leads to the excluded case of identical polarization states of the beams. Consequently, the latter solutionmust
hold, requiring thatα1=α2. As aˆ ( )P is continuouswe thusfind that every point of the circle ismapped to a
unique value ofα.

According to Pancharatnam’s connection [13, 17], two arbitrary fieldsE1 andE2 are in phase when their
superposition has themaximumpossible intensity. This corresponds to a situationwhere * >( · )R E E 01 2 and
* =( · )I E E 01 2 or, equivalently, * =( · )E Earg 01 2 . In the present case, at any point on the polarization pathwe

maywrite

* *a a a a a a+ D = = >
aD 

[ ( ) · ( )] ( ) · ( ) ( ) ( )SE E E Elim 0, 16
0

0

implying that * a a a+ D =aD  [ ( ) · ( )]E Elim arg 00 . Hence, when the Poincaré unit vector aˆ ( )P traverses
fromone point to another, the electricfieldE(α) obeys Pancharatnam’s connection and experiences in-phase
evolution.

Now it is possible to derive an expression for the Pancharatnam–Berry geometric phase. By taking the
squaredmagnitude ofC in equation (13) and employing equations (10a)–(11d), the length of vectorC turns out
to be

=
¢ - 
¢ - 

∣ ∣ ∣ ∣
∣ ∣

( )S S
C

P P
. 170 0

The surface area of a spherical dome isA=2πrh, where r is the radius of the sphere and h is the height of the
dome (seefigure 2). Sincewe are considering a unit sphere, r=1, = - ∣ ∣h C1 , and the solid angleΩ subtended
by aˆ ( )P is simply equal to the surface area of the cap. The geometric phase, f = W∣ ∣ 2PB , related to the in-phase
polarization evolution over a single beating period therefore takes the form

f p p= -
¢ - 
¢ - 

∣ ∣ ∣ ∣
∣ ∣

( )S S

P P
. 18PB

0 0

In accordancewith the definition of Pancharatnam, the phase is positive when aˆ ( )P traces the path
counterclockwise and negative otherwise [14]. Themagnitude of the geometric phase is determined by the
intensities and the polarization states of the two beams. For example, we see from equation (18) that if the
intensities of the two beams are equal, then independently of the polarization states, f p=∣ ∣PB and the
polarization path is a great circle. In general, when the intensities are unequal, themagnitude offPB can take on
any value between 0 andπ.

3.2. Phase evaluation
Nextwe show that an alternative way to obtain the Pancharatnam–Berry phase over a single beating period is in
terms of the intensities of the interfering beams and g∣ ∣0 specifying the amplitude of the intensity beating. The
beating period from t0 to t0+T is divided intoN small intervals withN being a large integer so that the fields
E(tn), tn=t0+nT/Nwith nä {0, K, N}, undergo a polarization changewithE(t0) andE(tN)having identical
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polarization states. The total phase difference betweenE(t0) andE(tN) is given by arg[E
*(tN)·E(t0)] [13, 14]. In

general, the phase difference consists of two parts: one is a dynamical phase,fdyn, whereas the other is the
Pancharatnam–Berry geometric phase,fPB. From this point of view, it is possible to evaluatefPB by determining
how the phase of the electric field is acquired from the incremental parts * -[ ( ) · ( )]t tE Earg n n 1 .

We begin bywriting the electric fields as y= - ¢( ) ( ) ( )t tE Eexp in n n , whereψn are phases chosen such that
¢( )tE n obeys Pancharatnam’s connection [13, 17], i.e. *¢ ¢ =-[ ( ) · ( )]t tE Earg 0n n 1 for all nä {1, K, N}.

Consequently, the geometric phase can be expressed as

*f f= -[ ( ) · ( )] ( )t tE Earg , 19NPB 0 dyn

where

*åf y y= = -
=

-[ ( ) · ( )] ( )t tE Earg . 20
n

N

n n Ndyn
1

1 0

Making use of equation (2) and the fact that the beating period isT=2π/Δω and hence tn=t0+2πn/ΔωN,
with nä {0,K,N}, we obtain the total phase as

* w p= - [ ( ) · ( )] ( ) ( )t t t tE Earg , 21N N0 0

where tN−t0=T and±π=arg(−1). Analogously, after some algebrawefind that

* w
p p

g g w
p p

= - + ¢ -
+ 

+ ¢  - D - +

- - ⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

[ ( ) · ( )] ( )

∣ ∣ ( ) ( )

t t t t S
N

S
N

S S t
n

N N

E Earg arg exp
i

exp
i

2 cos arg
2

. 22

n n n n1 1 0 0

0 0 0 0 0

On substituting equations (21) and (22) into (19) and (20), respectively, the Pancharatnam–Berry geometric
phase incurred over one beating period can be expressed as

åf p
p p

g g w
p p

=  - ¢ -
+ 

+ ¢  - D - +

=

⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭∣ ∣ ( ) ( )

S
N

S
N

S S t
n

N N

arg exp
i

exp
i

2 cos arg
2

, 23

n

N

PB
1

0 0

0 0 0 0 0

where the sign ofπ is chosen to conform to the restriction f p∣ ∣PB . Because the sum is over thewhole beating
period, all terms inside the cosine function that are independent of n can be omitted.When the summation is
performed numerically for largeN, the geometric phase obtained is seen to be fully consistentwith equation (18).
The parameter γ0 in the above equation is directly related to the amplitude of the intensity beating. According to
equation (7), with n=0, wefind that

g g a- =
- ¢ + 

¢ 
∣ ∣ [ ( ) ( )] ( ) ( ) ( )t

S t S S

S S
cos arg

2
. 240 0

0 0 0

0 0

The geometric phase can thus be extracted from equation (23) bymeasuring ¢S0 and S0 and determining g∣ ∣0
from the temporal intensitymodulation via equation (24).

Equations (21) and (23) (or (18)) show that all information on the length of the beating period is in the
dynamical phase.We alsofind the characteristic feature of the geometric phase inherent in polarization beating.
More precisely, as evidenced by equation (18) the Pancharatnam–Berry phase is determined exclusively by the
intensities and polarization states of the interfering beamswhile, according to equation (21), the sumof the
geometric and dynamical phases depends on thewave frequencies only. Hence, a change in the geometric phase
necessarily leads to an alteration of the dynamical phase. As far aswe know, such an entanglement of geometric
and dynamical phases has not been reported in other contexts.

4. Experiment

In this section, we consider themeasurement of the Pancharatnam–Berry phase in polarization beating by
utilizing the interferometer illustrated infigure 3. Amonochromatic, x-polarized beam (achieved by polarizer P)
from a diode-pumped solid state laser (wavelength 532 nm) is directed to an acousto-optic deflector (AOD,
IntraActionAOD-150), set to operate at 100MHz. Alongwith a beamof the original frequencyω0 in arm1, the
deflector creates a beamof a shifted frequency w w+ ¢0 in arm2. In order to obtain themaximumdiffraction
efficiency for the frequency-shifted field, the input-beam incidence on theAOD is at the Bragg angle. The
polarization state of the beam in arm2may be rotatedwith a half wave plate (HWP), while the intensity of the
beam in arm1 can be variedwith an adjustable neutral density filter (ND). The optical path lengths traversed by
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both beams are set equal with amovablemirrorM2. This is necessary in order to observe the beating effect at the
detector since theAOD induces significant randomness to the frequency-shifted beam, reducing the time
interval over which the two beams correlate. However, by considering equal-time interference, the effect of
reduced temporal coherence is not relevant and the deterministic-field formalismof the previous section can be
employed. Both beams are combinedwith a nonpolarizing 50:50 beam splitter and directed towards two
different detection systems selectable with a removablemirrorM5.

In thefirstmeasurement system, the beams enter a spatial filtering system (SP) after which they are directed
(with lenses) to a high-speed optical detector (D,Newport 818-BB-21) attached to an oscilloscopewhich records
the intensity beating. The spatial filtering is necessary since, in addition to reduced temporal coherence, the
AODdecreases the transverse spatial coherence as well. Consequently, the intensity beats at different positions
on the detector would not be in phase and the temporal intensitymodulation could not be accuratelymeasured.

The secondmeasurement system is used to determine the Stokes parameters using four polarization
elements (ST1-ST4) and aCCDcamera. The elements consist of combinations of polarizers and quarter wave
plates. The polarizer orientations with respect to the polarization direction of the input beam (x axis) are set to
q =  +  +  + ( )0 , 90 , 45 , 45P , while the quarter wave plate fast-axis angles are θQWP=(+45°,−45°,+90°,
+90°). The element ST4 is flipped and the beams hit the quarter wave plate first.While the orientations of the
wave plates in the other three elements do not affect the intensitymeasurement, they are included to compensate
the intensity losses in the fourth element. Denoting the intensity distribution recordedwith aCCDcamera after
the element STn by In(t), nä {1,K, 4}, the Stokes parameters are obtained as [36]

= +( ) ( ) ( ) ( )S t I t I t a, 250 1 2

= -( ) ( ) ( ) ( )S t I t I t b, 251 1 2

= - -( ) ( ) ( ) ( ) ( )S t I t I t I t c2 , 252 3 1 2

= - -( ) ( ) ( ) ( ) ( )S t I t I t I t d2 , 253 4 1 2

which are evaluated at each camera pixel.

4.1. Experimental results
First we assess the change in the Pancharatnam–Berry geometric phase when the polarization state of the
frequency-shifted beam is rotated and the intensity ratio of the two beams is held at an arbitrarily chosen value
¢  »S S 2.100 0 .We start withM5 removed and the beams having orthogonal (linear) polarization states

corresponding to theHWP fast axis set to θ=45°with respect to the x axis. The intensities ¢S0 and S0 are
measured by blocking the beam in the other arm, followed by recording the temporal intensitymodulation,
S0(t), when both beams are allowed simultaneously to the detector. After the reduction of the background noise
from themeasured data, we subject the beating signal to a sine fitting procedure and extract g∣ ∣0 in accordance
with equation (24). This is then used to calculate the geometric phase from equation (23)withN=200.We
repeat themeasurements several times and obtain the average valuefPB=0.641π±0.001π, where the error is

Figure 3. Setup for themeasurement of the Pancharatnam–Berry phase. Linearly polarized laser light incident on an acousto-optic
deflector generates twomonochromatic beams of frequenciesω0 and w w+ ¢0 . Both beams travel equally long optical paths and are
combinedwith a beam splitter. The intensity of the light in arm 1 ismodifiedwith a neutral density filter, and the linear polarization of
the frequency-shifted beam is rotatedwith a half wave plate. The superposed beam is spatiallyfiltered and directed onto a fast detector
where the temporal variation of the intensity is recorded. RemovablemirrorM5 is used to guide the combined beam to a Stokes-
parametermeasurement system.
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estimated via standard deviation.Next we use the secondmeasurement system, withmirrorM5 in place, to
measure the Stokes parameters for the individual beams.Using theCCDarray camera,we record the spatial ¢S0

and S0 distributions aswell as the Poincaré vectors ¢P and ¢¢P at pixelswhere ¢  »S S 2.100 0 . ThePancharatnam–

Berry phase is thenobtained fromequation (18). Averaging the phases overmultiple points givesfPB=0.634π±
0.011π, where the error is again obtained fromstandarddeviation.

The above procedure is applied to a case inwhich the linear polarization of the beam in arm2 is tilted by
rotating theHWP from θ=45° (orthogonal polarizations) to θ≈0° (nearly parallel polarizations) in steps of
9°. The related geometric phases obtainedwith equations (18) and (23) are shown infigure 4(a)with circles and
triangles, respectively, alongwith a representative example of the intensity beating (dashed curve) and the
sinusoidal fitting (solid curve) infigure 4(b). In the latter figure (and infigure 5(b)), the extra high-frequency
variations originate fromweak, fast intensity oscillations (520MHz) of the laser diodewe used. Infigure 4(a)
the solid curve gives the theoretical phase behavior when an ideal wave plate rotates the polarization.We
immediately see that the two experimentalmethods are in good agreement with each other andwith the theory,
especially when the polarization states approach orthogonal situation. The differences aremore noticeable when
the polarization states are (nearly) parallel, a case where even a small change in g∣ ∣0 can significantly alter the

Figure 4. (a)Measured Pancharatnam–Berry phases when the linear polarization state of the frequency-shifted beam rotates but the
intensity ratio of the interfering beams isfixed at ¢  »S S 2.100 0 . The horizontal axis shows the fast-axis angle θ of theHWP in arm 2.
The circles and triangles illustrate the geometric phases obtainedwith equations (18) and (23), respectively, and the bars indicate the
related errors. The solid line gives the theoretical value of the phase for an ideal wave plate. (b)An example of themeasured intensity
beating signal (dashed curve) and the applied sinusoidalfitting (solid curve) at θ=9°.

Figure 5. (a)Measured Pancharatnam–Berry phases when the intensity ratio ¢ S S1 2 of the interfering beams varies but the
polarization states arefixed such that theHWPorientation is at θ=30°. The circles and triangles show the phases computedwith
equations (18) and (23), respectively, whereas the bars denote the errors. The solid line illustrates the theoretical value. (b)An example
of themeasured temporal beating signal and the sine function fitting for ¢  =S S 1.360 0 .
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estimate for the geometric phase. As an example, setting ¢  =S S 2.100 0 and employing equation (23)with
g =∣ ∣ 0.980 and g =∣ ∣ 0.990 impliesfPB=0.114π andfPB=0.062π, respectively.

In the second experiment, the polarization state of the beam in arm2 isfixedwith theHWP set at θ=30°
while the intensity ratio of the beams is changedwith theNDfilter in arm1.Wemodify the ratio ¢ S S0 0 between
0.69 and 2.32 andmeasure the geometric phase in the twoways described above. The results are shown in
figure 5(a)where again the circles and triangles correspond to the phases obtainedwith equations (18) and (23),
respectively, and the solid curve depicts the theoretical value. Figure 5(b) represents an example of themeasured
beating signal (dashed curve) for the intensity ratio ¢  =S S 1.360 0 as well as the associated fitting (solid curve).
Notice that for the variousND filter strengths, we considered theCCDpixels at which < ¢  <S S0.69 2.320 0

and used these positions to compute the Pancharatnam–Berry phase. The set of dots infigure 5(a) refers to these
pixel-wise phase values (for clarity only every tenth valuewas retained in the figure).We see that, in general, the
two experimentalmethods are in good agreement with each other andwith the theoretical prediction.
Deviations from the theoretical value are observed to slightly increase with increasing intensity difference.

5. Conclusions

We studied theoretically and experimentally the Pancharatnam–Berry phase associatedwith the polarization
beating produced by the interference of twomonochromatic electromagnetic optical beams of different
frequencies—a context where a geometric phase has not been considered before. The geometric phase originates
from the periodicity of the polarization Stokes parameters whose normalized Poincaré vector was proven to
traverse a closed circular trajectory on the Poincaré sphere during a single beating cycle. The relatedfield
variationswere confirmed to satisfy Pancharatnam’s connection over the path. The Pancharatnam–Berry phase,
obtained as half the solid angle covered by the polarization loop on the Poincaré sphere, assumed a compact
form in terms of the intensity and polarization information of the interfering beams. In addition, we
demonstrated that the geometric phase can equally be evaluated from the intensities of the individual beams and
the amplitude of the intensity beating. The validities of the twomethods to extract the Pancharatnam–Berry
phasewere verified experimentally using an interferometer with a fast detector and a specific polarimetric setup.
A keyfinding of our workwas that while the total phase difference across a beating period depends only on the
frequencies of the interfering beams, the geometric and dynamical phases comprising the phase difference
both depend on their polarization states and the intensities. Thus, contributions of the geometric and dynamical
phases can be adjusted by varying the intensities and polarization characteristics of the beams. A change in
one phase leads to a change in the other indicating an entangled nature of the two, a feature characteristic to
polarization beating. Our results offer new foundational insight into geometric phases and the role of
polarization in temporal electromagnetic interference. In particular, ourwork reveals an extraordinary
rich phase structure connected to a seemingly simple physical phenomenon of beating.
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