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Abstract

In the probabilistic simulations, the main aim is to search the output distribution for the
given range of input uncertainties. The problem is that the simulated output distribution can
be the result of uncertainties other than the input uncertainties. In deterministic analysis, the
output distribution is the result of input uncertainty and modelling uncertainty. Whereas
in stochastic analysis the output distribution is the result of input uncertainty, modelling
uncertainty and sampling uncertainty. How these uncertainty types combine in the context
of reliability analyses is not well understood. In this work, using arbitrary examples, we
present the connection between various uncertainties involved in the probabilistic simulations.
We study how the modelling and sampling uncertainty propagates to the predicted output
distributions. We also propose a simple uncertainty model helpful for the quantification
and treatment of modelling uncertainties in the probabilistic simulations. The proposed
correction method is shown to improve the accuracy of the output distributions. In practical
applications, this would lead to more accurate estimates of failure probabilities.
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1 Introduction

All numerical models have a certain modeling uncertainty; i.e. the model cannot capture the
actual physical phenomenon perfectly. For a particular output, the modeling uncertainty should
be quantified in a meaningful way. In fire safety engineering, the most common practice is to
express it as a measure of systematic and random deviation from the experimentally observed
value. For example, in the validation guide of FDS, the modeling uncertainty is presented for
various output quantities. The data obtained from numerous fire experiments are compared with
the corresponding model simulations and the model uncertainty is quantified in terms of systematic
bias and the second central moment of random errors. These two parameters represent the trending
error property of the model, hence can be used to estimate the prediction uncertainty resulting
from using the tool [1, 2].

The fire simulation tools have been reported to be used for the probabilistic analysis. For
example, Matala [3] used FDS to study the performance of cables in the tunnel fires, Hietaniemi [4]
used it to study the performance of load-bearing wood beams in the building fires, Ayala [5] used
it for the stochastic simulations of atrium fires, and Anderson [6] used the CFAST zone model
to estimate the community-averaged extent of fire damage in homes. The main task in such an
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analysis is to calculate the output uncertainty corresponding to the given input uncertainty. The
term ”output uncertainty” can be used in the case of non-parametric analysis as well but should
not be confused with the one used for the parametric analysis. McGrattan [7] presents a method to
estimate the output uncertainty based on the available information of the model uncertainty. In his
method, the output uncertainty is the interpretation of normally distributed random errors around
a single unbiased output. In other words, it is simply the representation of the possible modeling
uncertainty resulting from using the tool. In the parametric analysis, the output uncertainty is
rather the desired quantity, and should not be dependent on the modeling uncertainty but only
the input parameter uncertainty. The problem not addressed in the above-mentioned and similar
other studies is that the stochastically inferred output uncertainty is inevitably a combination
of both input and modeling uncertainties, being possibly very different from the true output
uncertainty [8, 9].

In this study, we present an uncertainty model that can be used to obtain the true output
uncertainty from the stochastically simulated one. We use the model to illustrate how the model
uncertainty propagates together with parameter uncertainty. We present that the model uncer-
tainty metrics can be used to statistically compensate for their effect in a probability calculation.

2 Uncertainty modeling

2.1 Parameter Uncertainty

If the inputs of a mathematical model are uncertain then the outputs will be uncertain too. This
uncertainty propagation depends upon the characteristics of the model itself. The expression of
uncertainty in output, T “ fpXq, f being continuous and one time differentiable function, can be
derived by Taylor expanding T about its mean and utilizing the definition of standard deviation
in T [10]. The first order approximation is,

σ2
T “ JTΣXJ, (1)

where σ2
T represents variance in T , ΣX is variance-covariance matrix of the input vector, X, and

J “ pJ1, J2, J3...q, Ji “ Bf{BXi. If the input variables, X, are independent of each other then the
Eq 1 would simply reduce to
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Figure 1 depicts the uncertainty propagation for a simple model, T “ πX. A normally dis-
tributed output, T „ N pπ10, π2q, is obtained for a normally distributed input, X „ N p10, 1q.
For complex and non-linear problems, such derivation is mathematically challenging, therefore,
stochastic methods are adopted. Some examples of stochastic methods are Monte-Carlo (MC),
Latin Hypercube Sampling (LHS) and Fourier Amplitude Sensitivity Test (FAST) [11–13].

2.2 Combining model and parameter uncertainty

The model uncertainty can be decomposed into two components: systematic bias and random
error [1]. The systematic bias is assumed to be a measure of the multiplicative factor by which
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Figure 1: Input and output distribution for T “ πX. The mean and variance of X is 10 and 1
respectively.

the observed output is away from the true value. On average, it is the ratio of observed and true
output. The random error is assumed to be an additive error that makes the observed output to
fluctuate around the true value. We assume that these parameters can be determined for each
output parameter, and are constants for a specific type of fire scenario.

The output for a simulation model, T “ fpXq, with systematic bias, δ, and random error, ε, is

T̂ “ δ ¨ T ` ε, (3)

where T̂ is the simulated quantity and T is the true quantity. Here, the T and ε are independent
and the mean of ε is zero. For such conditions, the mean and variance of the observed quantity
can be written as,

µT̂ “ δ ¨ µT and σ2
T̂
“ δ2 ¨ σ2

T ` σ
2
ε . (4)

Where µT and σ2
T are the mean and variance of the true quantity and σ2

ε is the variance of the
random error. The derivation for these expressions can be found in the Appendix A.

For a normally distributed output, T , Table 1 lists the expressions of distributions in the
presence or absence of model uncertainty. Figure 2 shows the histogram plots for specific values of
δ and σε. The left figure compares the effect of only the bias, the middle one compares the effect
of only the random error, and the right one compares the effect of both. Figures show that the
bias simply shifts the distribution, while the random error widens it.

Table 1: The output distribution in presence or absence of error.

S.N. Distribution of T̂ Condition Description

1 N pµT , σ2
T q δ “ 1, σε “ 0 No model uncertainty (Blue).

2 N pδ ¨ µT , δ2 ¨ σ2
T q δ ‰ 1, σε “ 0 Presence of bias.

3 N pµT , σ2
T ` σ

2
ε q δ “ 1, σε ‰ 0 Presence of random error.

4 N pδ ¨ µT , δ2 ¨ σ2
T ` σ

2
ε q δ ‰ 1, σε ‰ 0 Presence of both.
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Figure 2: The simulated and true output distribution for, Left: δ “ 1.1, σε “ 0, Middle: δ “ 1,
σε “ π and Right: δ “ 1.1, σε “ π.

2.3 Correction of output distribution

If the prior information of δ and σε is available, one can correct the simulated output towards the
true one. The expression of corrected output is

T “
1

δ

»

–µT̂ `
´
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¯

d
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ˆ

σε
σT̂

˙2

fi
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where T is the corrected realization corresponding to the observed realization, T̂ . This expression
is derived Eq 4 and the derivation can be found at [14]. We illustrate the correction method using

Figure 3: Upper: The true, T , simulated, T̂ , and corrected distributions. Lower: Corresponding
cumulative density functions.

two arbitrarily chosen examples [15]. In one of the examples, both the simulated and the true
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distribution are Gaussian, while in the remaining one, the distribution shape is irregular. First,
we calculate the correction parameters, δ and σε, by comparing the simulated and true values,

δ “
µT̂
µT
, and σε “

«

1

N ´ 1

N
ÿ
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´

T̂i ´ δ ¨ Ti

¯2

ff
1
2

, (6)

where T̂i and Ti are the ith realization of the simulated and the true quantity respectively and N
is the sample size. Then, using the correction parameters we estimate the true shape from the
simulated one.

Figure 3 shows the true, simulated and corrected distributions along with CDF. In the upper
plots, the continuous line represents the distribution generated using Eq 5. Plots indicate that the
corrected distribution matches well with the true distribution. The maximum difference between
the CDF of true and the corrected distribution is „ 0.01. The complete trace-backing is not
possible because the random error that occurred per realization cannot be known.

2.4 Sampling uncertainty

In the stochastic analysis, the inferred moments and the probabilities depend upon the sample
size and sampling method. This is known as sampling uncertainty. Figure 4 illustrates such
uncertainty using one of the examples presented in the previous section. The simulated distribution
T̂ , corrected distribution, T , and the 95 percent fractiles values, z95, are presented for sample sizes
N =100, 1000 and 10000. Higher sample size well represents the distribution and z95 values increases
with the increase in the sample size.

Figure 4: The distributions of simulated values, T̂ , corrected values, T , and 95 percent fractiles
for three different sample sizes N=100, 1000 and 10000.

The sampling uncertainty can be presented as ˘ bounds from the corrected value. For example,
if the probability inferred from the corrected distribution is p, then the probability is p ˘ ∆p,
where ∆p is the sampling uncertainty. The sampling uncertainty for simple MC simulation having
sample size N is za

a

pp1´ pq{N , where za is a multiplier number that determines the level of
confidence [16]. For 99% level of confidence za is 2.58. For LHS, such analytical expression is
not available, and a separate convergence analysis is needed. Figure 5 shows the result of the
convergence analysis carried out for the distributions presented in Figure 4. The left plot shows
z95pNq. The right plot shows their difference with the converged value, z95pN “ 10000q, and the
maximum bound represents the sampling uncertainty. With N = 1000, the corrected z95 and the
sampling uncertainty are 61 and 2 respectively. This means the 95 percent fractiles value is 61˘2.
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Figure 5: Left: The 95 percent fractiles value, z95, of the simulated, T̂ , and corrected, T , dis-
tributions for different sample size, N. Right: The difference of z95pNq and the converged value,
z95pN “ 10000q.

3 Stochastic Analysis

As an example of probabilistic analysis, we simulate fire in an enclosure and compare wall tem-
peratures for a range of inputs listed in Table 2. The enclosure size is 10 ˆ 7 ˆ 5m3, and the
temperatures were compared on the side wall at 1.3 m height and 4.5 m distance from back wall.
The sampling size, N, is 100 and the sampling method is LHS. The selected fire type is t-square

Figure 6: FDS representation of the compartment fire simulation.

fire. For such fire, HRR is calculated using fire growth time, tg, and peak HRR as

HRRptq “ min

˜

1000

ˆ

t

tg

˙2

,maxHRR

¸

rkW s, (7)

where t is time in second.

Figure 7 compares the predicted and corrected probability density for wall temperatures. The
correction is based on Eq 5 and the model uncertainty values, δ “ 1.15, and rσε “ 0.16 obtained
from [14]. Figure 8 shows the contour plot for the CDF, Φ, of wall temperatures. The vertical
axis shows the temperature range, the horizontal axis shows the time and the embedded text show
the Φ values. The left plot shows the predicted values and right plots show the corrected values.
Assuming that the wall fails when it crosses a given temperature threshold, the failure probability
would be the fraction of the number of the test cases in which the wall temperature rises above
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Table 2: Mean, range and the type of distribution representing the input stochastic.

Input parameters Distribution Mean Lower value Upper value Unit

Maximum HRR Uniform - 950 5400 [kW]
Growth time, tg Triangular 75 30 150 [s]
Fuel layer thickness Uniform - 20 50 [mm]
Pool Diameter Uniform - 0.7 1.6 [m]
Pool location, x Uniform - 1.5 8.5 [m]
Pool location, y Uniform - 1.5 3.5 [m]
Opening door width Uniform - 1.2 2.4 [m]

Figure 7: Predicted and corrected probability density of wall temperatures at different times.

Figure 8: CDF, Φ, of wall temperatures. Left: Predicted. Right: Corrected.

this threshold. From the above CDF plots one can infer the failure probability. For example, the
predicted probability that the wall temperature rises above 100 ˝C before 6 minute is 1 - 0.1 „
0.9, where as the corrected probability is 1 - 0.2 „ 0.8. Similarly the predicted probability for
wall to rise above 200 ˝C before 6 minute is 1 - 0.6 „ 0.4 and the corrected probability is 1 - 0.7
„ 0.3. The predicted probabilities are higher than the measured ones. This is due to bias in the
temperature prediction.

4 Discussion

The study propose correction, Eq 5, for the stochastically simulated output, T̂ , based on the
requirement that the corrected quantity, T , and the random error, ε, are independent of each other
and the mean of ε is zero. In general, the output and the total error are dependent and the mean
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of the total error may not be zero. The significance of the uncertainty model presented in this
study is that the total error is decomposed into a dependent constant, i.e., the ratio of simulated
and corrected mean, δ “ µT̂ {µT , and a random component, ε “ T̂ ´ δ ¨ T , which implies that the
mean of ε must be zero.

Figure 9: Schematic diagram showing the procedure of uncertainty management in the stochastic
simulations.

The proposed correction method handles only one type of different uncertainties appearing in
a probabilistic simulation with deterministic models. Other uncertainty types, input uncertainty
and sampling uncertainty deserve their own studies when aiming at accurate fire risk analyses.
Figure 9 presents an overall procedure for uncertainty management in the stochastic simulation.
Estimation of input uncertainty distribution is crucially important for the simulation outcome and
can require significant effort if the number of uncertain parameters is high. Luckily, in a nonlinear
system, such as fire, the number of dominating input parameters is usually small [17]. For sampling
uncertainty, the convergence of the distribution moments can be studied, as explained in Section
2.4. This would be very expensive if a complex numerical method such as CFD is being used.
Means to quantify the sampling convergence in LHS could possibly be developed using surrogate
models, such as the response surface method.

5 Conclusion

In this work, we show that the model uncertainties reported in the context of a model validation
can used for correcting the output distributions resulting from parameter (input) uncertainty.
The proposed method for the model uncertainty compensation can improve the model predictions
significantly provided that the model uncertainty can be generalized. Further work is needed to
study the effect of Latin hypercube sampling uncertainty in failure probability calculation.
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