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Text Analysis in Adversarial Settings: Does Deception Leave a Stylistic Trace?

TOMMI GRONDAHL and N. ASOKAN

Textual deception constitutes a major problem for online security. Many studies have argued that deceptiveness leaves traces in
writing style, which could be detected using text classification techniques. By conducting an extensive literature review of existing
empirical work, we demonstrate that while certain linguistic features have been indicative of deception in certain corpora, they
fail to generalize across divergent semantic domains. We suggest that deceptiveness as such leaves no content-invariant stylistic
trace, and textual similarity measures provide superior means of classifying texts as potentially deceptive. Additionally, we discuss
forms of deception beyond semantic content, focusing on hiding author identity by writing style obfuscation. Surveying the literature
on both author identification and obfuscation techniques, we conclude that current style transformation methods fail to achieve
reliable obfuscation while simultaneously ensuring semantic faithfulness to the original text. We propose that future work in style

transformation should pay particular attention to disallowing semantically drastic changes.

1 INTRODUCTION

Deception is rampant in online text, and its detection constitutes a major challenge at the crossroads of natural language
processing (NLP) and information security research. Multiple studies have contended that leading machine learning
techniques are able to extract features that can distinguish between deceptive and normal text. In order for such features
to truly reflect deceptiveness instead of domain-specific lexical content, the features discovered should generalize
across domains. Variants of deception also extend beyond textual content. In particular, metalinguistic information can
be obfuscated to deceive a classifier while retaining the original content. Of such endeavours, the most prominently
discussed has been adversarial stylometry [14, 15], consisting of techniques that attempt to provide author anonymity
by defeating identification or profiling. In this survey we review prior research on textual deception and its detection,
focusing on deceptive content in Section 2 and adversarial stylometry in Section 3.

Modern NLP techniques offer a large variety of methods for classifying texts based on the distribution of linguistic
information: features that are detectable from text alone, without extra-linguistic knowledge concerning author behavior,
metadata etc. Depending on the task, target categories can be delineated by semantic content, grammar, or any
combination of these. Identifying or profiling authors based on writing style comprises the field of stylometry. As a
scientific endeavour it dates back at least to the 19th century [104, 112], and was formulated as a computational task in
the 1960s [118, 163]. In contemporary work, the traditional focus on literary documents has largely been overshadowed
by the increased use of online datasets, such as blog posts [121], e-mails [32, 37], forum discussions [183], SMS messages
[138], and tweets [25]. Neal et al. [123] comprehensively survey the state-of-the-art in stylometry.

Stylometry uses linguistic information to extract a non-linguistic property of the author of a text, such as identity,
gender or age. Within NLP, it thus belongs to the field of metaknowledge extraction [33], which relies on linguistic

information systematically correlating with the relevant property under investigation, despite that property itself not
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being linguistic. The conjecture that author identity can be reliably inferred from his/her stylistic “fingerprint” is known
as the Human Stylome Hypothesis (HSH) [168].

Motivated by the HSH, we can also formulate an analogous question about any other property of a text: does the
property leave a linguistic trace, and if so, to what extent does it leave a content-independent stylistic trace that could be
recognized across semantically distant texts? In this paper we discuss this question with respect to a class of properties
that fall under the umbrella term of deception. We investigate the issue both from the perspective of detecting deception
in text, and from the adversarial perspective of creating deceptive data that can evade classification. Our focus is on
information security applications in particular. Terminologically, we call non-deceptive text “normal”.

If reliable linguistic cues of deception existed, they could be used to detect security breaches such as fake reviews [98,
128,129, 177, 179], troll-messages [23, 115, 153], or even fake news [126, 132]. A number of prior studies have attempted
to demonstrate the potential of stylometry for deception detection, and to find the major linguistic determinants of
deceptive text. We review and discuss this research in Section 2. A common assumption behind all these studies is that
deception leaves a stylistic trace comparable to an author’s “stylome”. If true, this would allow detecting deceptiveness
from the text alone, without recourse to extra-linguistic information. If, on the other hand, deception leaves no major
stylistic trace, its reliable detection would require linguistic analyses to be augmented with other techniques. Based on
the survey, we argue for the latter position, and suggest alternative methods based on content-comparison that provide
more promising approaches for this task (Section 2.3).

In Section 3 we turn to adversarial stylometry. From a security perspective, it simultaneously functions as an attack
against authorship classification, and as a defence against non-consensual deanonymization or profiling. The latter
scenario has been called the deanonymization attack [121], and its feasibility is conditional on the HSH. Therefore a
major question is whether current author identification techniques pose a realistic privacy threat. Based on a review
of state-of-the-art stylometry research in Section 3.1, we argue that while the HSH has not always been validated,
the deanonymization attack constitutes a genuine privacy concern especially when the candidate authors are few in
number. In Section 3.2 we discuss the attack scenario in more detail.

Methods for style transformation can be divided into manual, computer-assisted and automatic techniques. For
ordinary users, only the last would constitute a practically effective mitigation against the deanonymization attack.
Manual obfuscation is difficult and time-consuming, and requires a good grasp of linguistic subtleties, which makes the
task unsuitable for users lacking extra time and resources. An additional difference can be made between obfuscation and
imitation, where the latter targets a particular style instead of simply avoiding detection. Section 3.3 reviews existing
work on style obfuscation and imitation techniques. We argue that while some methods show potential in principle, all
face serious problems with balancing between obfuscation and maintaining semantic content.

Given that style obfuscation and imitation constitute types of deception, we then return to the original question of
whether deception leaves a stylistic trace, and apply it to this special case. Even if obfuscation was successful, the property
of being obfuscated could itself be stylometrically traceable. Problematically, our review in Section 3.3.3 demonstrates
that this question has typically not been tested. Studies attempting such “fingerprinting” of the obfuscation method
have succeeded [22, 36], but have only experimented on a small subset of possible methods. As different techniques
require different recognition methods, a general detector of style obfuscation is likely difficult to attain.

In summary, this survey addresses three major questions:

Q1 Does deception leave a content-independent stylistic trace?
Q2 Is the deanonymization attack a realistic privacy concern?
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Q3 Can the deanonymization attack be mitigated with automatic style obfuscation?

Q1 provides the common theme of the survey. Section 2 discusses the linguistic detection of deceptive content, with
a particular focus on online text. Section 3 then moves on to the topic of adversarial stylometry, i.e. mitigating the
deanonymization attack (Q2) via style transformation (Q3).

We summarize our findings and suggestions below.

e There is no evidence that deception leaves a content-invariant stylistic trace. Instead, detection should involve
the comparison of semantic content across texts.
e While the validity of the HSH is uncertain, the deanonymization attack is a realistic privacy concern.

o As of yet, automatic style transformation techniques do not secure semantic faithfulness.

2 DECEPTION DETECTION VIA TEXT ANALYSIS

In this section we review the research on textual deception detection, and discuss the linguistic features associated
with writing intended to deceive the reader. Multiple studies have indicated that at least non-expert human accuracy
in detecting textual deception is approximately on a chance level, or even worse [13, 46, 47, 124]. As Fitzpatrick et al.
[52] note, this makes deception detection a somewhat exceptional topic for NLP, since human performance in most
other text classification problems tends to be more accurate than computational solutions. In contrast, automated
classification of deceptive text should increase not only the efficiency but also the accuracy of human performance.
However, we argue that the divergence of features deemed relevant by different studies indicates that classification
has been too content-specific to generalize across semantic domains. Relevant features tend to be lexical correlates of
deceptive text in particular corpora rather than general “deception markers” as such.

Most research in deception detection has concerned face-to-face discussion [39, 44, 46, 47, 51, 52]. As Crabb [32]
notes, such results do not always directly apply to communication via electronic devices, which are the most relevant for
information security concerns. In particular, physiological data is unavailable to the receiver in text-based communication.
We limit our discussion to deceptive communication in written English. Following DePaulo et al. [39], we dissociate
deceptiveness as a communicative intention from falsity as a semantic property.! Utilizing a famous formulation by Paul
Grice, communication can roughly be characterized as behavior with the deliberate goal of causing certain thoughts
in the (intended) receiver [60, 162]. Deception thus constitutes a specific type of communication, where the speaker
intends the hearer to form thoughts which the speaker believes to be false. The notion of deception as an author
intention is also shared by Buller and Burgoon’s Interpersonal Deception Theory [17]. For our purposes, we can use the

following general characterization:

Deception
A deceives B if for some proposition P:
A believes that P is false
A attempts to make B believe that P is true

The deceptiveness of a communicative act makes no restrictions on the nature of the proposition P. In particular,
P might not belong to the semantic content of the expression E. We can thus separate between explicit and implicit

deception as follows:

! Literal truths with a deceptive intention include cases where the speaker believes the hearer to infer a falsity from a literal truth. If Bob asks: “Where is
Jim?”, and Alice answers: “I saw him in the cafeteria”, in normal circumstances Alice assumes Bob to infer that Jim may still be there. Hence, if Alice
believes Jim not to be there anymore (e.g. she also saw him leave the cafeteria), she is deceiving Bob by telling a literal truth. Assumed inferences can be
understood as belonging to communicated content as implicatures [162].



Explicit deception

A explicitly deceives B if for some proposition P:
A believes that P is false
A attempts to make B believe that P is true by uttering an expression E
The semantic content of E contains P

Implicit deception

A implicitly deceives B if for some proposition P:
A believes that P is false
A attempts to make B believe that P is true by uttering an expression E
The semantic content of E does not contain P

A assumes B to infer P from the explicit content of E and context information that A assumes B to know

In both cases, B infers P from A’s utterance E. In explicit deception, P can be found directly from E itself without
consulting other assumptions or beliefs within the discourse. In implicit deception, further inferences are needed
to come to the conclusion P. As an example, consider fake online reviews, which Section 2.2.1 will discuss in detail.
Some fake reviews contain explicit falsities: if a TripAdvisor user claims to have been in a hotel and (dis)liked it, this
is explicitly deceptive if he actually has not visited the hotel. However, suppose the reviewer merely makes general
claims about the hotel (“This hotel is excellent/horrible!” etc.). Here, the deception concerns the reviewer’s first-hand
experience, which he lacks, and is independent of the reviewer’s actual beliefs of his review’s correctness. Therefore, it
can be treated as a variant of implicit deception.

We further divide different types of deception reviewed in Sections 2.1-2.2 to the following three groups, the first

being explicit and the two latter implicit:

Deception of literal content: the semantic content of the text is deceptive
Deception of authority: the deceiver implies having authority concerning the issue, which he lacks

Deception of intention: the deceiver has an ulterior deceptive motive for writing the message

While not meant to be exhaustive, this taxonomy is useful in accounting for disparities between different studies. Most
studies reviewed concern deception of literal content. However, as argued above, fake reviews can exhibit deception of
authority instead. Deception of intention is exemplified by trolling, where the author writes something to advance a
particular view or to harass another person. Here, deception does not necessarily concern the literal content (which
may sometimes be sincerely believed by the troll), but instead the ulterior motive behind the message.

Ultimately, the issue at hand is whether it would be possible to develop a “textual lie detector” that takes a text as an
input and outputs a classification label that reliably tracks the real-world property of deceptiveness. The main problem
for such a goal is that even if deceptive texts differ from non-deceptive texts in particular corpora, the features may
not generalize across different text types. Deception could leave some stylistic cues in e.g. in online discussions, fake
news, fake reviews, or scientific papers; but in order for the hypothetical “lie detector” to work, these cues should be
sufficiently similar across them all. To evaluate whether existing methods are applicable for such general deception
detection, we need to compare empirical results from different studies and see if common patterns emerge.

Table 1 shows the linguistic properties that appear three or more times in the studies reviewed in Sections 2.1-2.2.

Based on these, we formulate the following hypotheses:

H1: deceptive text is emotionally laden

H2: deceptive text contains certainty-related terminology
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Studies Cue
[19, 64, 80, 98, 124, 128, 129, 184, 185] High emotional load
[19, 64, 100, 128, 129, 177, 184] Generality / abstractness / lack of specificity
[95, 98, 100, 128, 179] High use of first-person pronouns
[63, 80, 113, 124] Low use of first-person pronouns
[32, 128, 129, 186] High use of verbs
[64, 95, 113] High use of certainty-related words

Table 1. The most common linguistic cues to deception from all studies reviewed in Sections 2.1-2.2

H3: deceptive text lacks in detail

H4: deceptive text lacks a first-person narrative

Table 1 contains two contradictory properties: high and low use of first person pronouns. We choose the low use
hypothesis as the default (H4), since it would be predicted by the lack of first-hand experience of the situation. This
empirical divergence is indicative of the context-dependency of suggested deception cues. Nevertheless, H1-H4 are
intuitively understandable and fit well within standard psychological models of deception [17]. H1 can be explained
either by the stress caused by lying [45], or from attempted emotional persuasion of the audience. Experimental results
reviewed in Section 2.2.1 point to the latter [128, 129]. H2 also likely results from the persuasive purpose of deception.
H3 and H4 are motivated by the fact that deceivers often have no first-hand experience of the situation they are
describing.

H1-H4 can thus be argued to follow from two basic tendencies present in deception: attempted persuasion and lack
of first-hand knowledge. Interestingly, these can sometimes motivate the deceiver to behave in opposite ways, which
may partly explain our seemingly inconsistent finding concerning first-person pronoun usage. Increased use of the
first-person pronoun indicates a personal narrative and hence emphasizes the notion of the author having actually
experienced the situation under discussion. It can therefore be used in an attempt to increase the credibility of the text.
On the other hand, the lack of first-hand experience makes it more difficult for deceivers to credibly describe something
they do not know in detail, and hence can motivate them to stick to a more general, third-person narrative.

Section 2.1 reviews the literature on deception detection from a general perspective not specific to information
security concerns. Section 2.2 focuses specifically on deception in online text, discussing fake reviews (2.2.1) and troll

comments (2.2.2). We summarize our analyses and give recommendations for future research in Section 2.3.

2.1 General deception detection

In this section we focus on deception detection outside of online text datasets. We further distinguish between
experimentally elicited deception and natural or non-elicited deception, devoting Section 2.1.1 to the former and Section
2.1.2 to the latter.

2.1.1 Experimentally elicited deception. In this section we present results from experimental research on elicited
deceptive text. By elicited we mean that the texts were produced at the command of a test instructor, and that their
deceptiveness or truthfulness was explicitly requested.

Burgoon et al. [19] formulated eight hypotheses concerning deception:

“deceptive senders display higher
(a) quantity,



(b) non-immediacy,

(c) expressiveness,

(d) informality, and

(e) affect;
and less

(f) complexity,

(g) diversity, and

(h) specificity of language” [19]?

They based these hypotheses on two experiments, where truthful and deceptive text was gathered from participants.
The messages were obtained via e-mail in the first experiment, and via either face-to-face communication or text chat
in the second experiment. However, the results of these experiments were contradictory, as deceivers used longer but
less complex messages in the first test, and shorter but more complex messages in the second (although the results
from the second test were not statistically significant). The hypotheses (a—h) reflect the results of the first experiment.
In relation to H1-H4, (e) indicates emotional load (H1) and (f-h) fall into the broader category of lacking detail (H3).
However, the latter is partly at odds with (c), which indicates that deceivers also use higher amounts of descriptive
words. This effect could arise from the attempted persuasion involved in deception.

Based on nine linguistic properties similar to those suggested by Burgoon et al. [19] (each composed of many features,
27 altogether), Zhou et al. [184] classified experimentally elicited texts as deceptive or truthful. All features were relevant
with the exception of specificity. In a subsequent study, Zhou et al. [185] report 22 linguistic features as indicative of
deception (see Table 2). Using these features, they compared four machine learning methods in the classification task:
discriminant analysis, decision trees, neural networks and logistic regression. The methods fared roughly equally well,
and at best achieved an accuracy of ca. 80%.

Newman et al’s [124] results on classifying experimentally elicited deceptive and truthful texts indicated that
deception was characterized by the reduced use of first- and third-person pronouns and exclusive words (e.g. but, except),
along with the increased use of negative emotion words (e.g. hate, anger) and motion words (e.g. walk, go). These
findings are partly in line with more general observations concerning deception, but not fully. While emotional load (H1)
and reduced first-person pronoun use (H4) are expected , it is unclear why deception should correlate with the reduction
of both first- and third-person pronouns, a decrease in exclusive words, or an increase in motion words. Typically,
first- and third-person pronoun usage can be seen as complementary ways to talk about a situation, the first-person
indicating a personal narrative and the third-person an impersonal one. It is therefore unclear what properties the
reduction in both would coincide with. Also, exclusion words are likely too abstract to be closely related to particular
communicative functions, and hence it would be surprising if their prevalence in deceptive text were to generalize
across different datasets. Finally, motion words generally denote concrete events, and therefore contradict the general
finding of deception lacking in detail (H3). It is therefore relatively unsurprising that, aside of reduced first-person
pronoun use and emotional load, Newman et al’s [124] results do not resurface in other studies.

Based on a review of prior research, Hancock et al. [63] formulated seven hypotheses on linguistic deception cues:

“(a) Liars will produce more words during deceptive conversations than during truthful conversations.

2 Quantity means the amount of text produced, non-immediacy refers to the lack of directness and intensity between the author and receiver, expressiveness
is the amount of descriptive material in the text (e.g. adjectives and adverbs), informality is indicated e.g. by the amount of typos, affect refers to the
emotional load of the text, complexity is measured by readability indices [160], diversity is the type-token ratio among words, and specificity denotes the
level of detail in the text.



(b) Liars will ask more questions during deceptive conversations as compared to truthful conversations.

(c) Liars will use fewer first-person singular but more other-directed pronouns in deceptive conversations than in
truthful conversations.

(d) Liars will use more negative emotion words during deceptive conversations than during truthful conversations.

(e) Liars will use fewer exclusive words and negation terms during deceptive conversations as compared to truthful
conversations.

(f) Liars will avoid causation phrases during deceptive interactions relative to truthful interactions.

(g) Liars will use more sense terms during deceptive interactions as compared to truthful interactions.” [63]

The test subjects were divided between motivated and unmotivated liars based on whether the experimenter had
provided false information (later revoked) about the importance of the ability to lie for success in life. Some hypotheses
received confirmation from all liars (a-c, g), some only from motivated liars (f), and others from neither (d, e). Hypothesis
(c) is indicative of a more general property of deception: the lack of a personal narrative (H4). However, a contrasting
result is provided by the confirmation of (g): the increase of sense-related terminology. Sensation indicates a personal
narrative, making this result contrast with the more general finding that deception tends to correlate with the lack of
first-hand knowledge and detail (H3).

Lee et al. [95] tested the ability of various linguistic features to predict deception in data from 30 deceptive and
30 truthful participants answering questions. While their initial hypothesis contained eight conglomerate properties,
only one was statistically significant: certainty, as calculated with a five-feature proxy measure comprised of causation
words (e.g. because, hence), insight words (e.g. think, know), certainty words (e.g. always, never), first-person singular
pronouns, present-tense verbs, and tenacity verbs (e.g. is, has). All five predicted deception in a statistically significant
manner. These results are partly contradictory with Hancock et al’s [63], who found that (motivated) liars tended to
avoid causation phrases. Further, the increase of first-person pronouns contrasts with many other studies, where their
high use has correlated negatively with deception (H4).

Mihalcea and Strapparava [113] classified truthful and deceptive opinions concerning political and personal issues
(abortion, capital punishment, and the responder’s best friend) gathered via Amazon Mechanical Turk. At best they
achieved a 70% accuracy with a Naive Bayes classifier. They report a decrease of self-related words and an increase of
certainty-related words as indicative of deception. Both results are in line with general findings of deception typically
instantiating attempted persuasion (H1-H2) and a lack of first-hand experience (H3-H4).

In summary, the studies reviewed in this section suggest certain common features of experimentally elicited deception,
but also include some unclear and even contradictory results. The results are collected in Table 2. The table additionally
shows which of the hypotheses H1-H4 receive support or are contradicted by the findings. A general trend is visible:
deceivers often try to artificially emphasize what they say by using emotional and certainty-related terminology
(H1-H2), while not providing detailed information about the topic they address (H3). However, contradictory results
exist especially with respect to features related to the first-person narrative (H4). Many studies also support some of
the hypotheses but oppose others. For instance, in Hancock et al’s [63] data deception correlated both with reduced
first-person pronoun usage and increased sense-terminology. The first of these features supports H4, but the latter
points to the opposite direction, as sense-terminology often relates to descriptions of first-hand encounters. A similar
case is found in Newman et al. [124], who detected both reduced first-person pronoun usage and increased motion-word

usage as indicators of deception.



Study | Test setting Deception cues Support | Oppose
[19] A theft-based game [19]; a vari- | quantity, reduced immediacy, expressiveness, | H1, H3
[184] ant of the Desert Survival Prob- | informality, affect, reduced complexity, re-
lem [92, 184] duced diversity, reduced specificity
[185] Two variants of the Desert Sur- | verbs, modifiers, word length, punctuation, | H1 H3
vival Problem [92] modal verbs, individual reference, group ref-
erence, emotiveness, content diversity, redun-
dancy, perceptual information, spatiotemporal in-
formation, errors, affect, imagery, pleasantness,
positive activation, positive imagery, negative
activation
[124] Reported views about abortion, | reduced first person pronouns, reduced third | H1, H4 | H4
friendship, and a mock crime | person pronouns, reduced exclusive words, neg-
scenario. ative emotion words, motion words
[63] Conversations between two par- | quantity, questions, reduced first person sin- | H4 H4
ticipants gular pronouns, other-directed pronouns,
sense terms
[95] A questioner-responder game | causation words, insight words, certainty | H2 H4
words, first-person singular pronouns, present-
tense verbs, tenacity verbs
[113] Reported views about abortion, | reduced self-related words, certainty- | H2, H4
capital punishment, and friend- | related words
ship

Table 2. Linguistic cues of experimentally elicited deception

Bold: support H1-H4
Italics: do not support H1-H4

2.1.2  Non-elicited deception. We now move on to deception in texts which have not explicitly been requested
to be deceptive. These include both real-world corpora, as well as texts produced in experimental conditions where
deceptiveness was not asked but was later evaluated based on independent criteria.

A common dataset for real-life deception has been the Enron e-mail corpus [85].3 Keila and Skillicorn [80] detected
deceptive text from the Enron corpus, using features drawn from Zhou et al. [187] and Newman et al. [124] on the
linguistic cues of deception: reduced use of first and third person pronouns and exclusive words, and increased use of
negative emotion words and motion words. As discussed in Section 2.1.1, assuming these features to always indicate
deception is not unproblematic. Further, while Keila and Skillcorn’s manual evaluation indicated that the e-mails ranked
high by these properties contained deceptive e-mails, the lack of ground truth makes it impossible to properly evaluate
their results. Keila and Skillicorn additionally note that not only deception but other “marked” types of communication
were also indicated by these features, such as otherwise inappropriate messages.

Louwerse et al. [100] predicted fraud in the Enron corpus using a five-point abstractness scale based on prior work
by Semin and Fiedler [154], who classified verbs and adjectives on the following scale, (a) being the most concrete and

(e) the most abstract (examples from Semin and Fiedler [154]):

(a) Descriptive Action Verbs: hit, yell, walk
(b) Interpretative Action Verbs: help, tease, avoid

3http://www.cs.cmu.edu/~enron/
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(c) State Action Verbs: surprise, amaze, anger
(d) State Verbs: trust, understand
(e) Adjectives: distraught, optimal

Louwerse et al. [100] further divided adjectives to four analogical classes based on (a)—(d). Using Semin and Fiedler’s
[154] assessment that abstractness indicates low verifiability and low informativity, they predicted that high abstractness
would correlate with deception. The email database was divided into sixteen events based on sending times, some
of which were highly correlated with deception taking place within the Enron corporation. Regression analysis
demonstrated that these events correlated with linguistic cues of high abstractness, providing support for the hypothesis.

Additionally, based on the results of Newman et al. [124] and Hancock et al. [63] (see Section 2.1.1), Louwerse et al.
[100] further investigated the correlation of deceptive events in the Enron corpus with first and third person pronouns,
causal adverbs, negation, the connective “but”, and email length. Of these, first person pronouns and negations were
partially indicative of deceptive events, but the results were contrary to the prior studies [63, 124], as first person
pronouns were used more in deceptive emails rather than less.

Larcker and Zakolyukina [93] studied linguistic properties of fraudulent and truthful financial statements by Chief
Executive Officers (CEOs) and Chief Financial Officers (CFOs) in conference calls. Their results diverged significantly
between CEOs and CFOs. Differences were found in e.g. negations and extremely negative emotion words, which
correlated positively with deception for CFOs but not CEOs. Some cues were even contrastive, as deception corre-
lated with certainty-related words among CFOs, but hesitation-related words among CEOs. One possible reason for
these differences could be that the features reflect the personal style of the CEOs/CFOs themselves rather than their
deceptiveness. However, some commonalities were found: deceptive CEOs and CFOs both used more general group
references, less non-extreme positive emotion terms and less third-person plural pronouns. While the prevalence of
general group references indicates distance and thus supports H4, the other indicators seem particular to this study, as
they are not replicated in other studies. They also bear no clear relation to H1-H4.

Toma and Hancock [166] compared the linguistic properties of fraudulent and truthful online dating profiles. While
the profiles were written in experimental settings, deception was not encouraged, and was only detected by comparing
the profiles to ground-truth gathered about the users. Deception correlated significantly with reduced first-person
singular pronouns, increased negations, a lower word count, and a decrease in negative emotion vocabulary. While
the last feature stands in opposition to many other studies [80, 124, 187], it is unsurprising considering the context:
a deceptive dating-profile would most likely exaggerate positive qualities and downplay negative ones. Hence, it is
unlikely that this result would generalize across different text types.

Crabb [32] used POS-tags and lexical diversity for deception detection from the Enron corpus. She used two methods:
clustering with the Expectation-Maximum algorithm, and calculating means for each feature in isolation to detect
statistically significant differences with respect to deception-cues identified in prior research [2, 50, 63, 80, 95, 100, 186,
187]. Two clusters were deemed most relevant due to the high occurrences of modal, base and present tense verbs,
second-person pronouns, and function words. However, while emails in these clusters generally had higher values for
such features than those in other clusters, not all such values were statistically significant. Further, the lack of ground
truth in the Enron corpus prevented any conclusive inferences to be made concerning the prevalence of deception in

the clusters.



Studies | Data Deception cues Support | Oppose
[100] Enron e-mails [85] abstractness, negations, first person pronouns | H3 H4

[93] Conference call transcripts general group references, reduced non-| H3
extreme positive emotion terms, reduced third-
person plural pronouns

[166] Online dating profiles reduced first-person singular pronouns, | H4 H1
negations, reduced word count, reduced negative
emotion words

[64] Fraudulent scientific papers words related to scientific methodology, ampli- | H1, H2
fying terms, certainty-related words, emo-
tional words, reduced diminisher terms, re-
duced adjectives

[32] Enron e-mails [85] modal, base and present tense verbs, second- | H4
person pronouns, function words

Table 3. Linguistic cues of non-elicited deception
Bold: support H1-H4
Italics: do not support H1-H4

Hancock and Markowitz [64] used linguistic information to classify papers by the social psychologist Diederik Stapel,
who famously fabricated data to many publications. They observed the following tendencies in Stapel’s fraudulent

papers in comparison to truthful ones:

e more terms related to scientific methodology

e more amplifying terms (e.g. extreme, exceptionally, vastly)
e more certainty-related terminology

e more emotional terminology

o fewer diminisher terms (e.g. somewhat, partly, slightly)

o fewer adjectives

Hancock and Markowitz’ [64] results thus provide support for the hypotheses that deceivers generally exaggerate
the content they want the receiver to believe (H1) and their level of certainty (H2), while providing less qualitative
descriptions (H3). Their model correctly classified 71% of Stapel’s papers. While this was significantly better than
random choice, the authors express caution about the feasibility of their method for broader forensic use, citing the
large error rate and the domain-specificity of scientific discourse.

Studies on non-elicited deception are summarized in Table 3. The results are mostly in line with experimental research
(Table 2): common features include high emotional load (H1), certainty-related terminology (H2), abstractness (H3),
and the reduced use of first-person pronouns (H4). However, as in experimental studies, the evidence is contradictory

concerning emotional words and first-person pronouns.

2.2 Deception detection from online text

In this section we focus on two specific topics relevant for online security: fake reviews and troll comments. We argue that
both present unique properties not inferrable from the results reviewed in Section 2.1. We further discuss alternative

methods for their detection, and evaluate the importance of pure text analysis as a tool for these tasks.



2.2.1 Fake reviews. One major source of deceptive online text is fake reviewing, where the reviewer deliberately
attempts to (mis)lead the audience into believing something about a product [146, 169]. Fake reviews may have special
properties in comparison to other forms of deception, and are therefore allocated a separate section in this survey. As
Yoo and Gretzel [179] point out, fake reviewers are often professionals, and can typically model their writing on real
reviews. Additionally, a fake review does not need to be fraudulent with respect to the author’s actual opinions. Instead,
its deceptiveness stems from the purpose of the author to spam a site for some ulterior reason instead of providing
informative reviews. Hence, fake reviews are not necessarily disbelieved by the author, but the content is irrelevant to
the author’s true goal: they instantiate deception of intention.

For supervised methods, obtaining labeled data constitutes a major challenge, and studies have typically collected
their own data. The largest corpus of elicited fake reviews has been compiled by Ott et al. and contains 400 fake and 400
truthful reviews of both the positive [128] and negative [129] kind.* Additionally, the website Yelp provides a corpus of
filtered reviews suspected to be fake.

Human written reviews Ott et al. [128] detected deceptive pieces in TripAdvisor hotel review data generated via
Amazon Mechanical Turk. Combining psycholinguistic features from the LIWC software [131] and word bigrams, they

achieved an accuracy of 89.8%, and summarize their results as follows:

“(...) truthful opinions tend to include more sensorial and concrete language than deceptive opinions;
(...) we observe an increased focus in deceptive opinions on aspects external to the hotel being reviewed
(...) our deceptive reviews have more positive and fewer negative emotion terms.

(...) we find increased first person singular to be among the largest indicators of deception” [128]

These findings stand in stark contrast to H4, since here deception is indicated by an increase in first-person pronouns
and hence a more personal narrative. This trend turns out to be prevalent in fake reviews, providing support for Yoo
and Gretzel’s [179] contention that fake reviews differ from other forms of deception. On the other hand, Ott et al. also
found that fake reviews were more abstract and less specific, in line with H3 and against Yoo and Gretzel’s analysis of
fake reviews having a special status due to the availability of information.

Feng et al. [50] further improved Ott et al’s [128] results by adding syntactic phrase structure to the stylometric
evaluation of the same dataset, reaching 91.2% accuracy. As features they used both word bigrams and abstract syntactic
relations derived from a context-free grammar parse.

Ott et al’s first study [128] was concerned with positive hotel reviews. In a subsequent study [129], the same authors
applied the method to negative reviews, also gathered via Amazon Mechanical Turk. They achieved a F-score of c.a.
86% with n-gram-based support vector machines (SVMs). Negative fake reviews contained less spatial information
and had a larger verb-to-noun ratio than truthful reviews. They also manifested an excess of negative emotion terms,
in direct contrast with the high use of positive terms in the prior study. Ott et al. interpret these results as opposing
the hypothesis that negative words indicate the emotional distress involved in lying [45]. Rather, the increased use of
emotional terminology can be explained by the intention of the deceiver to communicate certain contents, which is
why the prevalent emotions will vary along with these intentions. High emotional load may still be a useful deception
cue, but it results from a more general property of emphasis, and is not ubiquituously negative.

Yoo and Gretzel [179] tested seven hypotheses on the linguistic properties of fake hotel reviews:

“(a) Deceptive reviews contain more words.

4The corpus is available at http://myleott.com.
Shttps://www.yelp.com/dataset
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(b
(c

) Deceptive reviews are less complex.
)
(d) Deceptive reviews contain less self-references (immediacy).
)
)
)

Deceptive reviews are less diverse.

e

—

Deceptive reviews contain a greater number of references to the hotel brand.
(£
&

Deceptive reviews contain a greater percentage of positive words.

Deceptive reviews contain a smaller percentage of negative words.”

Hypotheses (e—g) were confirmed, while (a—d) were not. In fact, the opposite hypotheses to (b) and (d) received
support: fake reviewers used more complex language and more self-references than truthful reviewers. These results
imply that fake reviews may differ from other types of deception by often being conducted by experts. Further, based
on Ott et al’s results [128, 129], it seems likely that (f-g)’s success was due to the reviews’ promotional nature, and
would plausibly not be replicated on negative review data.

Hue et al. [68] base their analysis of deceptive reviews on two properties: sentiment and readability. Sentiment is
relevant since fraudulent reviewers likely have the intention of slanting the review either in favour of or against the
product. Hue et al. further argue that in addition to sentiment varying randomly across different reviews by a genuine
author, the same should be true of readability, measurable by e.g. the Automated Readability Index (ARI) based on
the amount of characters within words and the amount of words within sentences [160]. In contrast, they maintain
that readability should remain high and consistent across fraudulent reviews, since these aim at a maximally general
audience. Using the Wald-Wolfowitz Runs test to detect non-randomness in manually labelled data from Amazon
reviews, they provide empirical confirmation for constancy in both sentiment and readability as indicators of fake
reviews.

Li et al. [98] studied linguistic generalities across fake reviews, which they divided between expert-generated and
crowdsourced spam. They note that the commmon assumption of fake reviews lacking in detail [97, 128] is not true
of expert-generated reviews. For crowdsourced reviews, their results accorded with previous studies indicating that
fake reviews are less specific, and thus contain less descriptive terms like nouns or adjectives [10, 17, 18, 145]. This,
however, was not the case for expert-generated fake reviews, which were highly informative and descriptive. Other
linguistic cues Li et al. discovered were exaggerated sentiment and the overuse of first person singular pronouns. The
latter result was contradictory to many previous studies proclaiming that deceivers avoid talking about themselves
[18, 86, 124, 185].

Xu et al. [177] based their unsupervised fake review classifier on the text’s generality, i.e. lack of informativity. The
model ranked reviews based on “spamicity”, the top reviews being most spam-like. Based on Ott et al’s claim that
online review sites typically contain 8% — 15% spam, they tested their model by treating the top k % as spam, where
the value of k was varied between 5%, 10% and 15%. Accuracy was tested by comparing the top k % to its supervised
classification by SVMs [26]. Applying the model to three review datasets, Xu et al. obtained F-scores of 75.2% — 78.8%
with k = 5%, 72.2% — 76.6% with k = 10%, and 69.4% — 71.7% with k = 15%. As they note, their method only works
for reviews for products that are unavailable for the fake reviewer to investigate, such as restaurants or hotels. The
assumption of fake reviews lacking specificity does not hold for products of which much information is available via
commercials or other descriptions, since the reviewer could use such information in constructing the spam [179].

The results from fake review studies are summarized in Table 4. A recurring theme is the lack of specificity, but
this depends on the assumption that the reviewer does not access information about the product [177]. High or low
sentiment has also been demonstrated to be relevant as in other forms of deception, but its direction depends on the
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Studies | Data Deception cues Support | Oppose
[179] Hotel reviews (positive, experi- | high complexity, first person pronouns, brand H4
mentally elicited) names, positive words, decreased negative
words
[128] Hotel reviews (positive, crowd- | reduced specificity, external information, | H3 H4
sourced) positive sentiment, reduced negative sentiment,
first person singular pronouns, high verb-to-
noun ratio
[129] Hotel reviews (negative, crowd- | (in negative reviews:) reduced specificity, | H3
sourced) negative emotion terms, high verb-to-noun ra-
tio
[68] Amazon.com reviews high readability, constancy of sentiment
[98] Hotel, restaurant, and doctor re- | unspecificity (non-expert reviews), specificity | H1 H3, H4
views (crowdsourced) (expert reviews), exaggerated sentiment, first
person singular pronoun
[177] Amazon audioCD, TripAdvisor | text generality H3
(hotels), Yelp (restaurants)

Table 4. Linguistic properties of fake reviews
Bold: support H1-H4
Italics: do not support H1-H4

nature of the review (positive or negative). Increased use of the first person pronoun stands in contrast to results
received on other forms of deception (see Section 2.1), supporting Yoo and Gretzel’s [179] contention about fake reviews
constituting a sui generis type of deception. Yoo and Gretzel’s analysis of fake reviews being special due to the amount
of detailed information available receives partial support from Li et al. [98], but only for expert-generated reviews.
Automatically generated reviews Automatic text generation is a vast field within NLP [34], and poses an additional
threat to review sites. Detecting automatically generated reviews is a different task than detecting man-made fake
reviews, due to the different nature of the deception. In automatically generated reviews, the deception concerns
identity: the message is meant to look like it is written by a human, but is in fact machine-generated.

Hovy [66] automatically generated fake reviews using a 7-gram Markov chain trained with data from the review
site Trustpilot. For classification, he used logistic regression with word n-grams (1 < n < 4) as features. The classifier
additionally sought irregularities between age, gender, review category, and n-grams. Adding such meta-information
to the model significantly improved its ability to fool the classifier. However, while exact copies of training reviews
were removed, a 7-gram model will likely reproduce large chunks of the training data. Duplicate or similarity detection
between the training data and the generated reviews was not conducted by Hovy.

Yao et al. [178] generated fake reviews with a character-level Recurrent Neural Network (RNN) trained with restaurant
reviews from Yelp.® They were unable to distinguish RNN-generated reviews reliably from those in the Yelp corpus, using
linear SVMs with various linguistic features, the plagiarism detection method Winnowing [151], or human evaluators
from Amazon Mechanical Turk (n = 594). These results demonstrate that machine-generated fake reviews can resist
classification by common methods. However, Yao et al. suggest an alternative defence against their RNN-generated fake

reviews, based on statistical differences in character distributions between generated reviews and the training corpus.
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Juuti et al. [77] utilized Neural Machine Translation (NMT) to generate context-appropriate restaurant reviews. They
demonstrated a superior performance to Yao et al. [178] in fooling human users trying to distinguish between genuine
and generated reviews. In their user study, Juuti et al. were able to avoid detection at a rate of 3.5/4, as opposed to
0.8/4 with Yao et al’s method. By controlling the context (e.g. restaurant name, type of food, review rating etc.) they
can further generate reviews of a specific type with a single NMT model. Despite successfully deceiving human readers,
they were able to detect generated reviews with a very high F1-score of 97%, using an AdaBoost classifier trained on
words, POS n-grams, dependency tag n-grams, and NLTK’s [11] readability features.

Recent developments in automatic text generation demonstrate that automating the task of fake reviewing is an
increasing threat. As generated reviews do not display particular similarities to human-written fake reviews [77], there
is no reason to believe that the hypotheses H1-H4 have any particular relevance here. Text generators mimic the
writing style of their training corpus, which by assumption contains mostly genuine reviews. Hence, standard deception
detection has no bearing on this issue. Instead, classifying generated reviews requires knowledge of the generation
model itself, in which case they remain detectable [77, 178]. However, as such knowledge is not always available, the

problem cannot be considered solved.

2.2.2 Trolling and cyberbullying. Troll users deliberately post malicious content to online forums, either to harass
others for amusement or with the intention of advancing an agenda. Paid trolls post professionally on behalf of an
institution (e.g. a political candidate, government, or corporation), while mentioned trolls are identified as trolls by other
users [115]. Cyberbullying is a related phenomenon, where the author targets a particular victim instead of an entire
forum. While trolls or cyberbullies are not exclusively dishonest, there is major overlap in the purposes of a deceiver
and a troll: both write content with a purpose other than its truthful communication. Especially professional trolls have
no necessary connection between their actual opinion and what they write, and therefore are likely to write content
they believe to be false. Additionally, even if a troll writes something he believes, his intention is nevertheless fraudulent.
Similar considerations apply for cyberbullying. It is therefore initially plausible that trolling/cyberbullying and other
forms deception detection might overlap in linguistic features.

Cambria et al. utilized sentic computing to classify texts according to the likelihood of being authored by a troll [23].
As a knowledge-based method, sentic computing is more grammatically and semantically oriented than many other
current NLP approaches, as it is built on a pre-programmed set of “common-sense” concepts and inference patterns

[24]. Cambria et al. used the method to attest the emotional content of the data, based on the following scales:

“1. the user is happy with the service provided (Pleasantness)
2. the user is interested in the information supplied (Attention)
3. the user is comfortable with the interface (Sensitivity)

4. the user is disposed to use the application (Aptitude)” [23]

Cambria et al., classify human emotions by these four dimensions together with polarity, i.e. whether the emotion
is positive or negative. They found that troll posts had a high absolute value of Sensitivity and a generally negative
polarity. Trolls manifested either significantly high or low levels of comfort with the interface, together with a negative
sentiment. Testing on a manually classified test set of troll and non-troll Twitter messages, Cambria et al. received an
F-score of 78% (82% precision, 75% recall).

J.-M. Xu et al. [175] used sentiment analysis to detect cyberbullying from Twitter. They manually classified seven
emotions relevant for bullying: anger, embarrassment, empathy, fear, pride, relief and sadness. Fear was by far the most
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Studies | Data source Cues to trolling/bullying

[23] Twitter negative sentiment

[153] Discussion forum negative sentiment

[115] Discussion forum bag-of-words, negative sentiment
[27] Youtube comments offensive words, intensifiers

[175] Twitter fear-related words

Table 5. Linguistic properties of troll comments

common emotion in their cyberbullying dataset, whether the author was identified as a bully, a victim, an accuser or a
bystander. These results indicate that fear-related terminology may be informative of bullying as a topic, but not of the
status of the author as the bully.

Troll posts are commonly negative, being targeted against some viewpoint or a person. Using the hypothesis
that negative sentiment is indicative of trolling, Seah et al. [153] applied sentiment analysis to online forum posts.
They received a generalized receiver operating characteristic of 78% with binary classification and 69% with ordinal
classification.

Mihaylov and Nakov [115] used various linguistic and metalinguistic features to detect both paid and mentioned
troll comments in news community forums. They received an F1-score of 78% for mentioned trolls and 80% for paid
trolls. Despite the slight differences between the troll types, they conclude that both paid and mentioned trolls behave
similarly in comparison to non-trolls. Among linguistic features, bag-of-words fared well overall, as opposed to more
abstract grammatical properties like POS-tags. However, metalinguistic features were more effective than any linguistic
feature.

Offensive language is an important factor in trolling and cyberbullying. Following Jay and Janschewitz [70], Chen et
al. [27] characterize offensive language as vulgar, pornographic or hateful. For evaluating the overall offensiveness of
sentences, Chen et al. used an offensive word lexicon that included manual measures for words collected from Youtube
comments, and further measurements based on a word’s syntactic context. Detecting offensive users in an online
discussion corpus, they receive 78% in both precision and recall.

A related issue is hate speech, the detection of which has been explored in a number of studies [6, 20, 35, 41, 57,
125, 152, 170, 174, 181]. Hate speech is only occasionally deceptive, which is why we do not discuss it in detail here.
However, a brief summary of the findings in this field is worth taking into account. First, character n-grams have
generally performed well across hate speech datasets, which is likely due to their flexibility across spelling variants
[62, 111, 152]. Second, offensive word lexicons have not performed well in the absence of n-gram features [125, 152].
Third, while deep learning approaches have become more popular than more basic machine learning methods [6, 181], a
comparative study by Grondahl et al. [62] demonstrated that their performance did not significantly differ when trained
on the same datasets. Finally, the same study showed that even state-of-the-art approaches are highly vulnerable to
simple text transformations like removing spaces or adding innocuous words. Such evasion techniques are similar to
earlier methods of evading spam detection [102, 188].

Reviewing the main results of the troll detection studies discussed in this section, the most prevalent cue is negative
sentiment. It clearly does not suffice, as non-troll messages can also have negative sentiment, and not all trolls are
negative. At most the results indicate that negative sentiment is indicative of an increased probability of trolling. Like
with fake reviews, studies on troll and cyberbullying detection reflect the fact that content, much more than writing style,
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has determined the success of classification. Hence, the results do not support the plausibility of a content-invariant

detection scheme.

2.3 Deception detection: future prospects

Summarizing the studies reviewed in Sections 2.1-2.2, some results have been replicated in multiple studies. In particular,
deceptive texts often have a high emotional load and a large frequency of certainty-related terms, while troll posts tend
to have a negative sentiment. However, a more fine-grained analysis demonstrates that the relevant features have been
highly content- and context-sensitive. Hence, they are unlikely to scale beyond the semantic domains of particular
datasets. Therefore, we suggest that detecting deception is more efficient with methods outside of purely linguistic
analysis. Specifically, we recommend semantic comparison between different documents. For example, Mihaylov et al.
[114] used various measures to detect troll users from an online news community forum, among which was comment-
to-publication similarity. Their hypothesis was that trolls may be prone to deliberately cite news articles in a misleading
fashion to support their own perspective. This feature had a positive effect on classification, and links troll-detection to
rumor-debunking, where similar content-comparison methods prevail [147].

A related approach to unsupervised fake review classification is the detection of semantic and grammatical similarities
between reviews. Such methods rely on the assumption that spammers tend to repeat the same message in multiple
places. Narisawa et al. [122] classified spam based on the similarity measure of string alienness, obtaining F1-scores
between 50% and 80%. Uemura et al. [167] detected review spam using document complexity (based on the amount
of similar documents within the corpus), and received F1-scores between 66% and 73%. Lau et al’s [94] unsupervised
model was also based on duplicate detection based on semantic overlap.

Of course, semantic comparison measures do not detect author intentions, such as deceptiveness. This task may
well be impossible in principle if only text data is used. Our literature review indicates that deceptiveness as an author
intention does not leave a content-invariant linguistic trace. Deception may, at most, correlate with certain linguistic
properties in particular semantic domains. Restricted to a domain, linguistic features may still be useful in aiding
deception detection, at least when used in combination with metalinguistic data concerning e.g. user behavior on the

forum.

3 AUTHOR IDENTIFICATION AND ADVERSARIAL STYLOMETRY

In this section we discuss author identification from an adversarial perspective, where detection and its evasion are
treated as competing tasks. Avoiding deanonymization or profiling involves obfuscating writing style, for which a
variety of techniques has been suggested. Style transformation for anonymization or imitation purposes constitutes a
type of deception, albeit different in kind from those reviewed in Section 2. There, we characterized deception, broadly
understood, as attempting to lead the reader into believing something false. In style transformation, the relevant
information involves author identity or profile, the first concerning individual identity and latter membership in a
broader group. Unless mentioned otherwise, the studies reviewed have concerned author identification. With respect
to profiling, features are likely to vary depending on the classes under interest (age, gender, occupation etc.), which
makes results less generalizable. However, some style transformation studies have concentrated on profiling instead of
identification [136, 157].



We begin by reviewing the state-of-the-art in stylometry research in Section 3.1. We then advance to information
security -related uses of author identification, to which we devote Section 3.2. After introducing the deanonymization

attack [121], we dedicate Section 3.3 to discussing its mitigation by style obfuscation or imitation.

3.1 Author identification

The success of author identification depends on the validity of the Human Stylome Hypothesis (HSH) [168], which
maintains that authors have a unique writing style that is retained to a significant extent between different texts, even
across variation in semantic content. Its validity is obviously not a binary matter, and will inevitably differ between
authors and datasets. Nevertheless, general trends found in empirical work contribute useful indicators of its suitability
for real-world applications. In this section we provide a concise review of existing work in author identification. For
further discussion, we refer to prior surveys dedicated solely to this topic [123, 163].

There is a close affinity between writing styles and idiolects as speaker-specific (mental) grammars, which can differ
among members of the same language community. The idea that lexical repositories and grammatical rules vary between
individual speakers is a well-attested linguistic fact [12, 31, 127, 150]. While this gives the HSH initial plausibility, it is
worth bearing in mind that idiolects reflect a large variety of factors, not limited to choices between content-equivalent
stylistic variants. Indeed, the linguistic literature on idiolects has often focused on semantic variation between authors
[53, 101]. Another problem for the HSH is the prevalence of style-shift. As the sociolinguist William Labov stated: “There
are no single style speakers” [91]. If a speaker can change between styles in different contexts, stylometric classification
might not capture author identity but rather “style clusters” spanning many authors, who conversely can belong to
multiple clusters. Recent results on large-scale stylometric clustering accord with this hypothesis [123].

The problematicity of HSH notwithstanding, concrete examples of author identification can be found outside
academic research. In 2011, an American man was found to be the true author of a blog supposedly written by a
Syrian woman [9]. While stylometry was not responsible for the finding, Afroz et al. [2] demonstrated that a close
linguistic correlation could be found between the blog and other texts by the same author. In 2013, stylometric analysis
performed by Peter Millican and Patrick Juola on the novel The Cuckoo’s Nest revealed its likely author to be J.K. Rowling
under a pseudonym, which she later confirmed.” Juola [74] also reports a real-life court case where an asylum-seeker
claimed to have written newspaper articles critical of his government, for which he would have faced persecution if not
granted the asylum. As evidence, he provided other articles provably written by him, and the court had to evaluate
their similarity to the contested articles. In such cases, stylometry can provide assistance for making decisions with
large-scale consequences.

A significant problem in the field is the lack of consensus on which features to use [73, 141, 148, 149]. The most
prevalent collection argued to be optimal for identifying individual authors even from short texts is the “Writeprints”
feature set [1, 183]. It consists of a variety of character-based, lexical, syntactic, and structural features, as partly
presented in Table 6. The set was introduced by Zheng et al. [183], who used it to identify authors with 97.69% accuracy
from a corpus containing 20 candidate authors, and 30 — 92 articles of 84 — 346 words from each candidate. I has since
been used in multiple studies [1, 2, 4, 48, 109, 130], and is partially implemented in the JStylo software [109].

While large-scale comparisons between different features applied to the same datasets have been rare, existing com-
parative studies indicate that low-level features like short character n-grams (including unigrams) have a systematically

high performance. Grieve [61] applied 39 features prevalent in prior work (before 2007) to a single dataset, using the

7For Juola’s description of the study, see http://languagelog.ldc.upenn.edu/nll/?p=5315.
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Feature types Example features

Character | number of characters, number
of letters, number of digits, fre-
quency of letters, frequency of
special letters

Word number of words, average word
length, vocabulary richness, av-
erage sentence length

Lexical

Syntactic frequency of punctuations, fre-
quency of function words

Structural number of sentences, number
of paragraphs, number of sen-
tences/words/characters in a
paragraph, has quotes
Content-specific frequency of content specific
keywords

Table 6. Examples of the Writeprints features (270 altogether) [183]

chi-square test for producing a ranking of the most likely authors. The top-5 feature types with the best performance
were word unigrams (including punctuation) and character n-grams in the order 2 > 3 > 4 > 1 from most to least
successful. In contrast, positional features, vocabulary richness, sentence length, and word length had only modest
or poor performance. A higher prevalence of function words in comparison to content words further improved the
success rate, which is in line with traditional assumptions of style being especially manifested in function words [118].

Juola [73] summarizes over 3 million experiments he and colleagues made on the same datasets comparing combina-
tions of features, pre-processing methods, and classifiers included in the authorship attribution software JGAAP [72].
The datasets were taken from an author attribution competition [71], and are provided with JGAAP. The best results
were achieved with punctuation features, using nearest neighbours with Manhattan distance for analysis. According to
Juola, a likely explanation of these results is that the corpus exhibited a particularly large variance in quotation marks
and other non-alphanumeric notation. Therefore, the results are not applicable to datasets where such features have
been normalized.

Potthast et al. [134] evaluate the performance of 15 suggested techniques on three datasets. Their results suggest that
using compression improves the stability of performance across different corpora. The basic idea behind compression is
that single compressed files are produced of the candidate author’s texts both alone and together with the unknown
author’s texts, and divergence is then measured between these files [90, 108]. Potthast et al. further remark that character
features were the most effective overall. Similar conclusions regarding compression and character features are reached
in a larger comparative study by Neal et al. [123], who evaluate 14 open-source algorithms on a corpus containing 1000
authors. Summarizing their results, the authors note that low-level features like characters fare better especially on
smaller samples, where high-level features like syntactic dependencies are sparse.

In addition to the discrepancy between feature sets across different studies, a further problem in stylometry research
concerns whether the features are more indicative of style or content. Evidently, highly content-related features like
lexical choices are not applicable across different genres or domains [5, 123]. This is likely among the main reasons for
the success of function words [21, 118, 182], which have also been argued to correlate with personality types [28], and
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form the basis of the linguistic profiling software LIWC [131, 165]. Small susceptibility to content changes is also a
virtue of punctuation features [73] and grammatical structure [65, 133, 139].

With respect to classification algorithms, most stylometry research has focused on traditional supervised machine
learning methods, such as SVMs, decision trees, Bayesian classification, or distance metrics [123, 163]. SVMs have
been particularly popular due to their strong performance on high-dimensional and sparse data [163]. Deep learning
applications have recently become more prominent, with a particular focus on recurrent and convolutional neural
networks [7, 56, 164]. Brocordo et al. [16] also experiment with deep belief networks, which belong to the class of
probabilistic generative models. While deep learning methods have generally demonstrated a strong performance in
many NLP tasks [58, 180], their large training data requirements present problems with smaller author corpora [123].
Recent approaches to transfer learning in NLP have attempted to improve classifier scalability by first training an initial
model to perform some task using a large training set, and subsequently fine-tuning the model for different tasks with
smaller additional training sets [40, 67]. However, the transferability of other text classifiers to author identification is
yet to be studied.

In order to succeed beyond artificial experimental conditions, author identification should be feasible across a large
number of candidates with small example corpora from each. However, as Neal et al. [123] state in their survey, existing
techniques face challenges in such settings. To detect potential author groups, they performed graph-based clustering in
a large corpus. The number of clusters (16) was much smaller than the number of authors (1000), and there was no clear
separation between authors. Neal et al. note the possibility that the clusters represent “meta-classes” characterizing
multiple authors, and a single author can belong to many such classes. These results are in line with Labov’s dictum
that a speaker is never bound to a single style, and vice versa [91]. However, it is worth noting that if these hypothetical
“meta-classes” are simply assimilated with the clusters, the claim is difficult to either confirm or falsify.

The largest attempt at author identification so far has been contributed by Narayanan et al. [121], whose data
was derived from 100, 000 different blogs. The features used were post length, vocabulary richness, word shape (the
distribution of lower- and upper-case letters), word length, and the frequencies of letters, digits, punctuation, special
characters, function words, and syntactic category pairs. Narayanan et al. correctly predicted the author in over 20%
of the cases, which is a significant increase from random chance. Still, from the perspective of deanonymization, the
approach cannot be considered successful, as it was far more likely to yield a false prediction than the correct one.

There is no single universally accepted protocol for author identification that could be used directly “out-of-the-box”.
While significant overlap can be found in the features and classifiers used, most studies have been unique with respect
to the particular subset of features, and have not conducted systematic evaluations between different combinations.
Software like Signature,® JGAAP [72], JStylo [109], and RStylo [43] have been developed to alleviate this problem by
allowing researchers to conduct stylometric tests with a simple GUI, selecting from a list of pre-programmed features
and classifiers. Some of these systems are very restricted in the range of features they offer, which limits their application
potential. For instance, RStylo only uses word- or character n-grams, and does not allow their combination in the same
test. The most featurally sophisticated application is JStylo, which contains a subset of the Writeprints feature set [183].

Neal et al. [123] give two plausible reasons for the commonly observed effectiveness of short character n-grams in
comparison to high-level properties like abstract grammatical relations. First, the latter are sparse in short texts, whereas
all texts contain characters. Second, character-features are less susceptible to noise, such as misspellings or grammatical

errors. In addition to these benefits, we believe that character-features can have an exceptionally high correlation

8http://www.philocomp.net/humanities/signature.htm


http://www.philocomp.net/humanities/signature.htm

with many other features. For instance, the prevalence of particular function words will impact the frequency of their
characters, making character-features indirectly responsive to changes in function word use. Hence, low-level features
like character n-grams have the potential to record (partial) information of a large variety of textual properties. They can
therefore be expected to fare generally better than high-level features, at least with small corpora. Character-features
also have the advantage of being language-independent in the sense of requiring no language-specific pre-processing,

such as tokenization, POS-tagging, or parsing [123].

3.2 Implications for security and privacy

Author identification and profiling have a multifaceted relation to information security. Forensic studies have been on
the forefront in traditional stylometry research, providing assistance in uncovering the identities of criminals [31, 110].
Similar methods can help to unmask troll users in online forums. As a case study, Galn-Garcia et al. [54] linked troll
profiles to their true profiles, and successfully applied the method to a real-life cyberbullying case. Another important
application is the detection of doppelgdngers or sockpuppets, i.e. users with multiple accounts. Solorio et al. [161] used
SVMs with 239 linguistic features to detect sockpuppet accounts from Wikipedia user comments, and reached a 68%
accuracy. Afroz et al. [3] used stylometric techniques to link doppelgianger users with unsupervised clustering, achieving
85% precision and 82% recall on an underground forum dataset.

In contrast to the assistance that author identification can provide for increasing online security, it also constitutes a
privacy threat by making it possible to deanonymize authors against their will. Brennan et al. [14] propose an adversarial
scenario they call Alice the anonymous blogger versus Bob the abusive employer, where an employer uses stylometry to
uncover the author of an anonymous complaint. Another potential adversarial purpose of deanonymization is bullying
or harassment [4]. In general, the abusive part can be played by any person or institution, such as a government,
corporation, or individual. Narayanan et al. [121] coined the term deanonymization attack to denote such scenarios.
They further take their empirical results on blog author identification to indicate that the attack is not only a theoretical
possibility but a real-life concern.

As we reviewed in Section 3.1, Narayanan et al. were able to detect a blog author from 100, 000 candidates with
ca. 20% accuracy [121]. We also noted that, while these results demonstrate a major increase from random chance,
they nevertheless most often fail to find the correct author. Still, they are genuinely disconcerting from the perspective
of potential victims of a deanonymization attack. In designing secure systems, it is essential to assume a low bar for
the attacker and a high bar for the defender. Applying this principle to the deanonymization attack, we conclude
that since stylometry can significantly increase the chances of the attacker correctly guessing the author’s identity, it
constitutes a genuine privacy threat. Additionally, results on smaller author corpora (< 20) indicate that high accuracy
can be achieved with features contained in Writeprints [1, 183], or similar sets [123, 163]. In many variants of the
deanonymization attack, assuming a fairly restricted candidate set is justified: for example, in Brennan et al’s [14]
scenario (see above) the candidates are restricted to Bob’s employees.

Motivated by their findings, Narayanan et al. [121] recommend the development of automated tools for transforming
writing style while preserving meaning. The field of adversarial stylometry [14] involves the study of such counter-
measures to deanonymization. In Section 3.3 we review the work conducted in this field, and evaluate whether the

deanonymization attack can realistically be mitigated using existing methods.
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3.3 Adversarial stylometry

We define style obfuscation as any method aimed at fooling stylometric classification. A more restricted variant of
obfuscation is imitation, where misclassification is intended to target a particular author. Imitation also constitutes an
attack, with the original author as the attacker and the imitated author as the victim. We divide obfuscation methods
into three basic types: manual, computer-assisted and automatic. The subsections 3.3.1-3.3.3 are divided by these
methods, and within each subsection studies are reviewed in the order of publication. If one study has used several

methods, its results are divided among the subsections.

3.3.1 Manual obfuscation. Brennan and Greenstadt [15] experimented with two manual methods of masking the
original author of a text: obfuscation and imitation. The former involved conscious altering of a text to avoid displaying
properties characteristic of the author, and in the latter authors attempted to mimic the style of another writer. The
results form the Brennan-Greenstadt Corpus. In a subsequent study, Brennan et al. [14] used Amazon Mechanical Turk
to crowdsource the obfuscation task. The results, along with the original corpus, form the Extended Brennan-Greenstadt
corpus, which is provided with the JStylo software [109]. Brennan et al. evaluated obfuscated and imitated texts with three
methods: neural networks with the Basic-9 feature set,” a synonym-based classifier [29], and SVMs with the Writeprints
features [183]. Both obfuscation and imitation resulted in the success rates of all methods dropping significantly,
only the SVM-Writeprints classifier remaining above a chance level. Imitation also succeeded in reaching the correct
targets. The SVM method was most resistant against both obfuscation and imitation. The effectiveness of the (original)
Brennan-Greenstadt corpus against the authorship attribution program JGAAP [72] was further demonstrated by Juola
and Vescovi [76]. Amazon Mechanical Turk was also successfully used by Almishari et al. [4] to reduce automatic
author recognition. Both obfuscation and readability evaluation were crowdsourced. On a scale from 1 (“Poor”) to 5
(“Excellent”), the average readability score was 4.29, indicating success in retaining the original meaning to a significant
degree.

The results reviewed here indicate that writing style can be manually altered to deceive author identification.
Contrary to the strong interpretation of the HSH, it thus seems possible to change one’s writing style, at least with
deliberation. However, manual obfuscation is very time-consuming and laborious. Having to consciously alter the style
of everything one wants to write anonymously is not a scalable solution. Crowdsourcing is a possible way to outsource
manual obfuscation, but Almishari et al. [4] note, sending your original writings to strangers constitutes a privacy risk.
Conceivably, the adversary could even act as a Mechanical Turk worker and see the original text as a job offered by the

author. Crowdsourcing is also relatively slow and costly to use.

3.3.2  Computer-assisted obfuscation. The idea of computer-assisted manual style obfuscation was introduced by
Kacmarik and Gamon [78], who automatically evaluated the feature changes needed to make classification fail with
Koppel and Schler’s [89] author identification technique. They present a graph linking the features requiring modification,
allowing the user to monitor their success at obfuscation. Anonymouth [109] uses the stylometric framework JStylo to
evaluate a text written by the user against reference corpora. Based on this evaluation, it gives the user instructions on
modifying the text to evade JStylo. Day et al. [36] developed the concept of Adversarial Authorship, and implemented it
as an application called AuthorWeb. It displays a user other texts similar to their current writing in style, allowing them

to obfuscate text by controlling which texts their current writing resembles.

9The Basic-9 feature set consists of the number of unique words, lexical density, Gunning-Fog readability index, character count (without whitespace),
the average number of syllables per word, sentence count, the average sentence length, and the Flesch-Kincaid Readability Test. Like Writeprints [183],
Basic-9 is also implemented in JStylo [109].
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Computer-assisted methods can be useful in comparison to the fully manual approach, given that they reduce the
cognitive load involved in deciding which features to alter. Without external cues the author would need to guess
which changes to make, which would be unattainable in practice. However, a problem with automatic evaluators like
Anonymouth is their reliance on specific corpora and classifiers, which may be unavailable for the author. Furthermore,
while computer-assisted obfuscation is easier than purely manual methods, choosing the candidate remains in the

hands of the user. Manual work is still needed, which makes these approaches unfeasible in a large scale.

3.3.3 Automatic obfuscation. Fully automated author masking is, unsurprisingly, significantly more difficult to

implement than manual or computer-assisted obfuscation. This section reviews studies conducted in this field, and
evaluates the performance of the most prominent methods.
Iterative language translation The easiest and most common method used for automatic style alteration and hence
author obfuscation is machine translation (MT) across one or more languages back to the source language. This can
also be called Iterative Language Translation (ILT) [105], as its effect can be increased by multiple iterations. It was first
suggested by Rao and Rohatgi [142] and has since been applied in multiple studies, with divergent results. Here, we
survey and analyze this research. All the studies reviewed have used English as the language to obfuscate. With the
exception of Keswani et al. [81], Google Translate has been used for translation, sometimes compared with the Bing
translator. It should also be noted that, with one exception [157], all the studies were conducted prior to Google’s major
update that replaced phrase-based statistical MT with deep neural networks (DNNs) [171].

ILT was attempted by Brennan et al. [14] with both Google and Bing translators. They used German and Japanese
as intermediate languages, experimenting with English-German—-English, English-Japanese—English, and English-
German-Japanese—-English (the first two exemplifying one-step and the last two-step translation). Success of obfuscation
was measured with a synonym-based classifier, a neural network with the Writeprints features, and an SVM with the
Basic-9 features (see footnote 9). Approximately, in one-step translations the success rate of the synonym-based method
declined from 85% to 75%, and the success rates of the neural network and SVM classifiers declined from 65% to 50%.
Google obfuscated more with Japanese and Bing with German as the intermediate language. With the exception of Bing
translations evaluated with neural networks and SVMs, two-step translation did not markedly improve obfuscation.
Overall, the results were deemed underwhelming, and the authors concluded that state-of-the-art MT in 2009 did not
provide sufficient means for author obfuscation.

Caliskan and Greenstadt [22] also used Google and Bing’s translators with German and Japanese as intermediate
languages, but with English-Japanese—German-English as the two-step translation order. The success of obfuscation
was measured with JGAAP [75][72] and JStylo [109], using what they call the Translation Feature Set, which was
selected via optimization from the Basic-9 and Writeprints feature sets [15, 183].10 After obfuscation, the average
recognition rate remained high at 92%, which accorded with Brennan et al’s [14] pessimistic conclusions about ILT.
Caliskan and Greenstadt further classified translated texts based on the translator (Google or Bing) with an average
success rate of 91%, indicating that the translation algorithm itself can be “fingerprinted” if appropriate stylometric
features are used.

Using Google Translate, Almishari et al. [4] reduced the linkability between the translated text and the original
author by increasing the amount of intermediate languages up to nine, randomly drawn from the 64 languages offered
by Google Translate in 2014. They conducted a readability review of 60 translations (produced via nine intermediate

10The Translation Feature Set contained the following features: average characters per word, character count, function words, letters, punctuation, special
characters, top letter bigrams, top letter trigrams, words, and word lengths [22].
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languages) via Amazon Mechanical Turk, receiving an average score of 2.8/5. The readability of a subset of translated
texts was further improved manually (also via Mechanical Turk), retaining author anonymity. However, without a
comparison to texts produced with other methods, the readability score alone does not tell much about the status of the
obfuscated texts.

Mack et al. translated English blog texts back and forth through Arabic, Chinese and Spanish with one to three
iterations [105]. The results were evaluated with four Author Identification Systems (AISs): a unigram-based AIS, the O.
de Vel et al. AIS [37], a combination of the previous two called Hybrid-I, and Hybrid-I with added syntactic features
(Hybrid-II). A genetic algorithm called Genetic and Evolutionary Feature Selection (GEFeS) was further used to mask
nonsalient features from each AIS to improve their performance. The addition of GEFeS resulted in Hybrid-II having the
best performance overall on recognizing the author from the non-obfuscated test corpus (52%), the other AISs having
rates of c.a. 20% — 25%. ILT lowered the identification rate of all AISs with all intermediate languages, Arabic always
faring the best. The most significant result was the decrease of Hybrid-II plus GEFeS’ identification rate from 51.65 %
to c.a. 10 % with all languages on the first iteration, and below 10 % with Arabic. Further iterations did not markedly
change the identification rates, irrespective of the language or the AIS.

Day et al. [36] used Google Translate with Spanish and Chinese as intermediate languages. Mack et al.’s Hybrid-II AIS
[105] was used to evaluate the success of obfuscation. With the first iteration, accuracy dropped from 54% to 6% with
Spanish and to 10% with Chinese. Further iterations did not decrease the identification accuracy, as the second iteration
resulted in 6% with Spanish and 11% with Chinese, and the third iteration yielded 7% with Spanish and 11% with
Chinese. Day et al. further used Latent Semantic Analysis (LSA) [42] to analyse semantic overlap between the original
and obfuscated texts. This algorithm gives a value between -1 (no similarities) and 1 (full similarity). The LSA-values
were 0.86 for the Spanish-mediated text and 0.77 for the Chinese-mediated text. Day et al. further fingerprinted the
intermediate language with the JGAAP software [72], receiving accuracies of 93% (Spanish) and 90% (Chinese) on the
first iteration, 98% (Spanish) and 97% (Chinese) on the second iteration, and 98% (Spanish) and 99% (Chinese) on the
third iteration. The number of iterations was also fingerprintable, although less accurately than the translator.

Keswani et al. [81] applied ILT to the author masking task arranged by the PAN 2016 digital forensics event. Using
Moses [88], they created their own translation model trained with the Europarl corpus [87]. The text was translated
through German and French. Three features were evaluated of the obfuscated texts [135]. Safety indicates how well the
obfuscated text manages to hide original authorship, and was measured by the obfuscation’s impact on classification
by various author verification systems from previous PAN tasks. Keswani et al’s method succeeded in obfuscation
25% — 42% of the time, depending on the dataset. The sensibility of the obfuscated text and its soundness, i.e. similarity in
meaning with the original text, were both manually evaluated from a small subset of texts. Keswani et al’s text was, in
Potthast et al.’s words, considered “impossible to read or understand” by the PAN 2016 evaluator due to the frequency
of errors [135].

As a baseline for evaluating their Generative Adversarial Network (GAN) approach called A*NT (discussed below),
Shetty et al. [157] applied four variants of ILT with Google Translate, using German, French, Spanish, Finnish, and
Armenian as intermediate languages between two and five iterations. None of the variants significantly reduced the
classification rate on a word-based Long Short Term Memory (LSTM) network, the largest drop being from 90% to 81%
in F1-score. Shetty et als user study also indicated that ILT did not succeed in maintaining semantic similarity.

Based on our review, one reason for the differing outcomes in ILT-obfuscation seems to be the languages used. As

summarized in Table 7, studies have generally used different intermediate languages and numbers of iterations. While
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Study | Translator(s) Languages Iterations Success

[14] Google, Bing German, Japanese 1-2 No

[22] Google, Bing Japanese, German 1-2 No

[4] Google (Random) <9 Yes
[105] (Not told) Arabic, Chinese, Spanish 1-3 Yes

[36] Google Spanish, Chinese 1-3 Yes

[81] Moses German, French 2 Unclear / No
[157] | Google (DNN) | German, French, Spanish, Finnish, Armenian 2-5 No

Table 7. A comparison of studies using ILT for style obfuscation
(“Success” = the reported success of the approach in deceiving author identification, based on the source paper.)

small-scale comparisons have been made, the effects of varying the languages have not been systematically evaluated.
Results on the effects of iterations are also indecisive. Almishari et al. [4] decreased identification accuracy by adding
iterations, whereas Mack et al. [105] and Day et al. [36] did not. More systematic comparative research would be needed
to properly evaluate the effects of the languages, the number and direction of iterations, and the translation method.
With respect to the last, it is possible that Shetty et al’s [157] failure to obfuscate with Google Translate even across
five intermediate languages was affected by its update from a statistical algorithm to a DNN [171].

It is also likely that ILT will decrease the grammaticality and hence readability of the text, and/or differentiate its
semantic interpretation from the original text [123, 142]. Successful change of style would require three properties
from the resulting text: (i) grammatically soundness, (ii) retention of the original meaning, and (iii) evasion of author
identification. These properties have not been properly measured together in the ILT-obfuscation studies reviewed in
this section. Additionally, ILT is unreliable due to not taking into account the direction of the obfuscation. The changes
might take the classification to any direction, which may or may not aid obfuscation. As Shetty et al. [157] note, a style
obfuscation system should ideally only enact changes that take classification to the desired direction, and no more.
Rule-based substitutions Khosmood and Levinson [82] outline a basic model of rule-based style imitation based on
grammatical changes. The purpose of the system is to alter the style of a source text until it is maximally close to that
of a target corpus. First, both the source text and the target corpus are analysed based on style markers, which are
predetermined linguistic features. Next, the styles of the source text and the target corpus are compared, and their
stylistic distance is determined based on some metric calculated from the style markers. If the distance is large enough,
a predetermined modification rule is applied to the source text that alters some of its style markers. A comparison
between the altered source text and the target corpus is made, resulting in a finished transformation if their stylistic
distance is close enough, and to another modification otherwise. This Classification-Transformation Loop (CTL) [83] is
continued until the stylistic distance is sufficiently close or no more transformations are available.

Khosmood and Levinson [82] applied the CTL to a US Department of Justice memorandum excerpt, with a part of
Orwell’s Animal Farm as the target corpus. They used 10 style markers for analysis and comparison, and modified the
source text with three transformation rules of de-hyphenation, lexical substitution and acronym expansion. Stylistic
distance was measured with the root-mean-square-error value, which reduced from 5.77 in the source text to 5.63 in
the modified text. In another study [84], the same authors divided text into n-grams between one and five units, and
searched for synonyms for each from Wordnet [49, 117]. For each word/phrase, one synonym was chosen above others
based on its commonness in the target corpus or another database, and the original word/phrase was replaced with it.
Using JGAAP for evaluation, Khosmood and Levinson succeeded in obfuscating seven out of thirteen texts. Readability
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was manually evaluated by the authors as “correct”, “passable” or “incorrect”, concluding that the majority of texts were
“passable”. As no additional evaluators were used, and the authors only provide two example obfuscations, these results
are difficult to assess.

Mansoorizadeh et al. [107] employed Wordnet-based lexical substitution for the PAN 2016 Author Masking Task
[135]. Synonyms for the top 200 words used by the author of the training text were found from Wordnet via NLTK.
Two criteria were used in choosing the replacement synonym from the alternatives provided by Wordnet: Wu et al’s
semantic similarity metric [172], and the occurrence probability in the original word’s context measured with a 4-gram
language model trained with the Brown corpus. In their evaluation of the PAN 2016 Author Masking Task, Potthast et al.
[135] note that Mansoorizadeh et al’s algorithm is very conservative, changing at most one word per sentence. While
retaining readability well, this also results in reduced safety against author identification. Further, certain replacements
resulted in semantic errors, such as machine being exchanged for car. The system succeeded in obfuscation in 14% — 25%
of cases depending on the dataset. In Potthast et al’s manual sensibility evaluation, the obfuscated text received a grade
of 2/5 on a scale from 1 (excellent) to 5 (fail), mainly due to punctuation errors. In a further manual evaluation of
similarity to the original text on a three-point scale of “incorrect”, “passable” and “correct”, all obfuscated texts were
graded as “correct” or “passable”.

In the same PAN 2016 Author Masking Task, Mihaylova et al. applied various alterations by replacing elements with
others, merging, splitting, removal etc. [116]. In Potthast et al’s evaluation [135], Mihaylova et al. received the best
results of all PAN 2016 Author Masking Task contenders in safety (i.e. the success of obfuscation), with an average impact
of 36 % — 49 % depending on the dataset. However, in the manual evaluation of sensibility and soundness, the obfuscated
texts were deemed practically unreadable and semantically odd. In a subsequent study, the same authors applied similar
but improved techniques to the same test setting, shifting stylistic features toward their average distribution in the
training set [79]. Using multiple author identification methods from prior PAN competitions, their method achieved an
average accuracy drop between 10% and 16%, and maintained a superior readability compared to their prior method.

In terms of retaining the original meaning, rule-based substitution is a more secure obfuscation method than ILT, as
it allows deterministic user control of the output. Especially with grammatical changes, transformations can be limited
to have only minor semantic impact. However, the scalability of hand-crafted rules across a large variety of datasets is
difficult to attain [157]. With lexical replacements semantic retention is harder to control, as the appropriateness of
paraphrases can be highly context-dependent. If WordNet is used for synonym replacement, context effects can partly
be accounted for by using sense disambiguation techniques, such as the Lesk algorithm [96, 140]. WordNet represents
words in the uninflected lemma format, which restricts synonym replacement to contexts where the surface form is
identical with the lemma. The Paraphrase Database (PPDB) [55] is the major alternative to WordNet, and links inflected
forms directly. Derived from parallel corpora used for MT, PPDB also involves information about the appropriate
syntactic environment for the paraphrases. However, since the phrases are represented as raw text, it does not directly
allow the use of Lesk or other semantic sense disambiguation algorithms.

MT between styles In addition to translating across different languages, MT can be used within the same language to
automatically paraphrase text. Importantly, such a method could allow not only obfuscation of the original author but
automatic imitation of a predetermined style. MT was used for style transformation by Xu et al. [176], who paraphrased
Shakespeare as modern English and evaluated the results both manually and with three automatic methods based on
cosine similarity (n-gram overlap), language models with Bayesian probability estimation, and logistic regression. The

automatic metrics correlated with human judgement to a significant degree.
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In addition to using ILT for obfuscation (see above), Day et al. [36] applied iterative paraphrasing, creating the
paraphrase dataset with the online tool Plagiarisma. Paraphrasing decreased the author identification rate with Hybrid-II
[105] from 54% to 7% in the first iteration, 1% with the second iteration, and 6% with the third iteration. The LSA-value
for paraphrased text was 0.80, indicating relatively high lexical overlap with the original text. Like the MT algorithms,
paraphrasing itself was detectable, with fingerprinting accuracies of 86% on the first iteration, 91% on the second
iteration, and 95% on the third iteration.

More recently, neural machine translation (NMT) techniques [103, 171] have been adopted for automatic style
imitation. The input is first mapped to a style-neutral representation, and then a new sentence is generated from
this representation while controlling target style. However, the transformations implemented in these studies have
often involved semantic changes, as in altering sentiment or political slant [69, 136, 156]. In contrast, the main goal
of adversarial stylometry is to retain semantic content to a maximal extent while fooling the author classifier. This is
evidently not achieved with examples like Prabhumoye et al’s political slant transformation from “i thank you, sen.
visclosky” to “I’'m praying for you sir” [136]. Such examples may deceive a Democrat-Republican classifier, but they
also change the original meaning too much to constitute viable forms of transformation for anonymization purposes.
Since we are concerned with adversarial stylometry and not content alteration, we do not review research on the latter.
An important aspect of future work is a more systematic application of the suggested methods to different kinds of
tasks, with a particular focus on their ability to retain content across stylistic changes.

In addition to experimenting on political slant and sentiment, Prabhumoye et al. [136] also tackle the issue of gender
profiling, which falls under our scope by being a purely author-related, non-semantic feature. The basis for their method
is the notion that translation to another language will remove many style-specific features [137]. First, they train
translators between English and French to both directions, and begin the style transformation process by translating the
original sentence to French. They then process the French translation with the encoder part of the French-to-English
translator. The decoder part of the translator is a generative model that takes the French encoding as a context vector
and produces an English target sentence. They split this decoder into different variants, which are trained to produce
sentences allocated to particular categories by a CNN classifier. The resulting sentences are thus the combined effect of
the original French-English translator and the class-based tuning of the English decoder. Prabhumoye et al. compare
their back-translation method with Shen et al’s [156] cross-aligned autoencoder approach, which is similar but uses
a different algorithm for generating the intermediate style-neutral representation. The gender classifier’s original
accuracy of 82% was reduced to 40% with cross-aligned autoencoders and 43% with back-translation. In a manual
fluency evaluation on 60 random sentences, gender imitation by cross-aligned autoencoders received an average rating
of 2.42/4, while imitation by back-translation received 2.81/4.

Shetty et al. [157] present a Generative Adversarial Network (GAN) -based approach to style transformation, which
they title Adversarial Author Attribute Anonymity Neural Translation (A*NT). A GAN consists of a classifier trained to
discriminate between two or more classes, and a generative model that is trained to fool this classifier [59]. A*NT is an
unsupervised approach where an encoder-decoder network is trained to generate sentences which fool a word-based
LSTM author classifier, but also maintain a maximal semantic proximity to the original sentence. Semantic retention
was measured as a combination of two components: the probability of reconstructing the original sentence via a reverse
A*NT-transformation, and the distance of sentence embeddings constructed using a pre-trained embedding model [30].
A*NT was tested across three classification tasks: blog author gender, blog author age, and political speeches by Barack

Obama vs. Donald Trump. In all tasks, the method lowered classification accuracy to random chance or below. However,
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these results only concerned the same classifier as used in training the GAN. Shetty et al. further show that blog age
classification F1-score is dropped from 87% to 62% with the best of 10 alternative classifier candidates. Corresponding
results from the two other tasks are not shown. For assessing semantic similarity, they use the MT evaluation metric
Meteor [38], which measures n-gram overlap using additional paraphrase tables. They receive scores of 0.69, 0.79, and
0.29 in the gender, age, and Obama/Trump tasks, respectively. Shetty et al. note that these results exceed those received
with automatic paraphrasing methods [99], although such comparison is problematic as the studies involve different
corpora. Finally, a user-study indicated that human evaluators preferred A*NT to ILT via Google Translate with a
similar obfuscation success.

Of the approaches reviewed here, only A*NT has a built-in mechanism for semantic retainment. In spite of this,
even its example transformations often include drastic semantic changes, as seen in the following Obama-Trump

transformations taken from Shetty et al. [157]:

“their situation is getting worse.” — “their media is getting worse.”
“(...) because i do care” — “(...) because they don’t care.”

“that’s how our democracy works.” — “that’s how our horrible horrible trade deals.”

A system that cannot secure sufficient semantic retention is unreliable for real-life application, irrespective of its
success in fooling author identification. Overall, recent advances in NMT and GANs show promise in generating
stylistic transformations, but further research is required to evaluate the feasibility of such methods in more realistic
scenarios against a large variety of classifiers. Beyond adversarial stylometry, the transformation of writing style
has been studied within automatic text simplification [120, 158, 159, 173], which in turn belongs to the broader field
of paraphrase generation [99, 106]. Effects of these methods on author obfuscation have yet to be investigated, but

increasing the interaction between these fields would likely be beneficial to both sides.

4 CONCLUSIONS
Section 1 presented the following three questions concerning deception detection based on writing style:

Q1 Does deception leave a content-independent stylistic trace?
Q2 Is the deanonymization attack a realistic privacy concern?

Q3 Can the deanonymization attack be mitigated with automatic style obfuscation?

Based on the literature review conducted in Section 2, Q1 was answered negatively. We demonstrated that linguistic
features that have correlated with deception have been too specific to particular semantic domains to constitute genuine
stylistic “deception markers”. The practical consequence of this finding is that stylometric analysis has plausible utility
for deception detection only if the training and test domain are sufficiently similar. Furthermore, even when successful,
stylistic markers of deception are likely to be content-based correlates rather than indicators of general psychological
mechanisms behind lying.

Our review suggest that alternative approaches to pure stylometry are likely more effective in detecting textual
deception. These include, in particular, content comparison, similarity detection, and using metadata. Content comparison
allows detecting texts that contain claims with a pre-established truth-value based on an external knowledge base [147].
False claims are not deceptive if they are sincerely believed (see Section 2), but a strong correlation between falsity
and deception is nevertheless likely. Surface-level similarity between texts has also proven helpful in finding trolls or
spammers, who tend to repeat the same across many discussions [94, 122, 167]. Finally, information beyond linguistic
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content has been more effective in detecting fake reviews [119, 144] or trolls [115] than linguistic content. Stylometric
classification can assist such techniques, but is severely limited as a stand-alone solution.

With respect to Q2, we argued that stylometry-based deanonymization constitutes a realistic privacy threat, especially
if the set of potential authors is small (ca. < 20) [4, 14, 15, 183]. Even though author identification has not proven
sufficiently scalable to larger sets of authors (ca. > 1000) [123], stylometry can still significantly increase the likelihood
of finding the correct author, even among 100000 candidates [121]. From the perspective of an author wishing to
retain anonymity, these results are legitimately worrying. With the constant increase in the availability of corpora
and computing power, the deanonymization attack will likely continue to be a growing privacy threat. We therefore
consider the further development of automatic style obfuscation tools as not merely an academic excercise, but to have
important real-life consequences for information security.

Turning to Q3, manual obfuscation remains potentially effective against the deanonymization attack [4, 14, 15],
and tools like Anonymouth [109] can help in this task. Fully automatic approaches, in contrast, suffer from the
difficulty of balancing sufficient obfuscation success with semantic faithfulness to the original text. So far, only simple
rule-based approaches have allowed securing semantic retention, as transformations can be limited to semantically
vacuous choices [79, 82]. However, these methods are very limited in application, and have not demonstrated sufficient
obfuscation success. Only one of all the studies reviewed in Section 3.3.3 included a semantic similarity measure in the
algorithm [157], and even it had trouble with too severe semantic alterations. Approaches have largely relied on a priori
assumptions about ILT or paraphrase replacement not altering semantics, which has not been sufficiently confirmed.
Additionally, while user studies are important for assessing readability and semantic retention, the lack of established
baselines makes the results difficult to evaluate. Merely comparative measures between different techniques are also
inadequate, as they do not demonstrate whether the transformations are acceptable, but only which are preferred under
an obligatory choice.

The detectability of obfuscation methods themselves has not been sufficiently investigated, as only two of the
studies we reviewed had conducted such an evaluation [22, 36]. All ILT variants could be detected with a high accuracy
in both studies, including even the number of intermediate languages. Day et al. also successfully fingerprinted a
paraphrase-based MT-algorithm [36]. These results indicate that even if obfuscation succeeds, obfuscated texts could
still be distinguished from original texts. However, it bears emphasis that such classification requires knowledge of
the obfuscation algorithm, which may not be available. The general property of being obfuscated with any method is
unlikely to leave a stylistic trace. The situation is similar to the case of automatically generated fake reviews (Section
2.2.1), where the detection of generated text is possible, but only provided that the generation algorithm is known
[77, 178].

Summarizing our discussion on adversarial stylometry, while promising frameworks for automatic text transformation
exist especially within NMT, securing semantic retention has not been sufficiently studied or implemented in state-
of-the-art style transformation applications. We believe that this constitutes the most important challenge for the
field going forward. We further suggest that increased interaction between different fields would likely prove useful.
While we have focused on style transformation from the perspective of information security, the field of automatic
paraphrasing is much broader in scope [99, 106], involving tasks such as automatic text simplification [120, 158, 159, 173],
controlling for style in MT [155], politeness transformation [143], or generating exercises for language pedagogy [8].
Systematically examining the effects of methods developed for other purposes on style obfuscation would constitute a
valuable addition to the field.

28



REFERENCES

[1] Ahmed Abbasi and Hsinchun Chen. Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace.
ACM Transactions on Information and System Security, 26(2):1-29, 2008.
[2] Sadia Afroz, Michael Brennan, and Rachel Greenstadt. Detecting Hoaxes, Frauds, and Deception in Writing Style Online. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, pages 461-475, 2012.
[3] Sadia Afroz, Aylin Caliskan-Islam, Ariel Stolerman, Rachel Greenstadt, and Damon McCoy. Doppelganger finder: Taking stylometry to the
underground. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, pages 212-226, 2014.
[4] Mishari Almishari, Ekin Oguz, and Gene Tsudik. Fighting Authorship Linkability with Crowdsourcing. In Proceedings of the second ACM conference
on Online social networks, pages 69-82, 2014.
[5] Shlomo Argamon, Moshe Koppel, James W. Pennebaker, and Jonathan Schler. Automatically profiling the author of an anonymous text.
Communcations of the ACM, 52(2):119-123, 2009.
[6] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. Deep Learning for Hate Speech Detection in Tweets. In Proceedings of
the 26th International Conference on World Wide Web Companion, pages 759-760, 2017.
[7] Douglas Bagnall. Author identification using multi-headed recurrent neural networks. In Working Notes of CLEF 2015 - Conference and Labs of the
Evaluation Forum, 2015.
[8] Jorge Baptista, Sandra Lourenco, and Nuno Mamede. Automatic generation of exercises on passive transformation in Portuguese. In IEEE Congress
on Evolutionary Computation (CEC), pages 4965-4972, 2016.
[9] Daniel Bennett. A ‘Gay Girl in Damascus’, the Mirage of the ‘Authentic Voice’ - and the Future of Journalism. In Richard Lance Keeble and John
Mair, editors, Mirage in the Desert? Reporting the Arab Spring, pages 187-195. Abramis, Bury St. Edmunds, 2011.
[10] Douglas Biber, Stig Johansson, Geoffrey Leech, Susan Conrad, Edward Finegan, and Randolph Quirk. Longman Grammar of Spoken and Written
English, volume 2. Pearson Education, Harlow, 1999.
[11] Steven Bird and Edward Loper. NLTK: the natural language toolkit. In Proceedings of the ACL 2004 on Interactive poster and demonstration sessions,
2004.
[12] Bernard Bloch. A set of postulates for phonemic analysis. Language, 24(1):3-46, 1948.
[13] Charles F. Bond. and Bella M. DePaulo. Accuracy of deception judgments. Personality and Social Psychology Review, 10(3):214-234, 2011.
[14] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. Adversarial stylometry: Circumventing authorship recognition to preserve privacy and
anonymity. ACM Transactions on Information and System Security, 15(3), 2011.
[15] Michael Brennan and Rachel Greenstadt. Practical Attacks Against Authorship Recognition Techniques. In Proceedings of the Twenty-First
Conference on Innovative Applications of Artificial Intelligence, pages 60-65, 2009.
[16] Marcelo Luiz Brocardo, Issa Traore, Isaac Woungang, and Mohammad S. Obaidat. Authorship verification using deep belief network systems.
Communication Systems, 30(12), 2017.
[17] David B. Buller and Judee K. Burgoon. Interpersonal deception theory. Communication theory, 6(3):203-242, 1996.
[18] David B. Buller, Judee K. Burgoon, Aileen Buslig, and James Roiger. Testing interpersonal deception theory: The language of interpersonal
deception. Communication theory, 6(3):268—-289, 1996.
[19] Judee K. Burgoon, J. P. Blair, Tiantian Qin, and Jay F. Nunamaker, Jr. Detecting deception through linguistic analysis. In Proceedings of the 1st
NSF/NIF Conference on Intelligence and Security Informatics, pages 91-101, Berlin, Heidelberg, 2003. Springer-Verlag.
[20] Pete Burnap and Matthew L. Williams. Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy
and decision making. Policy & Internet, 7(2):223-242, 2015.
[21] John F. Burrows. Word patterns and story shapes: the statistical analysis of narrative style. Literary and Linguistic Computing, 2:61-70, 1987.
[22] Aylin Caliskan and Rachel Greenstadt. Translate once, translate twice, translate thrice and attribute: Identifying authors and machine translation
tools in translated text. In IEEE Sixth International Conference on Semantic Computing (ICSC), pages 121-125, 2012.
[23] Erik Cambria, Praphul Chandra, Avinash Sharma, and Amir Hussain. Do not feel the trolls. In Proceedings of the 3rd International Workshop on
Social Data on the Web (SDoW2010), 2010.
[24] Erik Cambria and Amir Hussain. Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Springer International
Publishing, Cham, 2015.
[25] Antonio Castro and Brian Lindauer. Author Identification on Twitter. In Third IEEE International Conference on Data Mining, pages 705-708, 2013.
[26] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. Transactions on Intelligent Systems and Technology, 3(2):27,
2011.
[27] Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu. Detecting offensive language in social media to protect adolescent online safety. In Proceedings of
the 2012 International Conference on Privacy, Security, Risk and Trust and of the 2012 International Conference on Social Computing (PAS-SAT/SocialCom
’12), pages 71-80, Amsterdam, 2012.

[28] Cindy K. Chung and James W. Pennebaker. The psychological functions of function words. In Klaus Fiedler, editor, Frontiers of social psychology:
Social communication, pages 343-359. Psychology Press, New York, 2007.
[29] Jonathan H. Clark and Charles J. Hannon. A classifier system for author recognition using synonym-based features. In Alexander Gelbukh and

Angel Fernando Kuri Morales, editors, Lecture Notes in Computer Science, vol. 4827, pages 839-849. Springer, 2007.

29



(51]

o a g
L=

(55

(56]

(57]

(58

@
A

NN
Nos S

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised learning of universal sentence representations
from natural language inference data. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
670-680, 2017.

Malcolm Coulthard. Author identification, idiolect and linguistic uniqueness. Applied Linguistics, 25(4):431-447, 2004.

Erin Smith Crabb. “Time for some traffic problems”: Enhancing e-discovery and big data processing tools with linguistic methods for deception
detection. Journal of Digital Forensics, Security and Law, 9(2), 2014.

Walter Daelemans. Explanation in computational stylometry. In Computational Linguistics and Intelligent Text Processing: 14th International
Conference (CICLing2013), pages 451-462, 2013.

Robert Dale and Ehud Reiter. Building natural language generation systems. Cambridge University Press, Cambridge, 2000.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated Hate Speech Detection and the Problem of Offensive Language.
In Proceedings of the 11th Conference on Web and Social Media, pages 512515, 2017.

Siobahn Day, James Brown, Zachery Thomas, India Gregory, Lowell Bass, and Gerry Dozier. Adversarial Authorship, AuthorWebs, and Entropy-
Based Evolutionary Clustering. In 25th International Conference on Computer Communication and Networks (ICCCN), pages 1-6, 2016.

Olivier de Vel, Alison Anderson, Malcolm Corney, and George Mohay. Mining e-mail content for author identification forensics. ACM Sigmod Rev.,
30(4):55-64, 2001.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation for any target language. In Proceedings of the
Ninth Workshop on Statistical Machine Translation, pages 376-380, 2014.

Bella M. DePaulo, James J. Lindsay, Brian E. Malone, Laura Muhlenbruck, Kelly Charlston, and Harris Cooper. Cues to deception. Psychological
Bulletin, 129(1):74-118, 2003.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805, 2018.

Karthik Dinakar, Birago Jones, Catherine Havasi, Henry Lieberman, and Rosalind Picard. Common sense reasoning for detection, prevention, and
mitigation of cyberbullying. ACM Transactions on Interactive Intelligen Systems, 2(3):18:1-18:30, 2012.

Susan T. Dumais. Latent semantic analysis. Annual Review of Information Science and Technology, 38(1):188-230, 2004.

Maciej Eder, Jan Rybicki, and Mike Kestemont. Stylometry with R: A Package for Computational Text Analysis. The R Journal, 8(1):107-121, 2016.
Paul Ekman. Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage. Norton, New York, 1985.

Paul Ekman and Wallace V. Friesen. Nonverbal leakage and clues to deception. Psychiatry, 32(1):88, 1969.

Paul. Ekman and Maureen O’Sullivan. Who can catch a liar? American Psychologist, 46(9):913-920, 1991.

Frank Enos, Elizabeth Shriberg, Martin Graciarena, Julia Hirschberg, and Andreas Stolcke. Detecting deception using critical segments. In
Proceedings of Interspeech, pages 1621-1624, 2007.

Igbal Farkhund, Hamad Binsalleeh, Benjamin C.M. Fung, and Mourad Debbabi. Mining writeprints from anonymous e-mails for forensic
investigation. Digital Investigation, 7(1-2):56—64, 2013.

Christiane Fellbaum (ed.). WordNet: An Electronic Lexical Database. MIT Press, Cambridge, 1998.

Song Feng, Ritwik Banerjee, and Yejin Choi. Syntactic stylometry for deception detection. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 171-175, 2012.

Eileen Fitzpatrick and Joan Bachenko. Building a forensic corpus to test language-based indicators of deception. Language and Computers,
71(1):183-196, 2009.

Eileen Fitzpatrick, Joan Bachenko, and Tommaso Fornaciari. Automatic Detection of Verbal Deception. Morgan & Claypool, 2015.

Douwe Fokkema and Elrud Ibsch. Modernist Conjectures. A Mainstream in European Literature. Hurst, London, 1987.

Patxi Galan-Garcia, José Gaviria de la Puerta, Carlos Laorden Gomez, Igor Santos, and Pablo Garcia Bringas. Supervised machine learning for the
detection of troll profiles in Twitter social network: Application to a real case of cyberbullying. In International Joint Conference of Advances in
Intelligent Systems and Computing, pages 419-428, 2014.

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. PPDB: The Paraphrase Database. In Proceedings of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pages 758-764, 2013.

Zhenhao Ge and Yufang Sun. Domain Specific Author Attribution based on Feedforward Neural Network Language Models. In Proceedings of the
5th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2016), pages 597-604, 2016.

Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura Damien, and Jun Long. A lexicon-based approach for hate speech detection. International
Journal of Multimedia and Ubiquitous Engineering, 10(4):215-230, 2015.

Yoav Goldberg. A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57(1):345-420, 2016.
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Advances in Neural Information Processing Systems 27 (NIPS), pages 2672-2680, 2014.

Paul Grice. Studies in the Way of Words. Harvard University Press, Cambridge/London, 1989.

Jack Grieve. Quantitative authorship attribution: An evaluation of techniques. Literary and Linguistic Computing, 22(3), 2007.

Tommi Gréndahl, Luca Pajola, Mika Juuti, Mauro Conti, and N. Asokan. All you need is “love”: Evading hate speech detection. In Proceedings of
the 11th ACM Workshop on Artificial Intelligence and Security (AlSec’11), pages 2-12, 2018.

30



9SS
L)

(76]

(80

(81

[90

[91

Jeffrey T. Hancock, Lauren E. Curry, Saurabh Goorhaand, and Michael Woodworth. On lying and being lied to: A linguistic analysis of deception
in computer-mediated communication. Discourse Processes, 45(1):1-23, 2008.

Jeffrey T. Hancock and David M. Markowitz. Linguistic traces of a scientific fraud: The case of Diederik Stapel. PLoS ONE, 9(8), 2014.

Graeme Hirst and Olga Feiguina. Bigrams of syntactic labels for authorship discrimination of short texts. Literary and Linguistic Computing,
22(4):405-417, 2007.

Dirk Hovy. The enemy in your own camp : how well can we detect statistically-generated fake reviews — an adversarial study. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, pages 351-356, 2016.

Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text classification. CoRR, abs/1801.06146, 2018.

Nan Hu, Indranil Bose, Noi Sian Koh, and Ling Liu. Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision
Support Systems, 52(3):674-684, 2012.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward controlled generation of text. In Proceedings of the
International Conference on Machine Learning (ICML), pages 1587-1596, 2017.

Timothy Jay and Kirstin Janschewitz. The pragmatics of swearing. Journal of Politeness Research. Language, Behaviour, Culture, 4(2):267-288, 2008.
Patrick Juola. Ad-hoc Authorship Attribution Competition. In Proceedings of the 2004 Joint International Conference of the Association for Literary
and Linguistic Computing and the Association for Computers and the Humanities (ALLC/ACH), 2004.

Patrick Juola. JGAAP: A System for Comparative Evaluation of Authorship Attribution. Journal of Digital Humanities and Computer Science, 1(1),
2009.

Patrick Juola. Large-Scale Experiments in Authorship Attribution. English Studies, 93(3):275-283, 2012.

Patrick Juola. Stylometry and immigration: A case study. Journal of Law and Policy, 21(2):287-298, 2013.

Patrick Juola, John Sofko, and Patrick Brennan. A prototype for authorship attribution studies. Literary and Linguistic Computing, 2(21):169-178,
2006.

Patrick Juola and Darren Vescovi. Empirical evaluation of authorship obfuscation using JGAAP. In Proceedings of the 3rd ACM Workshop on
Artificial Intelligence and Security (AlSec’10), pages 14-18, 2010.

Mika Juuti, Bo Sun, Tatsuya Mori, and N. Asokan. Stay on-topic: Generating context-specific fake restaurant reviews. In Proceedings of the 23rd
European Symposium on Research in Computer Security (ESORICS), pages 132-151, 2018.

Gary Kacmarcik and Michael Gamon. Obfuscating document stylometry to preserve author anonymity. In Proceedings of COLING/ACL: Poster
Sessions, pages 444-451, 2006.

Georgi Karadzhov, Tsvetomila Mihaylova, Yasen Kiprov, Georgi Georgiev, Ivan Koychev, and Preslav Nakov. The case for being average: A
mediocrity approach to style masking and author obfuscation. In International Conference of the Cross-Language Evaluation Forum for European
Languages, pages 173-185, 2017.

Parambir S. Keila and David B. Skillicorn. Detecting unusual and deceptive communication in email. In Centers for Advanced Studies Conference,
pages 17-20, 2005.

Yashwant Keswani, Harsh Trivedi, Parth Mehta, and Prasenjit Majumde. Author Masking through Translation - Notebook for PAN at CLEF 2016.
In Krisztian Balog, Linda Cappellato, Nicola Ferro, and Craig Macdonald, editors, CLEF 2016 Evaluation Labs and Workshop — Working Notes Papers,
2016.

Foaad Khosmood and Robert Levinson. Automatic natural language style classification and transformation. In Proceedings of the 2008 BCS-IRSG
Conference on Corpus Profiling, page 3, 2008.

Foaad Khosmood and Robert Levinson. Toward automated stylistic transformation of natural language text. In Proceedings of the Digital Humanities,
pages 177-181, 2009.

Foaad Khosmood and Robert Levinson. Automatic synonym and phrase replacement show promise for style transformation. In Proceedings of the
Ninth International Conference on Machine Learning and Applications, pages 958-961, 2010.

Bryan Klimt and Yiming Yang. The Enron Corpus: A New Dataset for Email Classification Research. In Machine Learning: 15th European Conference
on Machine Learning (ECML2004), pages 217-226, 2004.

Mark Knapp and Mark Comaden. Telling it like it isn’t: A review of theory and research on deceptive communications. Human Communication
Research, 5(3):270-285, 1979.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In MT summit, pages 79-86, 2005.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, and Richard Zens. Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages 177-180, 2007.

Moshe Koppel and Jonathan Schler. Authorship verification as a one-class classification problem. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 489-495, 2004.

Olga V. Kukushkina, Anatoly A. Polikarpov, and Dimitry V. Khmelev. Using literal and grammatical statistics for authorship attribution. Problems
of Information Transmission, 37(2):172-184, 2001.

William Labov. Field Methods of the Project in Linguistic Change and Variation. In John Baugh and Joel Sherzer, editors, Language in Use: Readings
in Sociolinguistics, pages 28-66. Prentice Hall, Englewood Cliffs, 1984.

31



(92]

)
)

(94

[95

(96

[97

(98

[99

[100]

[101]

[102]

[117
[118
[119

[120]

J. Clayton Lafferty and Patrick M. Eady. The Desert Survival Problem. Experimental Learning Methods, Plymouth, Michigan, 1974.

David F. Larcker and Anastasia A. Zakolyukina. Detecting deceptive discussions in conference calls. Journal of Accounting Research, 50(2):495-540,
2012.

Raymond Y.K. Lau, SY Liao, Ron Chi-Wai Kwok, Kaiquan Xu, Yunging Xia, and Yuefeng Li. Text mining and probabilistic language modeling for
online review spam detecting. ACM Transactions on Management Information Systems, 4(2):1-30, 2011.

Chih-Chen Lee, Robert B. Welker, and Marcus D. Odom. Features of computer-mediated, text-based messages that support automatable, linguistics-
based indicators for deception detection. Journal of Information Systems, 23(1):5-24, 2009.

Michael Lesk. Automatic sense disambiguation using machine readable dictionaries: how to tell a pine code from an ice cream cone. In Proceedings
of the 5th annual international conference on systems documentation, pages 24-26, 1986.

Jiwei Li, Myle Ott, and Claire Cardie. Identifying manipulated offerings on review portals. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 18-21, 2013.

Jiwei Li, Myle Ott, Claire Cardie, and Eduard Hovy. Towards a General Rule for Identifying Deceptive Opinion Spam. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (ACL), pages 15661576, 2014.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. Paraphrase Generation with Deep Reinforcement Learning. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 3865-3878, 2018.

Max Louwerse, K Lin, A Drescher, and Giin Semin. Linguistic cues predict fraudulent events in a corporate social network. In Proceedings of the 32
Annual Conference of the Cognitive Science Society, pages 961-966, 2010.

Max M. Louwerse. Semantic variation in idiolect and sociolect: Corpus linguistic evidence from literary texts. Computers and the Humanities,
38(2):207-221, 2004.

Daniel Lowd and Christopher Meek. Good word attacks on statistical spam filters. In Proceedings of the Second Conference on Email and Anti-Spam
(CEAS), 2005.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based neural machine translation. In Empirical
Methods in Natural Language Processing (EMNLP), pages 1412-1421, 2015.

Wicenty Lutoslawski. Principes de stylometrie. E. Leroux, 1898.

Nathan Mack, Jasmine Bowers, Henry Williams, Gerry Dozier, and Joseph Shelton. The Best Way to a Strong Defense is a Strong Offense:
Mitigating Deanonymization Attacks via Iterative Language Translation. International Journal of Machine Learning and Computing, 5(5):409-413,
2015.

Nitin Madnani and Bonnie Dorr. Generating phrasal and sentential paraphrases: A survey of data-driven methods. Journal of Computational
Linguistics, 36(3):341-387, 2010.

Muharram Mansoorizadeh, Taher Rahgooy, Mohammad Aminiyan, and Mahdy Eskandari. Author Obfuscation using WordNet and Language
Models - Notebook for PAN at CLEF 2016. In Krisztian Balog, Linda Cappellato, Nicola Ferro, and Craig Macdonald, editors, CLEF 2016 Evaluation
Labs and Workshop — Working Notes Papers, 2016.

Yuval Marton, Ning Wu, and Lisa Hellerstein. On compression-based text classification. In Advances in Information Retrieval, pages 300-314, 2005.
Andrew W.E. McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and Rachel Greenstadt. Use fewer instances of the letter i: Toward writing
style anonymization. In Privacy Enhancing Technologies (PETS), pages 299-318, 2012.

Gerald R. McMenamin and Dongdoo Choi. Forensic Linguistics: Advances in Forensic Stylistics. CRC Press, London, 2002.

Yashar Mehdad and Joel Tetreault. Do characters abuse more than words? In 17th Annual Meeting of the Special Interest Group on Discourse and
Dialogue, pages 299-303, 2016.

Thomas Corwin Mendenhall. The characteristic curves of composition. Science, IX:237-49, 1887.

Rada Mihalcea and Carlo Strapparava. The Lie Detector: Explorations in the Automatic Recognition of Deceptive Language. In Proceedings of the
ACL-TJCNLP 2009 Conference Short Papers, pages 309-312, 2009.

Todor Mihaylov, Georgi D. Georgiev, and Preslav Nakov. Finding opinion manipulation trolls in news community forums. In Proceedings of the
19th Conference on Computational Language Learning, pages 310-314, 2015.

Todor Mihaylov and Preslav Nakov. Hunting for troll comments in news community forums. In The 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 399-405, 2016.

Tsvetomila Mihaylova, Georgi Karadjov, Preslav Nakov, Yasen Kiprov, Georgi Georgiev, and Ivan Koychev. SU@PAN’2016: Author Obfuscation —
Notebook for PAN at CLEF 2016. In Krisztian Balog, Linda Cappellato, Nicola Ferro, and Craig Macdonald, editors, CLEF 2016 Evaluation Labs and
Workshop — Working Notes Papers, 2016.

George A. Miller. WordNet: A Lexical Database for English. Communications of the ACM, 38(11):39-41, 1995.

Frederick Mosteller and David L. Wallace. Inference and disputed authorship: The Federalist. Addison-Wesley, 1964.

Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Nathan S. Glance. What Yelp fake review filter might be doing? In Proceedings of the Seventh
International Conference on Weblogs and Social Media (ICWSM-2013), pages 409-418, 2013.

Shashi Narayan and Claire Gardent. Hybrid simplification using deep semantics and machine translation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (ACL), pages 435-445, 2014.

32



[121]

[122

[123

[124]

[125]

[128]

[129

[130

[131]

[132

[133

[134

[135]

[136

[137]

[138

[139

[140]

[141]

[142

[143]

[144

[145]

Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethencourt, Emil Stefanov, Eui Chul Richard Shin, and Dawn Song. On the
feasibility of internet-scale author identification. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, pages 300-314, 2012.
Kazuyuki Narisawa, Hideo Bannai, Kohei Hatano, and Masayuki Takeda. Unsupervised spam detection based on String Alienness Measures.
Discovery Science, pages 161172, 2007.

Tempestt Neal, Kalaivani Sundararajan, Aneez Fatima, Yiming Yan, Yingfei Xiang, and Damon Woodard. Surveying stylometry techniques and
applications. ACM Computing Surveys, 50(6):86:1-86:36, 2017.

Matthew L. Newman, James W. Pennebaker, Diane S. Berry, and Jane M. Richards. Lying words: Predicting deception from linguistic styles.
Personality and social psychology bulletin, 29(5):665-675, 2003.

Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. Abusive language detection in online user content. In Proceedings
of the 25th International Conference on World Wide Web, pages 145-153, 2016.

Ray Oshikawa, Jing Qian, and William Yang Wang. A survey on natural language processing for fake news detection. CoRR, abs/1811.00770, 2018.
Ricardo Otheguy, Ofelia Garcia, and Wallis Reid. Clarifying translanguaging and deconstructing named languages: A perspective from linguistics.
Applied Linguistics Review, 6(3):281-307, 2015.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock. Finding deceptive opinion spam by any stretch of the imagination. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), pages 309-319, 2011.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock. Negative deceptive opinion spam. In Proceedings of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pages 497-501, 2013.

Rebekah Overdorf and Rachel Greenstadt. Blogs, twitter feeds, and reddit comments: Cross-domain authorship attribution. In Proceedings on
Privacy Enhancing Technologies, pages 155-171, 2016.

James W. Pennebaker, Roger J. Booth, and Martha E. Francis. Linguistic Inquiry and Word Count (LIWC): LIWC2007. Technical report, LIWC.net,
Austin, Texas, 2007.

Veroénica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. Automatic detection of fake news. In Proceedings of the 27th
International Conference on Computational Linguistics, pages 3391-3401, 2018.

Juan-Pablo Posadas-Duran, Grigori Sidorov, and Ildar Batyrshin. Complete Syntactic N-grams as Style Markers for Authorship Attribution. In
Alexander Gelbukh, Félix Castro Espinoza, and Sofia N. Galicia-Haro, editors, Human-Inspired Computing and Its Applications, pages 9-17. Springer
International Publishing, Cham, 2014.

Martin Potthast, Sarah Braun, Tolga Buz, Fabian Duffhauss, Florian Friedrich, Jérg Marvin Giilzow, Jakob Kohler, Winfried Lotzsch, Fabian Miller,
Maike Elisa Miiller, Robert Paimann, Bernhard Reinke, Lucas Rettenmeier, Thomas Rometsch, Timo Sommer, Michael Tréger, Sebastian Wilhelm,
Benno Stein, Efstathios Stamatatos, and Matthias Hagen. Who wrote the web? revisiting influential author identification research applicable to
information retrieval. In Nicola Ferro, Fabio Crestani, Marie-Francine Moens, Josiane Mothe, Fabrizio Silvestri, Giorgio Maria Di Nunzio, Claudia
Hauff, and Gianmaria Silvello, editors, Advances in Information Retrieval, pages 393-407. Springer International Publishing, 2016.

Martin Potthast, Matthias Hagen, and Benno Stein. Author obfuscation: Attacking the state of the art in authorship verification. In CLEF 2016
Working Notes, 2016.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, and Alan W. Black. Style Transfer Through Back-Translation. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 866876, 2018.

Ella Rabinovich, Shachar Mirkin, Raj Nath Patel, Lucia Specia, and Shuly Wintner. Personalized machine translation: Preserving original author
traits. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, pages 1074-1084, 2016.
Roshan Ragel, Pramod Herath, and Upul Senanayake. Authorship Detection of SMS Messages Using Unigrams. In Eighth IEEE International
Conference on Industrial and Information Systems, pages 387-392, 2013.

Sindhu Raghavan, Adriana Kovashka, and Raymond Mooney. Authorship attribution using probabilistic context-free grammars. In Proceedings of
the ACL 2010 Conference Short Papers (ACLShort’10), pages 38-42, 2010.

Ganesh Ramakrishnan, B. Prithviraj, and Pushpak Bhattacharyya. A Gloss Centered Algorithm for Word Sense Disambiguation. In Proceedings of
the ACL SENSEVAL, pages 217-221, 2004.

Congzhou He Ramyaa and Khaled Rasheed. Using machine learning techniques for stylometry. In Proceedings of the International Conference on
Artificial Intelligence (IC-AI'04), volume 2, pages 897-903, 2004.

Josyula R. Rao and Pankaj Rohatgi. Can pseudonymity really guarantee privacy? In Steven M. Bellovin and Gregory G., editors, 9th USENIX
Security Symposium, 2000.

Sudha Rao and Joel R. Tetreault. Dear sir or madam, may I introduce the GYAFC dataset: Corpus, benchmarks and metrics for formality style
transfer. In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT),
pages 129-140, 2018.

Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review networks and metadata. In Steven M. Bellovin and
Gregory G., editors, Proceeding of the 21st ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’15), 2015.

Paul Rayson, Andrew Wilson, and Geoffrey Leech. Grammatical word class variation within the british national corpus sampler. Language and
Computers, 36(1):295-306, 2001.

33



[152]

[153]

[154]

[155]

[165]

[166

[167]

[168]

[169]

[170]

[171]

[172

Tapani Rinta-Kahila and Wael Soliman. Understanding crowdturfing: The different ethicallogics behind the clandestine industry of deception. In
Proceedings of the 25th European Conference on Information Systems (ECIS), pages 1934-1949, 2017.

Victoria L. Rubin. Deception Detection and Rumor Debunking for Social Media. In Luke Sloan and Anabel Quan-Haase, editors, The SAGE
Handbook of Social Media Research Methods. SAGE, London, 2017.

Joseph Rudman. The state of authorship attribution studies: some problems and solutions. Computers and the humanities,, 31(4):351-365, 1998.
Joseph Rudman. The state of non-traditional authorship studies - 2010: Some problems and solutions. In Proceedings of the Digital Humanities,
pages 217-219, 2010.

Edward Sapir. Speech as a personality trait. American Journal of Sociology, 32(6):892-905, 1927.

Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local algorithms for document fingerprinting. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, pages 7685, 2003.

Anna Schmidt and Michael Wiegand. A Survey on Hate Speech Detection using Natural Language Processing. In Proceedings of the Fifth
International Workshop on Natural Language Processing for Social Media, pages 1-10, 2017.

Chun Wei Seah, Hai Leong Chieu, Kian Ming A. Chai, Loo-Nin Teow, and Lee Wei Yeong. Troll Detection by Domain-Adapting Sentiment Analysis.
In Proceedings of the 18th International Conference on Information Fusion, pages 792-799, 2015.

Giin R. Semin and Klaus Fiedler. The linguistic category model, its bases, applications and range. European Review of Social Psychology, 2(1):1-30,
1991.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Controlling politeness in neural machine translation via side constraints. In Proceedings of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pages 35-40, 2016.
Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer from non-parallel text by cross-alignment. In Proceedings of Neural
Information Processing Systems NIPS, 2017.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. A*nt: Author attribute anonymity by adversarial training of neural machine translation. In 27th
USENIX Security Symposium (USENIX Security 18), pages 16331650, 2018.

Advaith Siddharthan. Complex lexico-syntactic reformulation of sentences using typed dependency representations. In Proceedings of the 6th
International Natural Language Generation Conference, pages 125-133, 2010.

Advaith Siddharthan. Text Simplification using Typed Dependencies: A Comparision of the Robustness of Different Generation Strategies. In
Proceedings of the 13th European Workshop on Natural Language Generation, pages 2-11, 2011.

Edgar A. Smith and R]. Senter. Automated readability index. Technical Report AMRL-TR-66-22, Aerospace Medical Division, Wright-Paterson
AFB, Ohio, 1967.

Thamar Solorio, Ragib Hasan, and Mainul Mizan. A Case Study of Sockpuppet Detection in Wikipedia. In Proceedings of the Workshop on Language
in Social Media, pages 59-68, 2013.

Dan Sperber and Deirdre Wilson. Relevance: Communication and Cognition, Second Edition. Blackwell Publishers, Oxford/Cambridge, 1995.
Efstathios Stamatatos. A survey of modern authorship attribution methods. Journal of the American Society for Information Science and Technology,
60(3):538-556, 2009.

K. Surendran, O.P. Harilal, Hrudya Poroli, Prabaharan Poornachandran, and N.K. Suchetha. Stylometry detection using deep learning. In
Computational Intelligence in Data Mining, pages 749-757, 2017.

Yla R. Tausczik and James W. Pennebaker. The psychological meaning of words: LIWC and computerized text analysis methods. Journal of
Language and Social Psychology, 29(1):24-54, 2010.

Catalina L. Toma and Jeffrey T. Hancock. What lies beneath: The linguistic traces of deception in online dating profiles. Journal of Communication,
62(1):78-97, 2012.

Takashi Uemura, Daisuke Ikeda, Takuya Kida, and Hiroki Arimura. Unsupervised spam detection by document probability estimation with
Maximal Overlap Method. Information and Media Technologies, 6(1):231-240, 2011.

Hans van Halteren, R. Harald Baayen, Fiona Tweedie, Marco Haverkort, and Anneke Neijt. New machine learning methods demonstrate the
existence of a human stylome. Journal of Quantitative Linguistics, 12(1):65-77, 2005.

Gand Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu, Manish Mohanlal, Haitao Zheng, and Ben Y. Zhao. Serf and turf: crowdturfing for fun and
profit. In Proceedings of the 21st international conference on World Wide Web (WWW), pages 679-688, 2012.

Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people? predictive features for hate speech detection on twitter. In Proceedings of the
NAACL Student Research Workshop, pages 88-93, 2016.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, AAukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016.

Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. In Proceedings of the 32nd Annual meeting of the Associations for Computational
Linguistics (ACL), pages 133-138, 1994.

34



[173

[174

[175]

[178]

[179]

[180]

[181

[182]

[183]

[184

[185

[186]

[187]

[188]

Sander Wubben, Antal van den Bosch, and Emiel Krahmer. Sentence simplification by monolingual machine translation. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (ACL), pages 1015-1024, 2012.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon. Ex Machina: Personal Attacks Seen at Scale. In Proceedings of the 26th International Conference
on World Wide Web, pages 1391-1399, 2017.

Jun-Ming Xu, Xiaojin Zhu, and Amy Bellmore. Fast learning for sentiment analysis on bullying. In Proceedings of the International Workshop on
Issues of Sentiment Discovery and Opinion Mining (WISDOM’12), pages 1-6, 2012.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and Colin Cherry. Paraphrasing for style. In Proceedings of COLING, pages 2899-2914, 2012.
Yinqing Xu, Bei Shi, Wentao Tian, and Wai Lam. A unified model for unsupervised opinion spamming detection incorporating text generality. In
Proceedings of the 24th International Conference on Artificial Intelligence, pages 725-731, 2015.

Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao Zheng, and Ben Y. Zhao. Automated crowdturfing attacks and defenses in online review
systems. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS’17), pages 1143-1158, 2017.
Kyung-Hyan Yoo and Ulrike Gretzel. Comparison of deceptive and truthful travel reviews. In Information and Communication Technologies in
Tourism 2009: Proceedings of the International Conference, pages 37-47, Vienna, 2009. Springer Verlag.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep learning based natural language processing. CoRR,
abs/1708.02709, 2017.

Zigi Zhang, David Robinson, and Jonathan Tepper. Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network. In
Proceedings of ESWC, pages 745-760, 2018.

Ying Zhao and Justin Zobel. Effective and scalable authorship attribution using function words. In Information Retrieval Technology, pages 174-189,
2005.

Rong Zheng, Jiexun Li, Hsinchun Chen, and Zan Huang. A framework of authorship identification for online messages: Writing style features and
classification techniques. Journal American Society for Information Science and Technology, 57(3):378-393, 2006.

Lina Zhou, Judee K. Burgoon, Jay F. Nunamaker Jr, and Doung P. Twitchell. Automating linguistics-based cues for detecting deception in text-based
asynchronous computer-mediated communication. Group Decision and Negotiation, 13:81-106, 2004.

Lina Zhou, Judee K. Burgoon, Doug P. Twitchell, Tiantian Qin, and Jay F. Nunamaker Jr. A comparison of classification methods for predicting
deception in computer-mediated communication. Journal of Management Information Systems, 20:139-163, 2004.

Lina Zhou, Judee K. Burgoon, and Douglas P. Twitchell. A longitudinal analysis of language behavior of deception in e-mail. In Hsinchun Chen,
Richard Miranda, Daniel D. Zeng, Chris Demchak, Jenny Schroeder, and Therani Madhusudan, editors, Intelligence and Security Informatics, pages
102-110. Springer Verlag, Berlin Heidelberg, 2010.

Lina Zhou, Douglas P. Twitchell, Tiantian Qin, Judee K. Burgoon, and Jay F. Nunamaker Jr. An exploratory study into deception detection in
text-based computer mediated communication. In Proceedings of the 36th Hawaii Intl Conference on Systems Science, 2003.

Yan Zhou, Zach Jorgensen, and W. Meador Inge. Combating good word attacks on statistical spam filters with multiple instance learning. In 19th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), pages 298-305, 2007.

35



	Abstract
	1 Introduction
	2 Deception detection via text analysis
	2.1 General deception detection
	2.2 Deception detection from online text
	2.3 Deception detection: future prospects

	3 Author identification and adversarial stylometry
	3.1 Author identification
	3.2 Implications for security and privacy
	3.3 Adversarial stylometry

	4 Conclusions
	References

