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Alphabet-Dependent Bounds for Linear Locally
Repairable Codes Based on Residual Codes

Matthias Grezet, Ragnar Freij-Hollanti, Thomas Westerbäck, and Camilla Hollanti

Abstract—Locally repairable codes (LRCs) have gained signif-
icant interest for the design of large distributed storage systems
as they allow a small number of erased nodes to be recovered
by accessing only a few others. Several works have thus been
carried out to understand the optimal rate–distance tradeoff,
but only recently the size of the alphabet has been taken into
account. In this paper, a novel definition of locality is proposed
to keep track of the precise number of nodes required for a local
repair when the repair sets do not yield MDS codes. Then, a
new alphabet-dependent bound is derived, which applies both to
the new definition and the initial definition of locality. The new
bound is based on consecutive residual codes and intrinsically
uses the Griesmer bound. A special case of the bound yields
both the extension of the Cadambe-Mazumdar bound and the
Singleton-type bound for codes with locality (r, δ), implying that
the new bound is at least as good as these bounds. Furthermore,
an upper bound on the asymptotic rate–distance tradeoff of
LRCs is derived, and yields the tightest known upper bound
for large relative minimum distances. Achievability results are
also provided by deriving the locality of the family of Simplex
codes together with a few examples of optimal codes.

I. INTRODUCTION

In recent times, many service providers allow users to access
and store data remotely to avoid overwhelming the limited
storage capacity of single users. This leads naturally to the
design of large distributed storage systems that reliably store
data while minimizing the redundancy necessary to deal with
server failures.

The use of erasure-correcting codes together with network
coding techniques for distributed storage systems, initiated in
[1], has become popular since these so-called regenerating
codes achieve the optimal tradeoff between the required repair
bandwidth and storage overhead. For a standard erasure code
of length n, dimension k and minimum distance d, any d− 1
failures can be repaired by contacting at most k other nodes.
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In addition to this property, and at the cost of the failure
tolerance, regenerating codes also enable efficient repair of
failed nodes. This was long thought to be in contrast to the
traditional maximum distance separable (MDS) codes that
have to reconstruct the whole file in order to repair a single
node. However, [2], [3] showed that this claim is not true
in general, namely some MDS codes can also be efficiently
repaired. Nevertheless, the number of nodes contacted for
repair can be a bottleneck for the system efficiency. To reduce
the repair network traffic, [4] and later [5] introduced the
notion of locality r allowing the repair of a single failure to
be done by contacting only r nodes with r � k. Erasure
codes satisfying this requirement are called locally repairable
(or recoverable) codes (LRCs).

A natural extension was presented in [6], [7] where the
authors defined the locality (r, δ)i for the information symbols
to allow δ−1 failures to be still corrected locally. This require-
ment was extended in [6] to all symbols without differentiating
between the information symbols and the parity symbols. In
this paper, we focus only on all-symbol locality and therefore
drop the specification. A repair set R of an LRC is a set of
coordinates such that any δ − 1 code symbols ci with i ∈ R
can be obtained from the remaining code symbols with indices
in R. Other extensions of the locality property include codes
with availability [8], sequential repair of several erasures [9],
cooperative repair [10], local repair on graphs [11] and many
others.

Abundant literature has been devoted to understanding the
best possible parameters of LRCs and providing optimal con-
structions. The authors of [4] gave the first tradeoff between
the parameters n, k, d, and r by showing that the minimum
distance d of an (n, k, d, r)-LRC with locality r is bounded
as follows:

d ≤ n− k −
⌈
k

r

⌉
+ 2. (1)

This bound was extended in [6] for any (n, k, d, r, δ)-LRC
with locality (r, δ) :

d ≤ n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (2)

The two bounds have been proven to be tight for large alphabet
size with constructions provided in [5]–[7], [12]–[20]. Bounds
for codes with availability were established in [8], [12], [21],
[22]. For a summary on various bounds for LRCs, see [23].

The pioneering work done in [24] improves on the bound
(1) by including a dependence on the alphabet size in the
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bound, that is, for any (n, k, d, r)-LRC over the alphabet Q
with |Q| = q, we have

k ≤ min
1≤t≤n/(r+1)

{
tr + k

(q)
opt(n− t(r + 1), d)

}
, (3)

where k
(q)
opt(n, d) is the maximal dimension of a code over

Q of length n and minimum distance d. This has led to
further construction of optimal LRCs over small alphabets,
for example in [25], [26].

Recently, the authors of [27] proposed the first alphabet-
dependent bounds on (n, k, d, r, δ)-LRCs over Q using an
upper bound Bl−c(r + δ − 1, δ) on the cardinality of a code
given its length r + δ − 1 and minimum distance δ, with
the extra requirement that the upper bound is a log-convex
function on the length. The global bound is as follows:

k ≤
(⌈

n− d+ 1

r + δ − 1

⌉
+ 1

)
logq Bl−c(r + δ − 1, δ). (4)

A linear-programming bound for LRCs with locality (r, δ) was
also derived in [27] under the extra assumption that the repair
sets are disjoint.

Finally, in [28], the authors presented a Singleton-type
bound for binary linear LRCs. This bound uses the local
dimension of a repair set instead of the parameter r and a
more precise understanding of the intersection between two
repair sets. As such, the work in this paper generalizes these
two ideas.

While so far no distinction was made between non-linear
and linear codes, the next results in this paragraph are only
true for linear codes. In [29], Griesmer proved the existence
of a residual code for any binary linear code (over F2), i.e., a
code obtained by a restriction with certain specific parameters.
Griesmer then derived a lower bound on the length of the code
given its dimension and minimum distance. The two results
were later extended to an arbitrary field Fq in [30]. We present
here the most general form. For any [n, k, d] linear code C over
Fq , there exists C′, a restriction of C called the residual code
of C, such that C′ has parameters [n−d, k−1, d′ ≥ dd/qe]. By
recursively taking residual codes, the authors of [30] obtained
the following bound on the length n of a linear code, known
as the Griesmer bound, and denoted here by G(k, d):

n ≥
k−1∑
i=0

⌈
d

qi

⌉
=: G(k, d). (5)

A. Our contributions

In this paper, we first highlight the differences between the
initial motivation for introducing the notion of locality in [4],
[5] and the definition of locality given in [6], where the authors
constrained the size of the repair sets. We show, through some
examples, how the definition in [6] yields only a loose upper
bound on the number of nodes contacted during the repair
process when δ is larger than the alphabet size of the code.
To remedy this, we introduce a new definition for locality
called dimension-locality and compare it to the definition of
locality in [6].

Then, we focus on linear LRCs and derive a new alphabet-
dependent bound of the type of the bound (3) for linear codes

Fig. 1. Comparison of the upper bounds on the tradeoff between the rate k/n
and the relative minimum distance d/n from [6], [27], [31], and the bounds
(10) and (13) over the binary field for large values of n and fixed locality
(r = 4, δ = 3).

with dimension-locality using the repair sets and chains of
consecutive residual codes. Given the definition of dimension-
locality, this bound also applies to linear LRCs with locality
(r, δ) by using a weaker bound on the dimension of the local
codes. As a corollary of our results, we also derive a new
Singleton-type bound that reflects better the actual dimension
of the local codes. Furthermore, the new bound can be used to
obtain a straightforward extension of the bound (3) for locality
(r, δ) and the bound (2), which shows that our bound is always
at least as good as these bounds.

Next, we derive the asymptotic formulas of the new bound
and the new Singleton-type bound when n → ∞ to obtain
the bounds on the tradeoff between the rate and the relative
minimum distance. We also use these formulas to compare
our bounds to the bounds in [27] (Equation (4) and (12)
here). We show that there are cases where the new asymptotic
Singleton-type bound is either better, equal, or worse than the
asymptotic version of the bound (2). The comparison with our
main bound (8) is more direct as we can prove that there is
always an interval in the relative minimum distance where the
new bound is strictly better than the bound (2). Moreover, the
improvement is quite significant since our bound benefits from
the locality-unaware bounds on the rate–distance tradeoff.
As an example, Figure 1 displays the comparison between
the known bounds and the new bound (13) for linear LRCs
with locality (4, 3) over the binary field, where we use the
McEliece-Rodemich-Rumsey-Welch (MRRW) bound in [31]
as the intrinsic bound on the rate. Finally, we prove the
achievability of the new bounds by studying the locality of
the Simplex codes and providing a few optimal examples.

The rest of the paper is organized as follows. In Section II,
we discuss the relation between the initial motivation that led
to the introduction of locality and the definition given in [6].
Then, we define the notion of dimension-locality and compare
it to the original definition of locality in [6]. In Section III, we
derive a new bound for linear LRCs with dimension-locality
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and extend it to linear LRCs with locality (r, δ). We derive
also a new Singleton-type bound for these codes. In Section
IV, we prove first that our bound is always as good as the
straightforward extension of the bound (3) for locality (r, δ)
and the bound (2). Then, we derive the asymptotic formulas
for the new bounds and use them for the comparison to the
bound (4). While the comparison with the new Singleton-type
bound depends on the parameters of the codes, we prove that
our bound always improves on the bound (4) for large relative
minimum distances. Finally, in Section V, we provide a family
of codes that achieves our bounds by studying the locality of
the Simplex codes.

II. MATHEMATICAL PRELIMINARIES AND LOCALITY
REVISITED

We denote the set {1, 2, . . . , n} by [n] and the set of all
subsets of [n] by 2[n]. The set of all positive integers including
0 is denoted by Z+. For a length-n vector v and a set I ⊆
[n], the vector vI denotes the restriction of the vector v to
the coordinates in the set I . A linear code C of length n,
dimension k, and minimum distance d is denoted by [n, k, d]
and a generator matrix for C is GC = (g1, . . . ,gn) where gi ∈
Fkq is a column vector for i ∈ [n]. The number of codewords
in C is the cardinality of C, |C| = qk. The shortening of a
code C to the set of coordinates I ⊆ [n] is defined by

C/I = {c[n]\I : c ∈ C such that ci = 0 for all i ∈ I},

and the restriction of code C to I is defined by

C|I = {cI : c ∈ C}.

For convenience, we shortly call the codes obtained by a
restriction restricted codes. Equivalently, the puncturing of C
on the set I is defined as the restriction of C to the set [n]−I .
For an [n, k, d] linear code C, if C meets the Singleton bound,
i.e., if d = n − k + 1, then C is called a maximum distance
separable (MDS) code.

To measure the dimension of restricted linear codes, or
more generally, the amount of information contained in the
restriction of arbitrary codes, we use the notion of an entropy
function on the subsets I ⊆ [n], where n is the length of
the code. We state it here for quasi-uniform codes over the
alphabet Q.

Quasi-uniform codes are a general class of error-correcting
codes containing all the linear codes, group codes, and almost
affine codes. More precisely, let C be an arbitrary subset of
Qn. We can associate to C a random vector X = (X1, . . . , Xn)
with joint probability distribution

P (X = x) =

{
1/|C| if x ∈ C,
0 otherwise.

Then, C is a quasi-uniform code if for all A ⊆ [n], the
restricted random vector XA is uniformly distributed over its
support λ(XA) = {xA : P (XA = xA) > 0}. We refer to [32]
for more information about quasi-uniform codes and [33] for
the entropy function on these codes.

Definition 1. Let C be a quasi-uniform code of length n over
the alphabet Q and I ⊆ [n]. The entropy associated to C is
the function HC : [n]→ R with

HC(I) =
log(|C|I |)
log |Q|

=
log(|{cI : c ∈ C}|)

log |Q|
.

For ease of notation, if the underlying code of HC is clear,
we drop the specification to C. For linear codes, this function
measures exactly the dimension of the restricted codes and for
a subset I ⊆ [n], HC(I) is equivalent to the rank of the sub-
matrix formed by the columns gi with i ∈ I or, equivalently,
to the rank function of I in the associated matroid of C. The
entropy function has the following polymatroidal properties as
shown in [34].

Proposition 1. Let C be a quasi-uniform code of length n
over the alphabet Q and H the entropy function associated to
C. For I, J ⊆ [n], we have

1) H(I) ≤ |I|,
2) If I ⊆ J then H(I) ≤ H(J),
3) H(I ∪ J) +H(I ∩ J) ≤ H(I) +H(J).

The entropy function also behaves nicely for restricted
codes. Let I ⊆ [n] and C|I be the restriction of C to the
set I . Then for J ⊆ I , we have HC|I (J) = HC(J). Finally,
we define a closure operation on the subsets of [n] for linear
codes.

Definition 2. Let C be an [n, k, d] linear code and I ⊆ [n].
The closure operator cl : 2[n] → 2[n] is

cl(I) = {e ∈ [n] : H(I ∪ e) = H(I)}.

One can think of the closure operator via the generator
matrix GC of C, where cl(I) is the set of all columns in GC
contained in the linear span of the columns indexed by I .

The following table summarizes the notation used through-
out the paper. The formal definitions for some of them will
only appear later in the paper.

[n, k, d]
Linear code of length n, dimension k

and minimum distance d

(n, k, d, r, δ)
LRC with locality (r, δ) and δ the local

minimum distance
(n, k, d)(κ, δ) LRC with dimension-locality (κ, δ)

G(k, d) Griesmer bound on the length n
of a linear code

κB Bound on the dimension of a code

κA
Log-convex bound on the dimension

of a code

Bl−c(n, d)
Log-convex bound on the cardinality

of a code
R Rate k/n
δn Relative minimum distance d/n

res-chain Chain of consecutive residual codes

A. Definition of locality and relation with the number of nodes
contacted for repairing

In this part, we explain how the definition of locality (r, δ)
in [6] diverges from the initial motivation of introducing the
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notion of locality, and state a new definition of locality called
dimension-locality. As mentioned in the introduction, [4] and
then [5] introduced the notion of locality r to reduce the repair
traffic by designing storage codes such that one failure can be
repaired by contacting only a small number of nodes r � k in
the storage system. A natural extension of the above definition
is to allow multiple erasures to be corrected locally by still
accessing fewer nodes than k. For this, we need the local
restrictions to have a minimum distance of δ so that up to
δ−1 erasures can be repaired locally. The definition presented
in [6] is the following.

Definition 3. An [n, k, d] linear code C has all-symbol locality
(r, δ) if for all code symbol indices i ∈ [n] there exists a set
R ⊆ [n], called a repair set, such that

1) i ∈ R,
2) |R| ≤ r + δ − 1,
3) The minimum distance of the restriction of C to the set

R is at least δ.
We refer to C as an (n, k, d, r, δ)-LRC.

With a slight abuse of language, we say that a repair set
R has dimension κ and minimum distance δ if the restricted
code C|R has dimension κ and minimum distance δ. We also
say that a repair set R is MDS if C|R is an MDS code.

In Definition 3, any δ − 1 coordinates of R are determined
by the values of the remaining |R| − δ + 1 ≤ r coordinates,
thus enabling local repair by contacting at most r other nodes.
The problem with Definition 3 is that it implicitly requires the
repair sets to be MDS in order for r to be the dimension
of the local codes. In other words, if a repair set R is not
MDS, then the number of nodes needed to repair any δ − 1
failures in R is strictly less than r. Thus, Definition 3 diverges
from the initial meaning of controlling precisely the number
of nodes contacted during the repair process when considering
non-MDS repair sets.

This observation is particularly relevant when the field size
is fixed and δ is too large for MDS codes to exist. For example,
if we consider binary codes and require that δ > 2 in order to
correct more than one erasure locally, then none of the repair
sets can be MDS and r is no longer the local dimension. We
illustrate this phenomenon by a concrete example.

Example 1. Let C be the binary linear [10, 4, 4]-code given
by the generator matrix

G =

1 0 0 0 1 0 1 1 1 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

.
We define the three repair sets by their corresponding

columns in G : R1 = {1, 2, 3, 5, 6, 8}, R2 = {2, 3, 6, 7, 9, 10},
and R3 = {1, 4, 6, 7, 8, 10}. Every repair set has size 6,
minimum distance dC|Ri = 3, and entropy H(Ri) = 3. Thus,
according to Definition 3, we get r = |Ri| − δ + 1 = 4
and hence C is a binary linear (10, 4, 4, 4, 3)-LRC. However,
even though r = k = 4, we can repair up to two failures by
contacting at most 3 nodes, as shown by the entropy. While
this is not really in contrast with the above definition, it only

gives a loose bound r = 4 for the number of nodes we need
to contact.

To be able to precisely keep track of the number of nodes
contacted during the repair process, we propose a slightly dif-
ferent definition for locally repairable codes tolerating multiple
local erasures. We do this by replacing the condition on the
size of a repair set by a condition on its dimension.

Definition 4. An [n, k, d] linear code C has all-symbol
dimension-locality (κ, δ) if for all code symbol indices i ∈ [n],
there exists a set R ⊆ [n] such that

1) i ∈ R,
2) H(R) = logq(|{cR : c ∈ C}|) ≤ κ,
3) The minimum distance of the restriction of C to the set

R is at least δ.
We refer to C as an (n, k, d)(κ, δ)-LRC.

With this definition, we regain the fact that every δ − 1
coordinates can be recovered by contacting at most κ other
coordinates and κ can be made tight. When we do not restrict
the field size, optimal repair sets are MDS with size equal to
κ+ δ− 1. Thus, both definitions coincide for large alphabets.
When the field size is fixed and we have non-MDS repair
sets, the parameter κ in Definition 4 still measures the local
dimension. On the contrary, the parameter r in Definition
3 measures the local dimension with the addition of a non-
zero part of the local size that varies depending on the field
size and the local minimum distance. Moreover, the new
definition allows more flexibility on the size of the repair sets.
Specifically, the size of a repair set can be smaller or bigger
than κ + δ − 1, since κ and δ are only an upper bound on
the dimension of a code and a lower bound on its minimum
distance, respectively.

Obviously, every code with locality (r, δ) is a code with
dimension-locality (κ = r, δ). To obtain a closer relation
between the two notions of locality, we can replace r by the
value of an upper bound on the dimension of a code given
its length r + δ − 1 and minimum distance δ. Let κB be the
maximal dimension obtained by such a bound. Then, every
code with locality (r, δ) is a code with dimension-locality
(κ = κB , δ). The problem is that κB might not be tight, i.e.,
there is no repair set R such that H(R) = κB , which goes
against the purpose of the new definition. This is illustrated in
the following example.

Example 2. Let C1 be the [7, 3, 4] binary linear code obtained
by taking the dual of the [7, 4, 3] Hamming code, and let C2
be the [6, 3, 3] code obtained by puncturing C1 on the last
coordinate. Consider the [13, 6, 3] binary linear code C = C1⊕
C2 with generator matrix

G =

(
G1 0
0 G2

)
,

where G1 and G2 are the generator matrices of C1 and C2,
respectively.

By defining the repair sets to be R1 = {1, . . . , 7} and R2 =
{8, . . . , 13}, the code C is a (13, 6, 3, 5, 3)-LRC since δ = 3
and |R1| = 7. The maximal entropy of a repair set is 3, so
C is a (13, 6, 3)(3, 3)-LRC. To get an upper bound on the
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local dimension from the parameters (r, δ), we can use an
upper bound on the dimension of a binary code of length
r+δ−1 = 7 and minimum distance δ = 3. Since the Hamming
code is a [7, 4, 3] binary code, the best upper bound gives a
local dimension of 4. However, this is strictly greater than the
maximal dimension of a local code in this example, which is 3.
Thus, it is impossible to obtain the exact maximal dimension
of a local code from the parameters (r, δ) in Definition 3.

The previous example also illustrates how the flexibility of
the sizes of the repair sets, obtained from Definition 4, can be
used to achieve a code of length n that is not divisible by any
of the sizes of the repair sets, while keeping the dimension-
locality parameters (κ, δ).

III. BOUNDS FOR DIMENSION-LOCALITY (κ, δ) AND
LOCALITY (r, δ)

In this section, we study the structure of linear codes
with dimension-locality (κ, δ) and derive a bound on their
parameters. Following the general framework of [24], we
construct a set with a large size and a small entropy. This is
done by using a detailed analysis of the repair sets based on
the work done in [29] and [30]. It yields a bound of the form
of the bound (3) handling both MDS and non-MDS repair
sets. Then, we extend our bound to linear codes with locality
(r, δ). Finally, using a weaker estimation of our results, we
derive a new Singleton-type bound for (n, k, d, r, δ)-LRCs.

We start by presenting the new bound for linear codes
with dimension-locality. Here, k(q)opt is an upper bound on the
dimension of a code and G(κ, δ) is the Griesmer bound taken
over Fq .

Theorem 1. Let C be a linear (n, k, d)(κ, δ)-LRC over Fq .
Then we have

k ≤ min
λ∈Z+

{
λ+ k

(q)
opt(n− (a+ 1) · G(κ, δ) + G(κ− b, δ), d)

}
(6)

where a, b ∈ Z are such that λ = aκ+ b, 0 ≤ b < κ.

Proof. The proof is given in the appendix.

In order to prove this bound, we need a better understanding
of the bound (3) and the implications of having a non-MDS
repair set. The bound (3) relies mainly on two results. The
first result is a construction of a set with an upper bound on
its entropy and a lower bound on its size. The second result is
a shortening argument that governs the part inside k(q)opt in the
bound (3). This is reproduced here with a slight rephrasing.

Lemma 1 ( [24], Lemma 2). Let C be an [n, k, d] linear code
over Fq and I ⊆ [n] such that H(I) < k. Then the shortened
code C/I has parameters [n− |I|, k −H(I), d′ ≥ d].

Regarding the first result, the technique used to construct
large sets relies on taking the union of repair sets. If two
repair sets happen to intersect, which will reduce both the
entropy and the size of their union, a correction is performed
by adding arbitrary elements to their union. The main difficulty
to extend this technique to non-MDS repair sets is to deal
with the intersection of the repair sets and find the appropriate

correction. Specifically, the intersection of two repair sets can
now have a size strictly larger than its entropy (take, for
example, R1 and R2 in Example 1). Thus, it is not possible
anymore to correct their union by an arbitrary set since the
resultant set might exceed the upper bound on the entropy.

In order to correct the intersection, the main idea is to create
a set using consecutive residual codes. As mentioned in the
introduction, for any [n, k, d] linear code C over Fq , there
exists C′, a restriction of C called the residual code of C, such
that C′ has parameters [n−d, k−1, d′ ≥ dd/qe]. We define the
sequence of consecutive residual codes as a chain of subsets
of [n].

Definition 5. Let C be a [n, k, d] linear code over Fq . The
res-chain of C is a sequence of sets (Si)

k
i=0 with Si ⊆ [n]

constructed recursively by starting with S0 = [n] and Si is
such that C|Si is a residual code of C|Si−1

.

This definition is well-defined since by the proof of [30,
Theorem 1’], the residual code C′ of C is constructed by
restricting C to a well-chosen set of coordinates. Therefore, we
can interpret the recursive residual code chain as a sequence
of sets in [n]. Furthermore, as the dimension of the residual
code is one less than the dimension of the original code, the
chain has length k + 1 and for all 0 ≤ α ≤ k, there is a set
S in the res-chain of C such that H(S) = α. Finally, by a
recursive argument, if S is a set in the res-chain of C, then
the minimum distance dS of the restriction to S is bounded
from below by

dS ≥
⌈

d

qk−H(S)

⌉
.

We now present two lemmas that are used to prove Theorem
1. The first lemma states how to increase the size of a set when
the addition of an entire repair set will exceed the desired
entropy.

Lemma 2. Let C be a linear (n, k, d)(κ, δ)-LRC over Fq .
Let F ⊆ [n] be such that cl(F ) = F and α an integer with
1 ≤ α ≤ κ. If there exists a repair set R such that H(R) −
H(F ∩R) ≥ α, then, there exists F ′ ⊆ [n] with cl(F ′) = F ′

such that
• H(F ′) ≤ H(F ) + α,
• |F ′| ≥ |F |+ G

(
α,
⌈

δ
qκ−α

⌉)
.

Proof. The proof is given in the appendix.

Using the above lemma, we can prove the following second
lemma that represents the challenging part of proving the new
bound.

Lemma 3. Let C be a linear (n, k, d)(κ, δ)-LRC over Fq . Let
F ⊆ [n] be such that cl(F ) = F and H(F ) + κ ≤ k. Then,
there exists Fc ⊆ [n] with cl(Fc) = Fc such that
• H(Fc) ≤ H(F ) + κ,
• |Fc| ≥ |F |+ G(κ, δ).

Proof. The proof is given in the appendix.

The intuition behind the proofs of Lemma 2 and 3 is the
following. If all the repair sets are disjoint and have dimension
κ, then Lemma 3 follows directly since no correction is
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needed. If two repair sets intersect each other or have a
dimension less than κ, both the entropy and the size of
their union will be smaller than expected and a correction
is required. In this case, we can use the chain of residual
codes to get a set that, when added to their union, increases
the entropy by exactly the amount left. The last trick is to
evaluate both the size of the union and the set in the res-chain
using the Griesmer bound. First, it is a bound on the length of
a code where the minimum distance plays a more important
role compared to the dimension. This fits the lower bound
on the local minimum distance for codes with dimension-
locality. Secondly, the Griesmer bound has the nice property
that G(κ, δ) = G(α, δ) + G

(
κ− α,

⌈
δ
qα

⌉)
. The first term in

the sum can be used to get a lower bound on the size of
the repair set minus its intersection with a given set. The
second term, under some conditions, gives a lower bound on
the size of a particular set in the res-chain of a repair set.
Thus, this relation is really useful when we add the extra set
to correct the union of a repair set to a given set. Finally, the
Griesmer bound is also consistent with our construction based
on residual codes.

As a corollary of Theorem 1, we can force the parameter
λ to only be a multiple of κ. This gives a bound resembling
the original bound in [24].

Corollary 1. Let C be a linear (n, k, d)(κ, δ)-LRC over Fq .
Then we have

k ≤ min
t∈Z+

{
tκ+ k

(q)
opt(n− t · G(κ, δ), d)

}
. (7)

Even if the wider range of the parameter λ makes the
bound (6) theoretically better than the bound (7), the two
bounds show similar experimental results. More precisely, we
randomly generated some feasible parameters (n, k, d, r, δ) for
LRCs over the binary field, which yielded results showing
that the bound (7) is equal to the bound (6). One possible
justification is that for two consecutive dimensions λ− 1 and
λ inside the minimum in (6), the length in the second term
decreases by the largest value when λ = tκ. Therefore, the
optimal condition on the global dimension k would always
happen when λ is a multiple of the local dimension κ.
However, a formal proof is impossible due to the unknown
intrinsic bound k(q)opt.

A. New bounds for locality (r, δ)

As already explained in Section II, to obtain a bound
on LRCs with locality (r, δ) instead of dimension-locality
(κ, δ), we can estimate κ by an upper bound on the maximal
dimension of a code given its length r+δ−1 and its minimum
distance δ. Let us call κB the value of an arbitrary upper bound
on the maximal dimension of a repair set. Since we never
used that κ is actually tight, our previous results apply directly
to codes with locality (r, δ) via the estimated dimension κB .
Therefore, we get the following new bound.

Theorem 2. Let C be a linear (n, k, d, r, δ)-LRC over Fq and
κB the upper bound on the local dimension. Then

k≤min
λ∈Z+

{
λ+ k

(q)
opt(n− (a+ 1)G(κB , δ) + G(κB − b, δ), d)

}
,

(8)
where a, b ∈ Z are such that λ = aκB + b, 0 ≤ b < κB .

It is crucial to estimate the length in the shortened part of
the bound via the Griesmer bound instead of replacing it by
r+δ−1. The reason is that r+δ−1 is an upper bound on the
size of a repair set while we need something of the form of a
lower bound. However, what we need is not exactly a lower
bound since the dimension of a repair set can be lower than
κB . We present a counter-example.

Example 3. Let C be the binary linear code given by the
following generator matrix

G =

(
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1

)
.

C is a (10, 3, 3, 2, 3)-LRC with obvious repair sets. Estimating
κB using the Griesmer bound yields κB = 1. However, there
is no sets with an entropy less than 2 and a size greater than
2 · (r + δ − 1) = 8 since every set of size 8 has already an
entropy equal to 3. The problem here is that the repair set of
size 4, which gives the upper bound r+ δ−1, has a minimum
distance strictly greater than δ = 3.

Using Lemma 3, we can derive a Singleton-type bound that
take into consideration non-MDS repair sets.

Theorem 3. Let C be a linear (n, k, d, r, δ)-LRC over Fq and
κB the upper bound on the local dimension. Then

d ≤ n−
⌈
k

κB

⌉
G(κB , δ) + G(κB − b, δ) (9)

where b = k − 1−
(⌈

k
κB

⌉
− 1
)
κB .

Proof. Let a, b ∈ Z be such that k − 1 = aκB + b with
0 ≤ b < κB . By Lemma 3 and the proof of Theorem 1,
there is a set I ⊆ [n] such that H(I) ≤ k − 1 and |I| ≥
(a+1)G(κB , δ) + G(κB − b, δ). Then, the minimum distance
d is bounded by

d ≤ n− |I| ≤ n−
⌈
k

κB

⌉
G(κB , δ) + G(κB − b, δ).

IV. ANALYSIS AND COMPARISONS

This section is devoted to the comparison between our
bounds and the previously known bounds for LRCs. In the first
part, we show that the bound (8) leads to the straightforward
extension of the bound (3) for locality (r, δ) and the bound
(9) leads to the Singleton-type bound (2) when the field size is
sufficiently large. In the second part, we derive the asymptotic
formulas of the bounds (8) and (9) to obtain the bounds on the
tradeoff between the rate and the relative minimum distance of
LRCs for fixed locality. This also enables a cleaner comparison
between the new bounds and the bound (4) from [27]. Notice
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that we do not compare our bounds to the linear programming
bound derived in [27] since it is impossible to derive an
asymptotic formula from it and we do not assume that the
repair sets are disjoint.

Our results show that the comparison between the new
asymptotic Singleton-type bound and the asymptotic version
of bound (4) depends on the performance of the Griesmer
bound compared to the log-convex bounds. Specifically, we
give some examples where our bound is better, equal, or worse
than the bound (4). On the other hand, we prove that the
bound (8) is always better than the bound (4) for large relative
minimum distances by using the Plotkin bound as the intrinsic
bound in (8).

We start by showing that the bound (8) leads to the
straightforward extension of the bound (3) for locality (r, δ).

Corollary 2. Let C be a linear (n, k, d, r, δ)-LRC over Fq .
Then

k ≤ min
t∈Z+

{
tr + k

(q)
opt(n− t(r + δ − 1), d)

}
. (10)

This extension was presented in [10, Remark 3] for codes
with (r′, l)-cooperative locality. It can be adapted to LRCs by
using the fact that a code with locality (r, δ) is a code with
(r′ = r, l = δ − 1)-cooperative locality.

Proof. Let κB be the upper bound on the local dimension.
We want to show that for all t ∈ Z+ with t ≤ k

r , there is a
set I with H(I) ≤ tr and |I| ≥ t(r + δ − 1). For t fixed,
define λ, a, b ∈ Z+ such that λ = tr = aκB + b. By the
same arguments as in the proof of Theorem 1, there exists
a set I such that H(I) ≤ λ = tr. It remains to show that
|I| ≥ t(r + δ − 1). First, we have a ≥ t since a = tr−b

κB
≥

tκB−b
κB

= t− b
κB

. Now a is an integer, so a ≥
⌈
t− b

κB

⌉
= t.

Using the fact that the Griesmer bound is greater than or equal
to the Singleton bound, i.e., G(κB , δ) ≥ κB + δ − 1, we have

|I| ≥ aG(κB , δ) + G(κB , δ)− G(κB − b, δ)
≥ a(κB + δ − 1) + b

= tr + a(δ − 1)

≥ t(r + δ − 1).

Hence, using Lemma 1 with this approximation on the size of
I , we obtain the desired bound on k.

Now, we prove that the new Singleton-type bound can be
used to obtain the bound (2).

Proposition 2. For any linear (n, k, d, r, δ)-LRC, the bound
(9) is at least as strong as the bound (2).

Proof. We rewrite the bound of Theorem 3 to have something
closer to the form of the bound (2). First, we rewrite the
Griesmer bound as

G(κB , δ) =
κB−1∑
i=0

⌈
δ

qi

⌉
= κB +

κB−1∑
i=0

(⌈
δ

qi

⌉
− 1

)

= κB +

κB−1∑
i=0

⌊
δ − 1

qi

⌋
.

Let a, b ∈ Z be such that k − 1 = aκB + b, 0 ≤ b < κB . The
bound of Theorem 3 can be transformed as follows:

d ≤ n− aG(κB , δ)− G(κB , δ) + G(κB − b, δ)

= n− a

(
κB +

κB−1∑
i=0

⌊
δ − 1

qi

⌋)
−

b+ κB−1∑
i=κB−b

⌊
δ − 1

qi

⌋
= n− k + 1−

(⌈
k

κB

⌉
− 1

) κB−1∑
i=0

⌊
δ − 1

qi

⌋

−
κB−1∑
i=κB−b

⌊
δ − 1

qi

⌋
.

By using the fact that κB ≤ r ⇒
⌈
k
κB

⌉
≥
⌈
k
r

⌉
and

κB−1∑
i=0

⌊
δ−1
qi

⌋
≥ δ − 1, we obtain

n−k + 1−
(⌈

k

κB

⌉
− 1

) κB−1∑
i=0

⌊
δ − 1

qi

⌋
−

κB−1∑
i=κB−b

⌊
δ − 1

qi

⌋
≤ n− k + 1−

(⌈
k

r

⌉
− 1

)
(δ − 1).

This shows that the bounds (8) and (9) are at least as good
as the bounds (10) and (2), respectively. Furthermore, we can
see that the bounds (8) and (9) improve on the previous bounds
when κB < r or when δ > q. The latter case is of particular
interest for small alphabets. For example, when considering
binary LRCs, the new bounds are already better than the bound
(2) for all δ ≥ 3.

A. Asymptotic regime

For the rest of this section, we look at the asymptotic regime
where n → ∞. Let R = k/n be the rate of a code and
δn = d/n its relative minimum distance. The goal is to obtain
the bounds on the tradeoff between the rate and the relative
minimum distance of LRCs when the locality (r, δ) is fixed
and n → ∞. This also makes the comparison to the bound
(4) easier.

We start with the Singleton-type bound (9). By dividing the
bound (9) by n and letting n→∞, its asymptotic formula is
as follows :

R ≤ κB
G(κB , δ)

(1− δn) + o(1). (11)

Following the same method, we can derive the asymptotic
version of the bound (4). For the ease of reading, we reproduce
here the bound : For any (n, k, d, r, δ)-LRC over Fq and
Bl−c(n, d) a bound on the cardinality of a code, which is
log-convex in n and such that Bl−c(0, d) = 1, we have

k ≤
(⌈

n− d+ 1

r + δ − 1

⌉
+ 1

)
logq Bl−c(r + δ − 1, δ).

Its asymptotic version is therefore :

R ≤
logq Bl−c(r + δ − 1, δ)

r + δ − 1
(1− δn) + o(1). (12)
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The following table summarizes the asymptotic formulas for
the Singleton-type bounds with different locality assumptions.
Notice that the last three are truly comparable since they share
the same locality assumptions. When looking at the table, we
can see how the locality assumption reduces the rate by the
fraction of the local dimension over the local size.

Singleton bound R ≤ 1− δn + o(1)

Gopalan et al.
[4] R ≤ r

r+1 (1− δn) + o(1)

Prakash et al.
[6] R ≤ r

r+δ−1 (1− δn) + o(1)

Agarwal et al.
[27] R ≤ logq Bl−c(r+δ−1,δ)

r+δ−1 (1− δn) + o(1)

Theorem 3 R ≤ κB
G(κB ,δ) (1− δn) + o(1)

Following the method in [24], we can derive the asymp-
totic formula for the bound (8). Define Ropt(δn) =

lim
n→∞

k
(q)
opt(n,δnn)

n . By dividing the bound (8) by n , we obtain
its asymptotic version

R ≤ min
0≤x< 1

ν

x+ (1− xν)Ropt

(
δn

1− xν

)
, (13)

where ν = G(κB , δ)/κB .
We can now compare the asymptotic formulas between (11),

(13), and (12). Notice that for linear codes, logq Bl−c(r+ δ−
1, δ) is a bound on the dimension of a repair set. From now
on, we denote by κA the bound κA := logq Bl−c(r + δ −
1, δ). By definition, κA gives a valid upper bound on the local
dimension in Theorem 2. However, the best upper bound on
the dimension of a code is not necessarily log-convex and
hence, κB ≤ κA. In particular, the Griesmer bound on the
cardinality of a code is not a log-convex function on the length
n as demonstrated next.

Remember that a positive function f(j) of the integer argu-
ment is called log-convex if f(j1)f(j2) ≤ f(j1− 1)f(j2 +1)
for any j1 ≤ j2 in the support of f . For any [n, k, d] linear code
C over Fq , the Griesmer bound on k given n and d, denoted
by Gk(n, d), is obtained by taking the maximal k′ ∈ Z+ such
that G(k′, d) ≤ n. Thus, it gives a bound on the cardinality,
|C| ≤ qk′ . Let us consider the parameters n1 = n2 = 8, d = 5,
and q = 2. Then, we obtain

Gk1(8, 5) = 2,

Gk′1(7, 5) = 1,

Gk′2(9, 5) = 2.

Hence, we have 2k12k2 = 24 > 2k
′
12k

′
2 = 23 and the

Griesmer bound on the cardinality of a code is not log-
convex on n. Therefore, there is no obvious answer to the
comparison between the bounds (11) and (12) since we need
to compare κB

G(κB ,δ) and κA
r+δ−1 , and both the numerator and

the denominator of the former are smaller than or equal to
their respective correspondents in the latter.

To be more specific, the comparison between the two
bounds (11) and (12) mainly depends on the performance of
the Griesmer bound compared to the log-convex bounds. For
example, if there exists a log-convex bound such that κB = κA

Fig. 2. Comparison of the asymptotic upper bounds on the rate k/n from [6],
[27], and the bounds (11) and (13) over the binary field with fixed locality
(r = 6, δ = 3).

but G(κB , δ) < r+δ−1, then the bound (12) is strictly better
than the new Singleton-type bound. This is illustrated in Figure
2, which displays the rate–distance tradeoff for binary codes
with locality (6, 3). To evaluate the local dimension, we use
the Hamming bound as a log-convex bound to get κA = 4,
which is optimal. The Griesmer bound gives G(4, 3) = 7 < 8.
Hence the green line representing the bound (12) is better than
the orange line displaying the bound (11).

On the other hand, if Gk(r + δ − 1, δ) < κA for all log-
convex bounds then the bound (11) is strictly better than the
bound (12) because we have G(κA, δ) > r + δ − 1. Since
it is impossible to give a proper example due to the fact
that we would need to prove it for all log-convex bounds,
we restrict here the comparison between the two bounds by
considering the three bounds proven to be log-convex in [27],
namely the Singleton, Hamming and Plotkin bounds. Let C
be a linear LRC with locality (12, 9). The Singleton bound
gives an upper bound on the local dimension of 12 and the
Hamming bound gives a bound of 7. The Plotking bound is
not applicable here since δ < (r+δ−1)/2. Now, the Griesmer
bound on the dimension of a code gives an upper bound of 5
and is therefore better than the Hamming bound. As we can
see in Figure 3 displaying the asymptotic bounds for binary
codes with locality (12, 9), the bound (11) in orange is always
better than the bound (12) in green.

Finally, if κA = κB and G(κA, δ) = r + δ − 1, the two
bounds become the same. This happens, for example, in Figure
1 where the locality is (4, 3) and both the Griesmer bound and
the Plotkin bound give κA = 3 and G(3, 3) = 6 = r + δ − 1.

Nonetheless, these are just special cases of the comparison
between the bounds (11) and (12) and the final comparison
needs to be done case-specific. In particular, it depends on
three parameters impossible to compute theoretically, which
are the best upper bound on the dimension of a code κB , the
best log-convex upper bound on the dimension of a code κA,
and the performance of the Griesmer bound regarding both
κA and κB .
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Fig. 3. Comparison of the asymptotic upper bounds on the rate k/n from [6],
[27], and the bounds (11) and (13) over the binary field with fixed locality
(r = 12, δ = 9).

The comparison between the bound (12) and the bound (13)
is more straightforward. Since the latter is at least as good as
the bound (11), we automatically get that the bound (13) is
stronger than the bound (12) when the new Singleton-type is
stronger than or equal to the bound (12). Furthermore, we will
see that the bound (13) is always stronger than the bound (12)
for large relative minimum distances, i.e., there is a threshold
value δt such that for all relative minimum distances δn ∈
[δt, 1], the bound (13) is better than the bound (12).

To prove this, we use the asymptotic Plotkin bound [35,
Theorem 5.2.5] for Ropt given by

Ropt(δn) ≤ 1− q

q − 1
δn + o(1).

Combining it with the bound (13) and solving the optimiza-
tion problem yields the following bound on the rate

R ≤ κB
G(κB , δ)

(
1− δn

1− 1/q

)
+ o(1). (14)

We can now state formally our claim.

Proposition 3. Let C be a linear (n, k, d, r, δ)-LRC and κA be
the bound on the local dimension given by the best log-convex
bound Bl−c(n, d). Assume that G(κA, δ) < r + δ − 1 and let

δt :=
1

1 + 1
q−1

(
1

1− G(κA,δ)r+δ−1

) .
Then the bound (14) is stronger than the bound (12) for all
relative minimum distances δn ∈ (δt, 1].

Proof. The proof is given in the appendix.

The proof follows from the fact that the bound (14) using
κA and the bound (12) are two lines with different slopes and
that the bound (14) is equal to 0 when δn is larger than q−1

q .
Thus, the two lines intersect exactly in δt and the bound (14)
is better than the bound (12) for relative minimum distances
strictly greater than δt.

Finally, any bound on the rate improving on the asymptotic
Plotkin bound will thus increase the size of the interval where
the bound (14) is better than the bound (12). In particular, this
is true for the rate–distance bound given in [31], which is the
best known bound for binary code. The MRRW bound is as
follows:

R(δn) ≤ h(1/2−
√
δn(1− δn) + o(1)), (15)

where h(x) := −x log2 x− (1− x) log2(1− x) is the binary
entropy function.

We can thus replace the asymptotic Plotkin bound with the
MRRW bound in (13). By numerically solving the optimiza-
tion problem, we obtain the red curve in Figures 1, 2, and
3. We see that the bound (13) combining with the MRRW
bound improves significantly on the bound (12) even when
the maximal size of a repair set is larger than the Griesmer
bound.

V. ACHIEVABILITY RESULTS

Several constructions of LRCs achieving the bound (2)
already exist, for example in [6], [14], [15], [19], [20]. Many of
these constructions require an alphabet size to be exponential
in the code length. A construction of LRCs with locality
(r, δ) achieving the bound (2) and with linear field size was
presented in [17]. Since the bound (8) approaches the bound
(2) for large alphabets, the bound (8) is tight. In this section,
we show that the bound (8) is also tight for some parameter
values for every fixed field size, in particular small ones, by
considering the family of the Simplex codes.

Definition 6. Let n = qm−1
q−1 and Gm,q(C) be an m × n

matrix over Fq with non-zero pairwise independent columns.
The code C generated by Gm,q(C) is called a q-ary Simplex
code S(m, q) with parameters [(qm − 1)/(q − 1),m, qm−1].

Since the Simplex codes are known to achieve the Griesmer
bound, they will achieve the bound (8) by taking λ = 0 and
using the Griesmer bound for kopt. Therefore, the locality
parameters do not influence the optimality of the code. This is
in fact true in general. If a code already achieves a bound on
[n, k, d] without locality constraints and has a certain locality,
then it will be an optimal locally repairable code for these
locality parameters by the bound (8).

The Simplex codes, as locally repairable codes with δ = 2,
were already considered in [24]. In [25], the authors used them
to construct new LRCs. Here, we want to derive the locality
for larger dimensions and δ > 2.

The first thing to notice is that, for every coordinate e ∈ [n],
there exists a codeword c in S(m, q), different from the zero
codeword, such that ce = 0. Indeed, it is enough to take two
different codewords not a multiple of each other and subtract
them in an appropriate manner to obtain the desired codeword.
Since every codeword of S(m, q) has the same weight, we can
take the residual code associated to c, which is the Simplex
code S(m − 1, q). By recursion, for every 1 ≤ κ ≤ m, the
coordinate e is contained in a Simplex code S(κ, q) obtained
by a restriction of S(m, q). Since the minimum distance of
S(κ, q) is qκ−1, by letting κ ≥ 2, we ensure that δ > 1. Hence,
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the Simplex code S(m, q) has dimension-locality
(
κ, qκ−1

)
for all 2 ≤ κ ≤ m. Finally, r = qκ−1

q−1 −q
κ−1+1 = qκ−1+q−2

q−1 .
To get examples that achieve the bounds (8) and (9) in a less

obvious manner, we prove that all the examples presented in
this paper are optimal. Let us start with Example 1, where the
code C is a binary (10, 4, 4, 4, 3)-LRC with κ = 3. By using
the Plotkin bound, we get κB = κ = 3 and thus G(3, 3) = 6.
We can now compute the bound (9):

d ≤ 10−
⌈
4

3

⌉
· 6 + 6 = 4.

Hence, C is optimal.
In Example 2, we presented a binary code with parameters

(13, 6, 3, 5, 3) and κ = 3. Since the purpose of this example
is to illustrate the fact that κB might be not equal to κ, it is
necessary here to use the bound (6) instead of the bound (8).
Let λ = 5 = κ+ 2. By using the Plotkin bound for k(2)opt, we
have

k ≤ 5 + k
(2)
opt(13− 2 · 6 + G(1, 3), 3) = 5 + k

(2)
opt(4, 3) = 6.

Hence, this code reaches the bound (6).
Finally, the binary code in Example 3 has parameters

(10, 3, 3, 2, 3) and κ = 1. By using the Plotkin bound, we
get κB = κ = 1 and G(1, δ) = 3. Let λ = 2 = 2κ. We
compute the bound (8) using the Plotkin bound for k(2)opt. We
have

k ≤ 2 + k
(2)
opt(10− 2 · 3, 3) = 2 + k

(2)
opt(4, 3) = 3.

Hence, the code is an optimal LRC.
Interestingly enough, to prove the optimality of both codes

from Examples 2 and 3, we used a set of entropy k − 1 in
the bounds (6) and (8). However, none of the codes reaches
the Singleton-type bound (9) obtained via a set of the same
entropy. This is because we have an extra dependency on the
field size by the bound k

(q)
opt. Indeed there is no binary code

with parameters [4, 2, 3], while there is already an MDS code
satisfying these parameters over F3.

Finding a good family of LRCs achieving the bounds (6)
or (8) is left for future work.

VI. CONCLUSION

In this paper, we highlighted the fact that the parameter r of
an LRC with locality (r, δ) is only a loose upper bound on the
number of nodes required for a local repair when the repair sets
do not yield MDS codes. To remedy this, we proposed a new
definition of locality called dimension-locality that restricts the
dimension of the local codes instead of the size of the repair
sets. We derived a new alphabet-dependent bound for LRCs of
the same form as the bound in [24], which intrinsically uses
the Griesmer bound. We showed that the bound is at least as
good as the extension of the bound [24] for LRCs with locality
(r, δ) and the Singleton-type bound. We derived an asymptotic
upper bound on the rate–distance tradeoff of LRCs and proved
that the bound is the tightest known upper bound for large
relative minimum distances. Finally, we derived the locality
parameters of the Simplex codes for every local dimension to
show that our bound is tight for every field size.
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APPENDIX

Proof of Lemma 2. Remember that H(R) = H(cl(R)) and
dC|cl(R) ≥ δ. Now there exists S in the res-chain of cl(R)
such that H(S)−H(S ∩ F ) = α. Indeed if Si and Si+1 are
two consecutive sets in the res-chain of cl(R), i.e., Si+1 ⊂ Si
and H(Si+1) = H(Si)− 1, then we have

H(S1)−H(F ∩ S1) = H(S2) + 1−H(F ∩ S1)

≤ H(S2) + 1−H(F ∩ S2).

Therefore, the entropy difference between S1 and its inter-
section with F increases by at most 1 compared to the entropy
difference between S2 and F . Since the last set in the res-chain
of cl(R) has entropy equal to 0, we reach all possible integers
in between 0 and H(cl(R))−H(F ∩cl(R)) by evaluate every
set in the res-chain of cl(R).

By construction of the res-chain of cl(R), we have dS ≥⌈
dcl(R)

qH(R)−H(S)

⌉
≥
⌈

δ

qH(R)−H(S)

⌉
. Thus, we can estimate the

size of the added part via the Griesmer bound to have

|S| − |F ∩ S| ≥ G(H(S)−H(F ∩ S), dS)

≥ G
(
H(S)−H(F ∩ S),

⌈
δ

qH(R)−H(S)

⌉)
.

Now since H(S) ≥ α, we have H(R) − H(S) ≤ κ − α.
Hence we have

G
(
H(S)−H(F ∩ S),

⌈
δ

qH(R)−H(S)

⌉)
≥ G

(
α,

⌈
δ

qκ−α

⌉)
.

Thus, by defining F ′ = cl(F ∪ S), we have indeed

• H(F ′) ≤ H(F ) +H(S)−H(F ∩ S) = H(F ) + α,

• |F ′| ≥ |F |+ |S| − |F ∩ S| ≥ |F |+ G
(
α,

⌈
δ

qκ−α

⌉)
.

Proof of Lemma 3. The idea of the proof is the following. We
first add repair sets to F as long as they do not increase the
entropy too much. When there is one repair set that, when
added, exceeds the bound on the entropy, we use Lemma 2 to
add a smaller part and complete the set. We then prove that
the corrected set has the desired size.

We first define recursively the set that contains F and some
repair sets conditioned on the fact that there is no repair sets
satisfying the hypotheses of Lemma 2. The construction is the
following.

1) Define F0 = F and γ0 = 0.
2) If for all repair sets R we have H(R)−H(Fi−1 ∩R) <

κ− γi−1 then choose Ri a repair set such that cl(Ri) *
Fi−1 and define

• Fi = cl(Fi−1 ∪Ri),
• γi = γi−1 +H(Ri)−H(Fi−1 ∩Ri).

The construction ends when there is at least one repair
set with H(R) − H(Fi−1 ∩ R) ≥ κ − γi−1. To see that
the procedure always stops, assume for a contradiction that
there is j ∈ Z+ such that {R : R repair set } ⊆ Fj . Since
every coordinate e ∈ [n] is contained in a repair set, we have
Fj = [n]. But by construction, we have H(Rj) −H(Fj−1 ∩
Rj) < κ− γj−1. This implies that

k = H(Fj) ≤ H(Fj−1) +H(Rj)−H(Fj−1 ∩Rj)
< H(Fj−1) + κ− γj−1
≤ H(F ) + γj−1 + κ− γj−1
= H(F ) + κ,

which contradict the assumption that H(F ) + κ ≤ k.
Let Fj be the set obtain by the previous algorithm and let

R′ the repair set such that cl(R′) * Fj and H(R′)−H(R′ ∩
Fj) ≥ κ − γj . We first give an upper bound on the entropy
and a lower bound on the size of Fj . By construction, we
have H(Fj) ≤ H(F )+γj . For the size of Fj , we will use the
following approximation of G(a, δ) + G(b, δ) for a, b ∈ Z+.
We have

G(a, δ) + G(b, δ) ≥ G(a, δ) + G
(
b,

⌈
δ

qa

⌉)
= G(a+ b, δ).
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We can now give an estimation of the size of Fj .

|Fj | ≥ |Fj−1|+ |Rj | − |Fj−1 ∩Rj |
≥ |Fj−1|+ G(γj − γj−1, δ)

≥ |F |+
j∑
i=1

G(γi − γi−1, δ)

≥ |F |+ G(
j∑
i=1

(γi − γi−1), δ)

≥ |F |+ G(γj , δ).

Now we can apply Lemma 2 to Fj by letting α = κ− γj .
Let Fc be the set obtained from Lemma 2. We check that Fc
has indeed the desired entropy and size. For the entropy, we
have

H(Fc) ≤ H(Fj) + κ− γj ≤ H(F ) + κ.

For the size of Fc, we have

|Fc| ≥ |Fj |+ G
(
κ− γj ,

⌈
δ

qγj

⌉)
≥ |F |+ G(γj , δ) + G

(
κ− γj ,

⌈
δ

qγj

⌉)
= |F |+ G(κ, δ).

Hence Fc has both the required entropy and size and thus
this concludes the proof.

Proof of Theorem 1. Let λ, a, b ∈ Z+ such that 0 ≤ λ ≤ k
and λ = aκ + b with 0 ≤ b < κ. The proof is divided into
three parts. First we prove that there exists a starting set Fs
with

• H(Fs) ≤ b,
• |Fs| ≥ G

(
b,
⌈

δ
qκ−b

⌉)
.

To do this, we distinguish two cases. If there exists a repair
set R such that H(R) ≥ b, then we can use Lemma 2 with
F = cl(∅) and α = b since H(F ) = 0. Define Fs to be the set
obtained from Lemma 2. Fs has indeed the required entropy
and size.

If there is no such repair set, it means that b is a tighter
upper bound on the entropy than κ. Therefore, C is also an
(n, k, d)(b, δ)-LRC. By Lemma 3, if F = cl(∅), then there
exists Fs with H(Fs) ≤ b and |Fs| ≥ |cl(∅)| + G(b, δ) ≥
G
(
b,
⌈

δ
qκ−b

⌉)
.

Secondly, we iterate Lemma 3 a times. Let I be the final
set. We have

• H(I) ≤ H(Fs) + aκ ≤ aκ+ b = λ,
• |I| ≥ aG(κ, δ) + |Fs| ≥ (a+ 1)G(κ, δ)− G(κ− b, δ).
Finally, now that we have the existence of this set, by the

same argument as in [24] with Lemma 1, we can approximate
the entropy of the shortened part by kopt with n minus the
bound on the size and the minimum distance d. Then, the
best upper bound on k is the minimum bound obtained over
all λ. This concludes the proof.

Proof of Proposition 3. We use κa as the upper bound on the
dimension in (14) and let δn be such that δn ≥ δt. We have

δn ≥
1

1 + 1
q−1

(
1

1− G(κa,δ)r+δ−1

) ⇐⇒

δn ≥
1

1 + r+δ−1
(q−1)(r+δ−1−G(κa,δ))

⇐⇒

δn ≥
1

q
q−1 (r+δ−1)−G(κa,δ)
r+δ−1−G(κa,δ)

⇐⇒

δnκa ≥ κa
r + δ − 1− G(κa, δ)

q
q−1 (r + δ − 1)− G(κa, δ)

Then, we have

δnκa

(
G(κa, δ)−

q

q − 1
(r + δ − 1)

)
≤ G(κa, δ)κa − (r + δ − 1)κa ⇐⇒

δnκa
G(κa, δ)− q

q−1 (r + δ − 1)

G(κa, δ)(r + δ − 1)

≤ G(κa, δ)κa − (r + δ − 1)κa
G(κa, δ)(r + δ − 1)

⇐⇒

δn

(
κa

r + δ − 1
− κa
G(κa, δ)

q

q − 1

)
≤ κa
r + δ − 1

− κa
G(κa, δ)

⇐⇒

κa
G(κa, δ)

(
1− δn

1− 1/q

)
≤ κa
r + δ − 1

(1− δn)


