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Preregistration Classification of Mobile LIDAR
Data Using Spatial Correlations

Ville V. Lehtola , Matti Lehtomäki , Heikki Hyyti, Risto Kaijaluoto, Antero Kukko,
Harri Kaartinen, and Juha Hyyppä

Abstract— We explore a novel paradigm for light detection and
ranging (LIDAR) point classification in mobile laser scanning
(MLS). In contrast to the traditional scheme of performing clas-
sification for a 3-D point cloud after registration, our algorithm
operates on the raw data stream classifying the points on-the-fly
before registration. Hence, we call it preregistration classification
(PRC). Specifically, this technique is based on spatial correlations,
i.e., local range measurements supporting each other. The pro-
posed method is general since exact scanner pose information is
not required, nor is any radiometric calibration needed. Also,
we show that the method can be applied in different environ-
ments by adjusting two control parameters, without the results
being overly sensitive to this adjustment. As results, we present
classification of points from an urban environment where noise,
ground, buildings, and vegetation are distinguished from each
other, and points from the forest where tree stems and ground
are classified from the other points. As computations are efficient
and done with a minimal cache, the proposed methods enable new
on-chip deployable algorithmic solutions. Broader benefits from
the spatial correlations and the computational efficiency of the
PRC scheme are likely to be gained in several online and offline
applications. These range from single robotic platform opera-
tions including simultaneous localization and mapping (SLAM)
algorithms to wall-clock time savings in geoinformation indus-
try. Finally, PRC is especially attractive for continuous-beam
and solid-state LIDARs that are prone to output noisy
data.
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I. INTRODUCTION

CLASSIFICATION is a process of categorizing data and
is required for many purposes. For light detection and

ranging (LIDAR) data captured during mobile laser scanning
(MLS), the process can be thought to be roughly dividable
into three modi operandi. The first and the common way
is to perform postprocessing classification for a whole 3-D
registered point cloud that may or may not be georeferenced
(see [1], [2]). The second way, used typically with simul-
taneous localization and mapping (SLAM), is to perform
real-time classification on a set of mutually aligned points,
benefiting from 3-D relative registration [3] or data from a 3-D
scanner [4]. While the first way, classification after registration
(CAR), is likely to offer the best results with respect to clas-
sification metrics, the second, mutually aligned point subsets
(MAPSs), enables online solutions. Hence, the time preference
required for the task, i.e., be it during the registration, or after
it, determines what is the most suitable classification approach
for the job.

By taking the time preference into the short limit, there is
also a third way. This third way means that the raw range mea-
surement data stream from an MLS system is classified before
the registration process begins. We call this preregistration
classification (PRC). The enabling idea to do this is to look
at the spatial correlations existing between chronologically
neighboring range measurements when the scanner data stream
contains the range measurements in the exact chronological
order they were emitted. The two major differences between
the raw range measurement data stream from a moving 2-D
scanner and a 3-D registered points cloud are as follows. First,
the scanner outputs data with a local built-in 2-D geometry
(range and scan angle) while the registered point cloud has 3-
D geometry (from the additionally known scanner poses). Sec-
ond, in contrast to the 3-D geometry, the 2-D geometry is non-
continuous because scanner movements break the continuity
of the data. Nevertheless, these are surmountable challenges.

Spatial correlations exist in raw LIDAR data and can be
benefited from. Previously, benefits from these have been
obtained in outlier filtering before SLAM to enable accu-
rate positioning for noisy scanners [5], [6] and to improve
SLAM efficiency [6], [7], and in anomalous photon filtering
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for solid-state scanners to increase the scanner signal to noise
ratio [8]. However, classification from spatial correlations has
not yet been tried. This “third” classification paradigm is called
for because of several reasons.

First, a real-time classification may be of great benefit in
robust positioning of an MLS system. Kukko et al. [9] use
graphSLAM to show that points labeled as tree trunk can be
used to correct a global navigation satellite system (GNSS)-
based trajectory degraded by multipathing effects. If tree trunk
points could be classified prior to registration, i.e., with PRC,
the whole SLAM process could be done without GNSS allow-
ing for solutions for the most challenging areas with respect to
multipathing, e.g., dense and mountainous forests. Moreover,
robust positioning is needed in autonomous driving [10]. Dis-
tinguishing smooth surfaces (e.g., concrete) from nonsmooth
surfaces (e.g., vegetation) reduces the signal ambiguity for the
benefit of a more reliable decision making, e.g., in collision
avoidance and collision damage control.

Second, a fast classification with PRC widens data trans-
mission bottlenecks and saves data processing time. Scanners
output more and more data while the raw scanner data contain
a lot of useless measurements for most representations. Good
examples of this are overly large point densities [11] and
noise, which is familiar for continuous-beam LIDARs and
will be an increasing issue with the upcoming generation
of single-photon LIDARs that are vulnerable to background
illumination [8], [12]. A PRC scheme may be employed
to omit these. On the one hand, PRC is able to remove
those points that have an abnormal range value in contrast
to their neighborhood, i.e., noise and outliers that follow
from reflections or background illumination [6]. On the other
hand, PRC could be used to downsample, for example,
ground points that are abundant in most mobile mapping
scenarios, such as in urban environments [13] and in forest
operations [9], [14]–[16]. This would save subsequent online
computation, transmission, and postcomputation time, leading
to wall-clock time savings on a larger industry scale. In the
near future, autonomous vehicles ideally would update the
street maps—and possible extraordinary events on them—via
car-to-car and car-to-infrastructure communication. On this
grand scale, however, data transmission rates are likely to pose
bottlenecks. It is known that the use of conventional (image)
compression techniques to enhance data transmission rates for
point clouds leads to artifacts [17]. In contrast, by reducing the
amount of transmitted data in an intelligent way, PRC could
widen this bottleneck. While advances in SLAM allow a low
drift online solution [18], an online classification algorithm
such as PRC could bring added benefit in preprocessing or
simultaneously processing the data for registration purposes.

Third, in addition to reducing unwanted information to
enhance subsequent data processing, a PRC scheme founding
on the spatial correlations is likely to contain information
between adjacent measurements that an extrinsically registered
point cloud does not contain, e.g., when registered with a
global navigation satellite system like in [13] and in [19].

For the above-mentioned reasons, in this paper, we set out
to explore to what extent can these spatial correlations that
exist in the raw LIDAR data stream of a moving 2-D scanner

be exploited for segmentation and classification purposes. The
benefits of the PRC scheme that we are trying to reap are
twofold. PRC may be used for a 2-D scanner in real time to
detect noise and other class types for enhancing SLAM and
other purposes, e.g., by intelligently reducing the amount of
transmitted data, while storing the spatial correlations that are
otherwise omitted in the registration process into classification
labels to increase the amount of information and its density in
the data.

The idea of the proposed PRC method is as follows.
We process the data from the mobile LIDAR in blocks of mul-
tiple adjacent scan lines, with each scan line consisting of the
points captured while the scanner mirror revolves once.1 For
each block, the unregistered scan lines are grouped together
to form a (geometrically distorted) range image, which is
then treated with image processing methods to examine the
spatial correlations. The size of the range image is chosen
sufficiently large so that the classification of different surface
types is feasible inside a single block. The block sizes are,
however, kept small enough to allow for a real-time processing
capability, meaning that the computation time is lower than the
data capture time.

The proposed method significantly differs from the CAR
and MAPS methods—also with respect to the requirements
for the input data. The raw scanner data stream must not have
been filtered in any way, and the range measurements must
be in an emission-based chronological order. For traditionally
obtained data, this is typically not the case as the scanner may
have firmware filters or the data is otherwise postprocessed on
the computer end. Hence, in this paper, we employ two raw
data sets from which 3-D point clouds have been derived for
CAR studies in urban and forest environments [13], [20]. This
accomplishes the two goals that must be fulfilled simultane-
ously. On the one hand, we obtain the raw data that PRC
requires, and on the other hand, we can scientifically compare
our results against published CAR results and data.

The rest of this paper is organized as follows. First,
the related work is reviewed. In Section II, our PRC method
is introduced. Test sites and reference data taken from
previous works are briefed in Section III. Control parameter
calibration, results presentation, and their comparison against
CAR method data from built environment and forest are given
in Section IV. Section V holds the discussion, and Section VI
concludes the paper.

A. Related Work

We wrote about two modi operandi for the classification
of MLS data in the introduction. The first modus, CAR, is to
run classification algorithms on 3-D point clouds. For urban
point clouds, the focus is on detecting building facades [21],
road surfaces and edges [22]–[24], and distinguishing road
inventory, including lighting poles and traffic signs [13], [19].
Vosselman [1] studies several postprocessing methods, and
Weinmann et al. [2] focus on optimal pointwise interpretation
of urban 3-D point clouds. For the purposes of precision

1At a frequency of dozens or even hundreds of Hertz.
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forestry, single-tree inventory samples are obtained by classi-
fying tree stems using mobile [25] and personal [20] scanning
equipment. Samples are used to enhance large-scale data
captured from aircraft, cf. [26]. In the forest, the detection
of ground level has been attempted by studying the behavior
of the point subset captured in an enlarging circle around the
base of a static terrestrial laser scanner [27].

The second modus, MAPS, is to classify points belonging to
a set of mutually aligned points, consisting of one or multiple
adjacent scan lines. The role of ground detection is essential
for these methods. Mutually aligned 3-D point subsets have
been used to create 2 1

2 D occupancy grids of 40 m × 40 m
size in order to segment objects from the ground based
on point altitude [3]. One strategy is to classify the lowest
points in 3-D scanner snapshots as ground and subsequently
segment the separated nonground point subsets in an urban
environment [4]. In forest, Hyyti and Visala [14] differentiate
points obtained from an all-terrain vehicle platform to ground
and tree classes, labeling ground first with a line fitting method
discussed in the following. Ground detection is, however, not
always a prerequisite to all classification, as also shall be the
case for noise and vegetation for PRC. Lalonde et al. [15] per-
form an online 3-D registration incrementally so that offroad
vehicles can detect salient object features, which are then
labeled as cylindrical trees, ground, and soft vegetation. The
ground data per se can be further classified: road classification
for surface modeling [28] and lane detection [29] are relevant
for, e.g., robotic vehicles. Also, geometrically salient features
may be identified and extracted to enhance the computational
efficiency of SLAM [18], [30].

In addition to pointwise classification [2], [15], the existing
CAR and MAPS methods use line, plane, or cylinder fit-
ting. Line fitting consists of multiple different techniques [30]
and has been used in road edge detection [23] and forest
ground classification [14]. In the work in [14], ground labeling
is conducted by an iterative line fit that is used to find
the longest straight subset within a scan profile while also
identifying tree stem edges with a finite-difference deriva-
tive. Plane extraction methods have been used, for example,
in indoor environments [31]. Tree stem classification is based
on cylinder (object) detection for continuous registration [15]
or cylinder fitting for whole point clouds [20], [25]. In contrast
to these line-, plane-, or cylinder-based methods, PRC provides
pointwise classification from local point neighborhoods while
the scanner pose is unknown.

Instead of classifying points into named categories, they
can be segmented into homogeneous regions so that points
in the same region have similar properties [32]. To this end,
Chaucan et al. [33] employ image morphology and connected
component techniques on snapshots taken from a whole 3-D
registered point cloud. This line of thought can be taken toward
real time, for example, if a depth camera (RGB-D) or a Velo-
dyne scanner using 16 or more scan lines that are physically
fixed to each other is employed. Then, a local 3-D geometry
exists online for each point. Bogoslavskyi and Stachniss [4]
use this 3-D local geometry to perform ground classification
and the following nonground object segmentation with 3-D
scanner data. Trevor et al. [34] used connected components
on organized point clouds obtained from RGB-D data in

an indoor environment. They report plane segmentation and
Euclidean clustering to be feasible in real time because
the natural RGB-D ordering of the point cloud saves CPU
time in an otherwise costly neighborhood search. Specif-
ically, vegetation-free indoor RGB-D data are ideal for
machine learning-based classification [35]. Trevor et al. [34]
constructed binary images for connected components process-
ing benefiting from the natural 3-D point ordering. We shall do
the same but without any access to the 3-D local geometry.
In other words, the requirement of using a 3-D scan array
is relaxed in this paper. Furthermore, our test environments
contain vegetation, which has complex topology.

In addition to geometry, also, LIDAR radiometry can be
used for classification purposes. However, the modality of
RGB camera data, i.e., 3 channels in 2 dimensions, is generally
more favorable to texture characterization than the single
intensity channel in 2-D LIDAR data. For example, intensity
measurements of a laser scanner enable automatic terrain
classification between paved and grass areas, with an accuracy
of almost 100% [36]. Previously, this was done with an RGB
camera [3]. Fitting a curve on the intensity values of a scan
line can be used to determine road width and markings [28].
In addition to using intensity measurements of an active
scanner, the road texture and markings may naturally be
obtained with a passive sensor such as a line camera. If a
line camera is mounted into the same multisensor array than a
laser profiler, these textures are obtainable when the data are
registered into 3-D coordinates [37]. However, in our paper,
the main focus is on classifying the ground per se, instead
of a detailed study of the different ground textures or surface
materials. Also, our method is independent of radiometry.

II. PROPOSED PRC METHOD

The purpose of the proposed method is to exploit the spatial
correlations that exist between the raw range measurements in
a point segmentation and classification scheme. Let us first
determine the extent of information that is available from
the raw scanner data stream. Observations consist of range
measurements (or points)

ri ≡ r(li , hi ) (1)

where ri is the measured range, i is the (chronological) index
number of the scan point pi , and hi ∈ [1, M] is the index of
the point within a scan line. All scan lines have a fixed length
of M points so that indexing i = li M + hi holds, where li is
the index of the 2-D scan line into which ri belongs. Note that
the 3-D coordinates of the points and the pose of the scanner
are unknown and remain so during the PRC process.

Spatial correlations between the raw range measurements
defined in (1) are recovered as follows. A block of adjacent
scan lines from the scanner data stream is used as a range
image (Section II-A) that is then converted into a binary image
via the concept of support (Section II-B). The binary image
consists of pixels representing either foreground, i.e., sup-
ported ri , or background, i.e., noise. An extension to the
binary image background is made (Section II-C) to provide
robustness in the following segmentation (Section II-D). After
segmentation, areas may be oversegmented. Hence, dilation
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Fig. 1. Visualization of the Algorithm 1 steps from 1 to 6 (step 3 involves two
images, Fig. 3(c) and Hb). Step 1 shows a block Bb of raw range data from the
Espoonlahti urban test site, k = 99 scan lines. For the following steps, points
representing noise pi ∈ Fb and the extended background pi ∈ Gb are shown
in black. After connected components, see image in Fig. 3(c) and those below
it, separate areas are shown with different colors. In Hb, nonsmooth surfaces
are represented by numerous small segments which are gathered into larger
entities in step Vb. The final segmentation in Rb is obtained as a joint outcome
of Hb and Vb. The final image with label Zb shows the classification into noise
(black), ground (blue), buildings (red), and vegetation (green). A windowed
building, a tree, some bushes, the road, and one car can be visually identified.

operations (Section II-E) are used to effectively target this
oversegmentation. Finally, each segment is classified either
as noise, as a smooth surface (representing, e.g., ground
or buildings) or as a nonsmooth surface (representing, e.g.,
vegetation). The overall process is outlined in Algorithm 1
and visualized in Fig. 1.

A. From Range Image to Binary Image

The data stream consisting of range measurements ri of (1)
is buffered into blocks Bb of k scan lines, where b = 1, 2,
3, . . . The block Bb can then be represented as an k × M
(2-D) image with intensity values corresponding to range
values, as shown on the top of Fig. 1. In other words, Bb is
a range image. The image size should be chosen so that it is
not too large for real-time processing but sufficiently large to
enable the distinction of different surfaces. We choose k = 99
(M = 2154) for the urban case to show that even a quite
limited cache may suffice for the method to function as this
is of relevance for future distributed solutions and a larger
k = 255 (M = 4270) for the forest case since the objects
are closer to the scanner. Our algorithm is real-time capable
(see Section IV-D).

The range image Bb is mapped to a binary image by simply
dividing the range measurements of (1) into supported ones
Sb, defined as

Sb = Bb \ Fb (2)

and nonsupported ones Fb . The supported measurements ri

that belong in Bb, are marked as ri ∈ Sb, and form the
foreground (=ones) of the image. Similarly, the background
(=zeros) is formed by Fb. A detailed explanation on the
support Sb follows.

B. Supported Measurements

We define that a measurement ri of (1) is supported by
spatial correlations, ri ∈ Sb, if the cover of supporting

Algorithm 1 Proposed PRC Method Takes the Stream of ri

of (1) as Input, and Yields a Label for Each ri (Urban: pi ∈
{Noise, Ground, Vegetation, Buildings}, Forest: pi ∈ {Noise,
Ground, Tree Trunk})

1) Form Bb from k × M first points of the ri stream, b ∈
1, 2, 3....

2) Define supported points, Sb = Bb\Fb (see Section II-B).
3) Compute labeled image Hb.

a) Create a binary image of k × M pixels with Sb as
ones and Fb as zeros.

b) Extend the image background (zeros) with high
gradient points Gb (see Section II-C).

c) Run connected components (see Section II-D).
d) Return each point pi ∈ Gb to foreground, giving

the most common label of neighborhood.
e) Re-index segmentation labels to continue labeling

from Rb−1.

4) Compute labeled image Vb.

a) From Hb, initialize a binary image, where labeled
areas larger than A are also defined as background.

b) Morphologically dilate the binary image d times
(see Section II-E).

c) Run connected components.

5) Combine labels Rb = Rb (Hb, Vb)
6) Classify each pi ∈ Fb as noise. Set pi ∈ Hb as smooth

surface, except if pi ∈ Vb set it as nonsmooth surface
(for ground labeling, see Section II-F).

7) Goto 1 to process the next data block Bb+1, if more data
is available.

Fig. 2. Illustration of the mapping of a scan line from a 2-D laser scanner
into a row of pixels of image Bb. As the time advances, new scan lines
of length M are added increasing the index li . Note that only a part of Bb
(in gray) is shown, as M = 2154 (urban) and M = 4270 (forest) in this paper.
Spatial correlations are searched within the neighborhood N(i) of the point i
represented with a black rectangle. The neighborhood is shown in white and
is separated into two areas encircled with black N8 and green N6 borders
(see text for details).

measurements C in its neighborhood N(i) satisfies the fol-
lowing condition:

C ≥ ρc |N(i)| (3)

where we choose ρc = 1/3 to define a minimum support
cover density (and motivate this choice in the following). See
Fig. 2 for illustration. We do not, however, want the supporting
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points to form a line, so we split the neighborhood N(i) of (3)
into two. This is important as we want to examine surface
smoothness for classification purposes later on. Hence, (3) is
redefined as

ri ∈ Sb if

{
Cin-slice,i ≥ ρc |Nin-slice| and

Cadj-slice,i ≥ ρc |Nadj-slice|. (4)

For (4), we then have both in-slice and adjacent-slice range
difference conditions

Cadj-slice,i =
∑

j∈Nadj-slice(i)

δi j , δi j =
{

1, if |ri − r j | < ξs

0, otherwise

(5)

and

Cin-slice,i =
∑

j∈Nin-slice(i)

δi j , δi j =
{

1, if |ri − r j | < ξp

0, otherwise
(6)

where the two separate neighborhood areas are (see Fig. 2)

Nadj-slice(i) ≡ {ri−M−1, ri−M , ri−M+1, ri+M−1, ri+M , ri+M+1}
(7)

Nin-slice(i) ≡ {ri−4, ri−3, ri−2, ri−1, ri+1, ri+2, ri+3, ri+4}.
(8)

In words, Nadj-slice(i) of (7) includes three range measurements
around the position hi from the previous and next scan lines,2

and Nin-slice(i) of (8) includes the eight closest range measure-
ments of i within the same scan line. For the chosen ρc = 1/3
and the neighborhoods of (7) and (8), the support condition (4)
employs two constants, ρc|Nin-slice| = 2 and ρc|Nadj-slice| ≈ 3.
This is a generalized formalization and improvement of
our preliminary previous work that also accounts for noisy
scanners [5], [6], while Zhang and Singh [7] have developed
their method for a low-noise scanner.

The control parameters of this support scheme are the
adjacent- and in-slice range thresholds, ξs of (5) and ξp of (6),
respectively. It is advisable to choose the control parameters
so that ξs ≥ ξp , since ξs matched points (adjacent scan
lines) are likely to be physically farther apart than ξp matched
points (same scan line), and so that they correspond to the
characteristic length scales of the environment and the objects
therein. For instance, in forest, ξs = 1.0 m roughly describes
the closest tree-to-tree distance, and ξp = 0.1 m roughly
describes the characteristic length of the stem diameter of a
grown tree. For an urban environment, these values may be a
bit larger. A detailed calibration of these parameters is done
in Section IV-A. Note that it is easy to see how the proposed
method behaves at the theoretical limits of ξs and ξp . If ξs

and ξp both approach zero, all points are labeled as noise,
ri ∈ Fb ∀i , and if they are both extended ad infinitum, no point
get labeled as noise, ri ∈ Sb ∀i .

2A jump of M points is needed to advance exactly the length of one scan
line.

C. Extension of Background

The key to successful image segmentation is to define
the background so that separate objects appear separately on
the foreground. Sb contains all the measurements ri that are
not determined as noise but may contain instances where
separate objects appear as one, only because they are adjacent.
In particular, if two objects are visually adjacent but present
at different ranges from the scanner, we want to separate
them. In addition, we want to separate smooth and nonsmooth
surfaces from each other.

In general, one can think that the measurement ri ∈ Sb

belongs either to a smooth or nonsmooth surface or an
intersection of two smooth surfaces. Here, we attempt to
specifically detect these intersections and temporarily redefine
them as background for the segmentation purposes. The inter-
sections are found by looking at local range gradients with
a three-point finite differences formula as follows. Point i is
relabeled to background, ri ∈ Gb where Gb ⊂ Sb , if the
condition

α <
ri − ri−1

max (ri+1 − ri−1, dc)
< 1 − α (9)

does not hold. Here, the tolerance ratio α = 0.3 and the
minimal characteristic length of physical objects dc = 0.05 m,
and ri is from (1). Due to the linear nature of (9), the outcome
is not very sensitive to alterations of these parameters. The
extended background Fb ∪ Gb is thus obtained as a union of
the noise and the points relabeled via (9).

D. Connected Components in 2-D

A 2-D connected components algorithm is run separately
on each block Bb along the data stream, where b stands for
the index of the block. The input is a binary image, where the
pixels belong either to the background, Fb ∪Gb , with value 0,
or to the foreground, Sb \ Gb, with value 1 (see Fig. 1). Each
pixel has four neighbors, and the image size is k × M . For
output, we obtain an image with labeled foreground, see step 3
in Fig. 1, where Fig. 3(c) shows the corresponding step in
Algorithm 1. [Also, see Fig. 8(b) in Section IV.]

1) Hole Filling: After running connected components, each
point pi ∈ Gb put to background in Section II-C is restored to
foreground, and given the nonzero label most common in their
8-pixel neighborhood. This yields the image Hb, see step 3
in Fig. 1. Note that it has less “holes.”

2) Boundary Condition Between Blocks: In Fig. 1, the rea-
son behind different segment colors (and labels) between
images Hb and Fig. 3(c) is that for Hb the labels of the
last scan line of Rb−1 are mapped over the block boundary
to the first scan line of Hb. Each boundary point on Rb−1
has a label and votes for that label to be also used by its
respective point on Hb. Label changes are introduced if three
or more points within the same segment (i.e., points with
an identical label) vote for the change. Only changes from
a nonzero label to another nonzero label are allowed. This
way, a smooth continuous segment can retain its label even
if it is split, or forked, between two consecutive blocks. Due
to this one-directional boundary condition, however, if two
segments would be joined they still remain separate segments



LEHTOLA et al.: PRC OF MOBILE LIDAR DATA USING SPATIAL CORRELATIONS 6905

Fig. 3. MLS platforms used to gather the data. (Left) Vehicle mount for
built environment. (Right) Backpack mount for forest.

in the preceding block. This is a tradeoff for not having to
include recursive loops. After relabeling, and a slight abuse of
notation, the final form of set Hb is obtained and it consists
of nonoverlapping segments

Hb =
⋃

s

H s
b (10)

where s indexes separate segments. As visible in image Hb

in Fig. 1, smooth surfaces such as the road and buildings are
rather well segmented.

E. Smooth and Nonsmooth Surfaces

The support conditions of (5) and (6) are likely to result
in small disjoint sets for nonsmooth surfaces. To connect
these for the purpose of obtaining larger and more coher-
ent segments, we employ a dilation operation from image
morphology [38]. The set Hb is taken as input. First, each
segment H s

b of (10) having an area size of A pixels or more
is labeled as background, i.e., 0, and all foreground is labeled
as 1. This yields a binary image, where all smooth surfaces are
omitted. Formally, we have defined that all segments of size A
or larger are smooth surfaces, and that the smaller surfaces are
nonsmooth and equal to the set

Ṽb(A) =
⋃

s∈
{

|Hs
b |<A

} H s
b . (11)

Next, the foreground Ṽb is dilated in γ iterations using
a four-neighbor connectedness. This is likely to connect the
pixels belonging, e.g., to the same bush or tree. A 2-D
connected component algorithm is rerun on this new fore-
ground, yielding a set Vb that represents the segmentation of
nonsmooth surfaces, see image Vb in Fig. 1. Hence, we show
that the vegetation patches can be joined, e.g., to represent
separate urban trees if the measurement geometry is favorable.
Patches that are smaller than A in Hb and that are not a
part of a large entity in Vb could be treated further; however,
the patches are left here as a part of Vb [these are later visible
as green “noise” in front of the windows of the red building
in Fig. 6(a) and (b)]. The final segmentation set Rb is obtained
from the combination of Hb and Vb. Each nonbackground
point pi ∈ Rb retains its label from Hb except if it has a

nonbackground label in Vb. In that case, the label is obtained
from Vb.

The process of separation into smooth and nonsmooth
surfaces is thus controlled with the area size parameter A and
the parameter γ that effectively controls the dilation length.
The choice of the (area) parameter A is dependent on the block
size k and the scan line length M , as these define the size of the
image, k×M . To maintain a similar level of algorithmic effect,
the ratio of the areas, A/(k×M), should remain constant. Also,
the dilation length should be restricted by keeping γ 	 √

A so
that areas separated by the previous segmentation would not
be prone to get reconnected. For example, with the parameters
k = 99 and M = 2154, we use A = 30 and γ = 2.

F. Classification

A classification into four classes is attempted in the built
environment. First, each pi ∈ Fb is defined as noise as
in Section II-B, by looking at the point support. Second,
the largest smooth patch, pi ∈ H smax

b , which is connected over
the blocks, is labeled as ground. Third, other smooth areas,
pi ∈ H s �=smax

b , are labeled as buildings. Fourth, nonsmooth
patches, pi ∈ Vb, are labeled as vegetation. The whole
above-mentioned process is managed with two support scheme
control parameters, ξs and ξp , defining the characteristic length
of the environment (see Section II-B), and two separation
parameters A and γ , defining the division into smooth and
nonsmooth surfaces (see Section II-E). See image Zb in Fig. 1
for an example of a classification result.

In forest, a classification into noise, ground, tree stems,
and other vegetation is attempted. A slightly different ground
classification method is proposed due to a more obstructed line
of sight and the less smooth ground surface. First, pi ∈ Fb

is defined as noise as previously. Second, points in smooth
areas pi ∈ Hb are labeled as tree stems. Third, points in
nonsmooth patches, pi ∈ Vb, are labeled as other vegetation.
Fourth, we calculate smoothness densities

ρi = 1

k

k∑
j=1

δi j , δi j =
{

1 if pi ∈ Hb \ Vb

0 otherwise
(12)

along the block columns, using a larger block size
k = 255 than for the urban environment. If ρi > 1/3, i.e.,
one-third of the points belong to any smooth patch, then the
block column is declared as ground (the previous label is
overwritten). This condition follows from the measurement
geometry, as most slant downward observations are—in fact—
from ground. To gain computational efficiency, ρi is calcu-
lated only once in every ten columns (e.g., 427 times for
M = 4270), starting from column hi = 0. The other nine
columns that follow in index order are treated the same than
the one from which ρi was calculated.

III. TEST SITES AND REFERENCE DATA

The proposed method is evaluated using two large data sets
gathered from different environments (see Fig. 3). In both
cases, the scanning plane is in a slant, close to a verti-
cal orientation to enable a favorable scanning geometry in
detecting vertical objects. We use raw data that have not
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been preprocessed but that may be connected onto an exist-
ing classification, i.e., a reference. The data from EuroSDR
Espoonlahti built environment test site are captured using
the FGI ROAMER platform [39], mounting a Faro Photon
80 scanner in a 2-D helical mode with 48-Hz frequency and
M = 2154 points per each scan line. The used scanner emits
a continuous wave, which is prone to cause more noise than
a pulsed time-of-flight scanner. This sets more challenge for
the proposed method and offers a decent test case considering
the single-photon LIDARs that are vulnerable to background
illumination. The data from a CAR method that we use for
comparison, i.e., as our reference, are published in [13] and
span a distance of 900 m containing 13 million classified
points. The vehicle driving speed was 30 km/h and the average
scan line spacing was 17 cm. In detail, PRC noise, ground,
and building results are matched against the noise, ground,
and building results in [13], respectively. PRC vegetation class
corresponds to the reference tree class, and the PRC other class
contains the rest of the reference classes, including cars, road
signs, and traffic lights.

The forest data of 85 million points are captured with
Akhka backpack [20] (see Fig. 3), mounting a Faro Focus
3-D 120 scanner in a 2-D helical mode with 97-Hz frequency
and M = 4270 points per each scan line. The dead angle
of the scanner, which is pointing downward, is 55◦. The
forest test area is about 2000 m2 (40 m × 50 m) rectan-
gular mature forest plot in an area behind FGI in Masala
(60.15◦N, 24.53◦E), southern Finland. Tree reference locations
and widths are obtained from field measurements, and the
ensuing reference tree trunk classification is explained in detail
in [20], where Liang et al. used this reference to evaluate
the results of their object-based CAR method. Briefly, tree
locations were measured from a fixed location inside the plot
using a Trimble 5602 DR 200+ total station. The total station
was oriented to the same coordinate system as backpack
data using virtual reference station-GNSS measurements. The
stem perimeter of each tree was measured by a steel tape
to the nearest millimeter at breast height (1.3 m above the
ground level), from which diameter at breast heights (DBHs)
were calculated. A reference classification is obtained for
each point by placing a 3-D cylinder onto each tree location
obtained by the previous field measurements. Cylinder z-
coordinate direction is obtained from the earth-centered, earth-
fixed coordinate system (coordinate transform is done using
GRS80 ellipsoidal model). Radius for each cylinder is defined
as two times the field measured DBH to compensate for
inclined tree stems and backpack registration errors in the data.
The height of each cylinder is 4.0 m starting from 1.0 m below
measured DBH height. Points residing outside the cylinders
and under 0.5 m from the nearest reference tree DBH altitude
are defined as reference ground, which (nonideally) includes
some low vegetation. Noise reference contains all points that
are not labeled as reference tree stem or reference ground.
In comparison, points outside the test area are omitted.

IV. RESULTS

We obtain a stream of data from a 2-D laser scanner that
sees ground but otherwise has an unknown pose. The stream

Fig. 4. Ratio of supported points to total points |S|/|B| = ∑
b |Sb |/|Bb| as

a function of ξp (ξs ) while keeping ξs = 1.0 m (ξp = 1.0 m) fixed.

consists of unregistered points pi (ri ), with ri of (1). Our goal
is to separate noise, ground, buildings, and vegetation points
from each other in the urban environment and the tree stem
points and ground points from the other points in the forest.
To evaluate the outcome, the following classification measures
are used. Recall is the amount of true positives divided by
the sum of true positives and false negatives. Accuracy is the
number of correct predictions divided by the total number of
predictions. Precision is the amount of true positives divided
by all positives.

A. Choice of Control Parameters

The stability of the proposed method with respect to the
control parameters ξp and ξs in Section II-B is examined with
the help of Fig. 4. Therein, the ratio of supported points against
total points

∑
b |Sb|/|Bb| as a function of ξp while keeping

ξs = 1.0 m fixed, and vice versa, is shown. The ratio is weakly
dependent on the control parameters, which means that the
method produces similar results regardless of the exact choice
for the numerical value of these parameters. Specifically,
the value for ξs should be in the range of [0.01, 10] m, and
the value for ξp in the range of [0.3, 10] m. We choose the
parameters ξs = 1.0 m and ξp = 1.0 and ξs = 1.0 m
and ξp = 0.1 for a more elaborate evaluation of the built
environment results.

The spatial correlations should be statistically significant so
that the points do not get supported by random. For the support
condition of (4), ξs = 1.0 m, and ξp = 1.0 m, the probability
of uniformly distributed random range measurements, xi ∈
[0, 120] m, supporting each other is 0.004 for N6 and 0.007
for N8. This yields a very low joint probability of 3 × 10−5.
In other words, the proposed method is not likely to support
measurements at random, and when ξs and ξp get smaller, this
probability gets even smaller.

B. Urban Environment

Confusion matrices normalized with the amount of refer-
ence points are given in Table I and the overview of the
data is shown in Fig. 5. With ξs = 1.0 and ξp = 1.0,
a ground recall is at 96.4% (see Table I). This is an excellent
result, because—to the best of our knowledge—this is the first
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Fig. 5. Results of the proposed PRC method from Espoonlahti test site on top of the registered reference data. (a) After segmentation. Gray points: data
from one part of the trajectory has purposefully not been noise filtered to visualize the amount of noise in the data. Black line: approximate location to where
the block data shown in Fig. 1 is registered. (b) Classification is done to ground (blue), buildings (red), and vegetation (green). (c) Our reference, CAR data
from [13], employs more specific labels, and thus is shown in different colors for visualization purposes (see Section III).

time when the urban ground classification is done with a 2-D
scanner with an unknown pose. However, note that noise close
to the ground results in false positives by PRC, also visible
in Table I. Approximately, 29% of noise points are presumed

to be ground. To see whether this is because the noise filtering
is not sufficiently aggressive, we alter the parameters. With
ξp = 0.1, the noise recall yields a slightly better result, but
there is a significant drop in true ground, true vegetation, and
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Fig. 6. Close up view on the classification results shown on top of the registered reference data. (a) Less and (b) more aggressive PRC outcomes with
ξs = 1.0 m and ξp = 1.0 m, and ξs = 1.0 m and ξp = 0.1 m, respectively, are compared against (c) reference CAR data from [13]. Ground is blue. Buildings
are red. Vegetation is shown in green in (a) and (b), and in green (vegetation) and in yellow (trees) in (c). In the reference (c), magenta points belong to the
“other” class. One section of the building wall is shown for the PRC but not for the reference.

true buildings (see Table I). Ground and noise labeling are
affected only by the two support scheme parameters ξs and
ξp , with true noise labeling being quite robust with respect

to them. Lowering the value of these reduces the detection
percent of true ground, as points increasingly get labeled as
noise (see Fig. 6). Note especially the detected width of the
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TABLE I

CONFUSION MATRIX USING PARAMETERS ξs = 1.0 AND ξp = 1.0 (TOP)
AND ξs = 1.0 AND ξp = 0.1 (BOTTOM). FOR BOTH A = 30 AND

γ = 2. RECALL VALUES ARE SHOWN, AND THOSE OVER 0.20 AND

0.50 ARE SHOWN IN YELLOW AND GREEN, RESPECTIVELY, FOR

READER’S CONVENIENCE. CLASSIFICATION RESULTS
ARE COMPARED AGAINST OUR REFERENCE,

CAR DATA FROM [13]

road. The aggressiveness of the PRC filter, i.e., how wide is
the detected road, is controllable with these support scheme
control parameters.

The connected component parameters A and γ in
Section II-E affect the separation between smooth and non-
smooth surfaces. With a block size of 99 scan lines, best
results are obtained around A = 30 and γ = 2, see Table I
with ξp = 1.0. Building and vegetation point classification
recalls are 61.1% and 66.5%, respectively. If γ is set to zero,
false and true positives in vegetation decrease, while false and
true positives in building increase. If γ is set higher than 2,
the opposite happens. At γ = 20, the amount of building
positives is negligible. Vegetation areas are then increased too
aggressively, which reduces correct labeling.

Altering the area parameter A results in minor changes in
classification results. With a lower value A = 10, building
positives are slightly increased at the cost of declining vegeta-
tion positives and with a higher A = 100 vice versa. Changes
are within 10 percentile units. Furthermore, the impact of A
decreases as γ is increased.

For reader’s convenience, the approximate location of the
data processed through steps shown in Fig. 1 is shown
in Fig. 5(a). The same approximate location is used also for
Figs. 6 and 7. Note the same car that is present in each figure.
The car shape is distinctly different in the registered form
in Figs. 6 and 7 than in the raw data visualization in Fig. 1,
because of the tilted scanner orientation and the way the range
image is constructed.

Note that the reference data are not perfect. For example,
in Fig. 6, the reference does not include all building points.
The shopping mall is missing a large section of its facade close
to the center of the image, and on the lower right corner, the
partially captured building facades are correctly classified for
PRC results although they are not so in the reference. These
points correctly detected by the proposed PRC method show as
a rather high amount, 7.7%, of “false positives” (see Table I).
The same applies to vegetation and ground when PRC filtering
is less aggressive than the reference (see Fig. 6). Points labeled

Fig. 7. (Top) Comparison of PRC against (Bottom) reference with respect
to filtering. Points representing the street sign poles vanish (red circles, top)
as the requirement of supportive measurements is not met, i.e., one line of
adjacent points is not enough. On the other hand, some important points are
recovered by the PRC that was dismissed in the reference (red circles, bottom).
PRC shows the street signs in red indicating a smooth surface.

as “other” for reference do not have a corresponding PRC
class, as shown in Table I, but these points are so few that
their overall impact on the results is taken as negligible.

The added benefit of spatial correlations is shown in Fig. 7,
where on top of the rightmost red circle, smooth surface points
of a road sign are detected (points in red). Similarly, the road
sign attached to the lighting pole in the center of the image is
revealed by red points indicating a smooth surface. In contrast,
the lighting pole is classified as a nonsmooth surface. Objects
do not need to be continuous for pointwise classification. See
the missing lamp distinct from the lighting pole surrounded
with a red circle in the reference image shown in Fig. 7. It is
restored in the PRC image of the same figure.

The proposed method has limitations with respect to thin
objects and scanning geometry. Fig. 7 shows a closeup view on
classification results on Espoonlahti test site data. Streetlight
poles are not wholly captured due to the support scheme.
If the pole is so thin, or captured from so far away, that it
consists of a single scan strip, the support filter treats the
pole points as outliers. Object points close to the ground
are classified as ground since the support algorithm cannot
differentiate a strong enough contrast in the range between
these points and their background. The distinguishing capacity
of PRC may to some extent be regulated by the support scheme
parameters, see the advertisement hoarding change color from
blue [Fig. 6(a)] to red [Fig. 6(b)] near the center of the image.
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Fig. 8. (a) k×M block Bb of forest range data, with k = 255 and M = 4270.
(b) PRC segmentation result. (c) PRC classification into noise (gray), ground
(blue), tree stems (red), and other vegetation (green). Ground (blue) recall is
high only near the trajectory.

The following tradeoff issue on whether to relax or to tighten
the support scheme parameters is brought up in Section V.

C. Finding Trees in the Forest

The objective is to classify the points with labels noise,
ground, tree stems, and other vegetation. However, since the
reference only contains classes noise, ground, and tree stems,
we match the predicted “other vegetation” with reference
noise.

Finding the tree stem points (5% of total points) is like
finding needles in the haystack since the stems may be partially
hidden by forest basin, branches, and smaller plants. This
means that the separation between the tree stem points and the
forest basin points is also hard, even with Gb of Section II-C.
Therefore, we employ the subblock smoothness density of (12)
to label ground.

“The haystack,” i.e., a block Bb of range data from
the forest, is visualized in Fig. 8(a). The scanner shown
in Fig. 3 (right) is aligned so that the 55◦ dead angle points
toward the ground, meaning that the mid part of the scan line
corresponds to the sky. Fig. 8(b) and (c) shows the following
segmentation and classification results. Note how the tree
stems shift vertically in the block image, indicating that the
scan platform has rotated at that time. Tree stems appear
continuous but regardless of this do not form continuous
segments. Hence, the classification based on the area size of
the segment misinterprets some parts of the stem to the class
“other vegetation.”

The range block shown in Fig. 8 is plotted on top of the
registered reference data for visualization purposes in Fig. 9.
The previously mentioned rotation of the scan platform is
visible in which there seems to be a static axis of rotation
on the right side of the traveled path. This is due to the fact
that the actual rotation takes place while the platform is on
the move along the path. Any classification to distances over
20 m becomes difficult since the line of sight is obstructed by
forest vegetation, compare Fig. 9(a) and (b). At the limit of
long range, points are increasingly labeled as noise.

The accuracy and precision of the tree stem and the ground
classes are the most important quantitative factors application-
wise. The calibration of the two support parameters is done
similarly as for the built environment. The tree stem points
are best separated from “the haystack” with ξs = 0.01 and
ξp = 0.01. With these parameter values, 74.6% of points do

Fig. 9. (a) Block Bb of points after 3-D registration for visual purposes.
Coloring is based on the measured range (m). Walking route is in white.
(b) Visualization of the PRC classification result of Fig. 8, with noise (gray),
ground (blue), tree stems (red), and other vegetation (green). Detected tree
stem points are encircled for visual clarity.

not obtain support and are treated as noise. The results are
visualized in Fig. 10. Raw scanner data points pi are classified
into three categories, and each point representing either noise,
ground, or a tree stem. Confusion matrix results are displayed
in Table II. The prediction of the proposed PRC method for
tree stems is conservative, yielding little false positives and
a 50.0% recall. Tree stem classification accuracy is 96.1%
and precision 58.0%. Ground classification accuracy is 60.0%
and precision 91.3%, with 31.0% recall. There is a sharp
contrast between this low overall ground recall rate that is
due to trees occluding ground points farther to the trajectory,
and the high local ground recall rate close to the traveled
path [see Figs. 9(b) and 10(a)]. Note that these results are
also affected by shortcomings in the elevation precision of the
ground reference, as explained in Section III.

For sensitivity analysis purposes, we used also much larger
values ξs = 1.0 m, which roughly describes the closest tree-
to-tree distance, and ξp = 0.1 m, which roughly describes the
characteristic length of the stem diameter of a grown tree.
With these parameters, 34.1% of all points get labeled as
noise. Based on visual inspection (see Fig. 11), the detection
of outliers is quite successful even for this relaxed set of
parameters. Not only the outliers that are clearly outside the
data set, e.g., above the tree level, are removed but also those
outliers that reside within the forest and between the trees
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TABLE II

CONFUSION MATRICES FOR THE PROPOSED METHOD IN FOREST TEST SITE, RECALL VALUES (LEFT), AND UNNORMED SAMPLES (RIGHT), ξs = 0.01
AND ξp = 0.01. RECALL VALUES OVER 0.20 AND 0.50 ARE SHOWN IN YELLOW AND GREEN, RESPECTIVELY, FOR READER’S CONVENIENCE.

TREE STEM CLASSIFICATION ACCURACY IS 96.1% AND PRECISION IS 58.0%, EVEN THOUGH TREE STEM POINTS ACCOUNT FOR ONLY

5% OF THE TOTAL POINTS. PREDICTED “OTHER VEGETATION” IS MATCHED AGAINST THE NOISE CLASS IN THE REFERENCE

Fig. 10. Visualization of PRC results on top of the 3-D registered reference point cloud. (a) PRC classification result for the forest test site with ground in
blue. Smooth (red) and nonsmooth (green) surfaces are taken to represent tree stems and leaves, respectively. The white path is the traveled route. (b) Reference
tree locations (DBH) are shown as large brown dots, with points belonging to reference tree stem (red) and ground (blue) classes. Black circle: visual reference
and surrounds the same tree in both plots.

Fig. 11. Local support filter in action, using ξs = 1.0 m, ξp = 0.1 m.
(a) Overview, (b) top view, and (c) point of view (POV) of the forest data with
PRC results on top of 3-D registered reference data. Unfiltered and filtered
point clouds are shown on left and right, respectively. Note that filtering
is done before point cloud registration, although registered point clouds are
shown for visualization purposes. Coloring is based on range.

appear to vanish. Therefore, the noise filtering is robust with
respect to the control parameters. However, with ξs = 1.0 and
ξp = 0.1, PRC yields out a bare 20.4% tree stem recall with
41.3% precision. This only means that using too long length

scale values leads to fewer tree stem points being successfully
separated from the occluding foliage (as we are looking for
too long needles in the haystack).

D. Real-Time Capability

For the results presented in Section IV, the proposed
algorithm was run on previously captured data so that clas-
sification results can be compared against a known reference.
Here, we discuss the real-time capability of the algorithm.
The Espoonlahti test site data contain 12.9 M points and was
captured with a 48-Hz frequency in 125 s. In comparison,
CPU run times for the proposed method are around 100 s
with unoptimized code, although the connected components
and dilation routines are from an optimized outside library. The
processing rate is 0.13 Mpts/s. With 48-Hz frequency, a block
size of k = 99 scan lines represents the data captured in 2 s.
For a higher update rate, continuous processing is suggested.

For the forest data of 85 million points, the respective run
time is 460 s, with a scan line and k both about two times as
large leading to a 4–5 times larger block size. The increase
in the processing rate from 0.13 to 0.18 Mpts/s, however,
mostly follows from tight filtering. With an almost 100-Hz
frequency, a block size of k = 255 scan lines represents
the data captured in 2.5 s. The proposed method is real-time
capable and, therefore, very likely applicable for an online
algorithm. Also, a more intense data capture rate can likely
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be handled since the block operations can be straightforwardly
parallelized.

V. DISCUSSION

A. On Results
The reference LIDAR data, urban CAR results in [13], and

the tree reference in [20] allowed us to test the multipurpose
nature and the shortcomings of the proposed method in two
very different environments. The MLS-based tests were carried
out in an urban environment using a vehicle and in forest
using a human-carried backpack. Compared to the urban
environment, the forest basin is a geometrically complex entity
consisting of a mix of different plants. Trees growing out of
this mix are hard to distinguish. This is especially true close
to the scanner when the scanning geometry is unideal for an
effective range separation. To avoid this, we evaluated the
subblock smoothness density of (12), but scan angle reduction
or line [14] or cylinder [27] regression could also be used.

For the chosen parameters, the proposed method performs
especially well in the urban environment with ground, vegeta-
tion, and building recalls being 96%, 67%, and 61%, respec-
tively. In the forest, tree stem classification resulted in 50.0%
recall and in accuracy and precision of 96.1% and 58.0%,
respectively. Among other things, these results advocate for a
new way to design SLAM algorithms. For example, in contrast
to matching all available points among themselves [40], points
belonging to the same class can be matched together to
calculate the pose of the system. Especially, if there are
ways to improve the classification results by smartly reducing
the overall aggressiveness of the filter, e.g., with multiple
filter layers computed with different sets of support scheme
parameters or by redefining the filtering so that individual
critical filter values can be computed for each point.

The support condition of the proposed PRC method behaves
as expected between the theoretical limits, i.e., increasing the
length threshold parameters ξs and ξp decreases the amount of
points labeled as noise. Also, as shown in Fig. 4, the support
scheme is quite robust with respect to the choice of control
parameters ξs and ξp . There is, however, some tradeoff in
whether to relax or tighten the support scheme parameters
ξs and ξp . For example, by relaxing the support scheme
parameters, one can conserve thin objects such as lighting
poles, however, so that the lower part of them is predicted
to be ground. In general, approaching the long length scale
limit causes undersegmentation (as discussed in Section IV-C).
On the other hand, by tightening the support scheme parame-
ters, the lower part of objects is less likely predicted as ground,
but then the thin objects disappear (see the example in Fig. 7).
In the light of this tradeoff, we put the PRC method into a real
test by trying to classify tree stem points in forest where both
the undersegmentation and the loss of the detection capability
of thin stems should be avoided. In addition, the ranging
precision of the measurement device is likely to become a
relevant issue in the tight limit. This issue, however, is beyond
the scope of this paper. The scanner used for the forest data
has a ranging error of 0.002 m (at 25 m),3 which is a lot
smaller than the lowest used computational value of 0.01 m.

3Faro Focus 3-D 120 scanner, specifications from www.faro.com

In addition to the support scheme parameters ξs and ξp ,
two separation parameters were introduced. Disjoint patches
are merged with the parameter γ that marks the number
of morphological dilations done on the vegetation segments.
Extension to background in (9) is triggered for two points
near each stepwise change in the range measurements within
a scan line. Thus, keeping the value γ = 2 is advisable. If γ
is too large, points labeled as building also become defined as
vegetation. The optimal value for the minimum smooth area
A depends on the size of the block image B . In urban envi-
ronment, the classification results (of Section IV-B) appeared
to be quite robust with respect to the choice of A.

B. On Potential and Shortcomings

The explored PRC scheme may open new horizons in (dis-
tributed) LIDAR data processing (see Table III). Notably,
data from moving 2-D laser scanners can be preclassified
before registration. Since SLAM can be run on a filtered and
reduced stream of data [6], preclassifying the raw data allows
for SLAM enhancements. Continuing the idea of hierarchy
presented in [19], local spatial correlations from PRC and
the global 3-D geometry from CAR may be combined to
perform enhanced hierarchical classification. Machine learning
applications exist, also. On the one hand, raw data are ideal for
artificial intelligence (AI) and the manual work in obtaining
AI training data could be reduced with PRC methods. On the
other hand, AI methods could be used to adjust the PRC
scheme, e.g., the neighborhood properties, to provide better
results. In addition, PRC provides a good alternative for
black-boxed firmware that filters points before the points are
extracted from the scanner, especially since it is working with
the similar spatial correlations found useful in chip-level data
filtering [8]. This should be of interest for researchers. Reflect-
ing to this background, we have shown that the proposed
method is a viable classifier, although, as expected, it falls
short from CAR methods in classification metrics.

In principle, the PRC can be thought to be a way to com-
press the information about the spatial correlations between
a point and its neighbors. Typical to geoinformation industry,
finalized point clouds seldom contain this line-of-sight infor-
mation that was available when the data were captured. Hence,
preregistration classified points may be used to carry these
spatial correlations along in a compressed form of a single
class label, familiar, e.g., to the ASPRS LAS-format—even
if conventional means, e.g., satellite positioning, are used to
register points in a postprocessing step.

The proposed method is independent of radiometry, and
its only geometrical prerequisite is that the scanner sees
the ground (see Section II-F, steps two and four for the
built environment and the forest, respectively). However, this
makes the method vulnerable to reflecting surfaces. Adding a
radiometric component to detect these reflections is to be done
as a part of the future work. In addition, future research focuses
on improving the method by including machine learning tech-
niques. The neighborhood shapes introduced in Section II-B
could then be optimized, e.g., for SLAM [9] and forest
industry applications [16]. Also, the thin and elongated road
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TABLE III

SUITABILITY OF CLASSIFICATION METHODS FOR MLS DATA: 1) CAR; 2) MAPS; AND 3) PRC TO DIFFERENT USE CASES. CITATIONS OFFER EXAMPLES

inventory items such as lighting or road sign poles might be
recoverable by optimizing shape properties for the segmented
areas after running connected components. A large part of the
data may be omitted if only the boundaries of smooth areas are
stored, especially if storing is done in vectored forms. Smart
sampling as a function of the scan range may also provide
efficient means to compress and analyze the data.

VI. CONCLUSION

PRC means segmenting and classifying the mobile-scanned
LIDAR data before and independently of data registration. The
chronological order and the spatial correlations between the
range measurements are employed to perform classification.
Hence, PRC significantly differs from the CAR and MAPS
methods with respect to the input data. The raw scanner
data stream must be completely unfiltered and the range
measurements in an emission-based chronological order. Such
data are typically not stored, nor are they available after
traditional data processing, but we have managed to access
the raw data dumps of two previous CAR works so that our
results could be compared to theirs.

PRC is a complementary paradigm, in addition to CAR and
MAPS, in performing MLS classification of LIDAR points.
Where CAR methods excel in classification metrics, PRC has
potential for real-time solutions. Where MAPS methods excel
for 3-D scanners or in SLAM integration, PRC does so for
2-D scanners or in being independent of SLAM. Importantly,
however, PRC may be used with or without CAR (or MAPS)
methods to allow for new system designs and improved
processing performance. Here, we have demonstrated the
computational efficiency of one PRC method and shown its
viability with respect to classification metrics.

The proposed PRC algorithm effectively encapsulates the
spatial correlations that exist in the raw data stream of a
mobile laser scanner into a pointwise classification label. The
proposed algorithm is viable in drastically different envi-
ronments with a change in two essential control parameters
defining the characteristic length scales. For instance, forest
data differ from the urban environment data in which the
objects are both closer to the scanner, but also closer to
each other. Therefore, the characteristic length scale of spatial
correlations is also smaller. We have shown that by essentially
calibrating the two control parameters to match this typical
spatial correlation length of the environment, the proposed
method manages to classify raw range measurements into

either smooth surfaces such as buildings, tree stems, or ground,
or into nonsmooth surfaces such as vegetation or noise. The
proposed PRC method is shown to be real-time capable.
Finally, the importance of PRC, in general, is likely to increase
in the future, as PRC may be especially useful with the upcom-
ing single-photon LIDARs that are vulnerable to background
illumination and their data thus contain a lot of noise.
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