
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Sethi, Mohit; Peltonen, Aleksi; Aura, Tuomas
Misbinding attacks on secure device pairing and bootstrapping

Published in:
AsiaCCS 2019 - Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security

DOI:
10.1145/3321705.3329813

Published: 02/07/2019

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Sethi, M., Peltonen, A., & Aura, T. (2019). Misbinding attacks on secure device pairing and bootstrapping. In
AsiaCCS 2019 - Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security
(pp. 453-464). ACM. https://doi.org/10.1145/3321705.3329813

https://doi.org/10.1145/3321705.3329813
https://doi.org/10.1145/3321705.3329813

Misbinding Attacks on Secure Device Pairing and Bootstrapping

Mohit Sethi∗†, Aleksi Peltonen†, Tuomas Aura†
∗NomadicLab, Ericsson Research, Finland

†Aalto University, Finland
{mohit.sethi,aleksi.peltonen,tuomas.aura}@aalto.fi

ABSTRACT
In identity misbinding attacks against authenticated key-exchange
protocols, a legitimate but compromised participant manipulates
the honest parties so that the victim becomes unknowingly as-
sociated with a third party. These attacks are well known, and
resistance to misbinding is considered a critical requirement for
security protocols on the Internet. In the context of device pairing,
on the other hand, the attack has received little attention outside
the trusted-computing community. This paper points out that most
device pairing protocols are vulnerable to misbinding. Device pair-
ing protocols are characterized by lack of a-priory information,
such as identifiers and cryptographic roots of trust, about the other
endpoint. Therefore, the devices in pairing protocols need to be
identified by the user’s physical access to them. As case studies for
demonstrating the misbinding vulnerability, we use Bluetooth and a
protocol that registers new IoT devices to authentication servers on
wireless networks. We have implemented the attacks. We also show
how the attacks can be found in formal models of the protocols with
carefully formulated correspondence assertions. The formal analy-
sis yields a new type of double misbinding attack. While pairing
protocols have been extensively modelled and analyzed, misbinding
seems to be an aspect that has not previously received sufficient
attention. Finally, we discuss potential ways to mitigate the threat
and its significance to security of pairing protocols.

CCS CONCEPTS
• Security and privacy → Systems security; Network secu-
rity; Formal methods and theory of security; • Networks → Net-
work protocol design.

KEYWORDS
Device pairing; IoT security; misbinding attack; Bluetooth; EAP-
NOOB; DPP; ProVerif; formal modelling

ACM Reference Format:
Mohit Sethi, Aleksi Peltonen and Tuomas Aura. 2019. Misbinding Attacks
on Secure Device Pairing and Bootstrapping. In ACM Asia Conference on
Computer and Communications Security (AsiaCCS ’19), July 9–12, 2019, Auck-
land, New Zealand. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3321705.3329813

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6752-3/19/07.
https://doi.org/10.1145/3321705.3329813

1 INTRODUCTION
Secure device pairing is a process that bootstraps secure communi-
cation between two physical devices. It is a type of authenticated
key-exchange, but with the special characteristic that the endpoints
are physical devices which the user can see or touch directly. Un-
like most security protocols, secure device pairing does not require
pre-established cryptographic credentials or security infrastructure.
Instead, the user acts as an out-of-band communications channel
or a trusted party that provides the initial security.

The focus of this paper is on identity-misbinding [33] or unknown-
key-share attacks [9] where the wrong endpoints are paired with
each other. These attacks depend on one of the user’s devices being
compromised, and they do not violate the basic secrecy goals. Nev-
ertheless, such vulnerabilities have been considered unacceptable
and avoidable in network security protocols. Our main message is
that most device-pairing protocols are vulnerable to the misbinding
attacks. As we will argue, the vulnerability is not caused by tech-
nical errors in the protocol design; rather, it arises from the lack
of verifiable identifiers in situations where the endpoint identity is
defined by the user’s physical access to the device.

This paper is not intended to sound alarm but rather to bring clar-
ity and understanding to a previously ignored question about device
authentication. Our contributions are the following: (i) bringing
attention to identity-misbinding vulnerabilities in device-pairing
and bootstrapping protocols, (ii) detailed analysis and characteriza-
tion of the vulnerabilities, (ii) examples of concrete, implemented
attacks against Bluetooth Secure Simple Pairing and the proposed
EAP-NOOB protocol for registering new devices to a network, (iii)
formal specification of the violated security property as a corre-
spondence assertion that takes into account the user intention, and
(iv) balanced discussion of the impact of these attacks and poten-
tial countermeasures. The significance of our work arises from the
wide deployment of the vulnerable pairing protocols in everyday
applications.

The rest of the paper is structured as follows. Section 2 dis-
cusses the relevant state of the art in security protocols and attacks.
Section 3 explains the misbinding attack against device-pairing
protocols and a similar attack when registering new IoT devices to
an authentication server. In Section 4, we show how to model the
attack and the related security properties. We also discover a new
variant of the misbinding attack. Section 5 considers the potential
solutions. Section 6 discusses the significance of the results, and
Section 7 concludes the paper.

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

453

https://doi.org/10.1145/3321705.3329813
https://doi.org/10.1145/3321705.3329813
https://doi.org/10.1145/3321705.3329813

2 BACKGROUND
2.1 Security protocol attacks and

correspondence assertions
The goal of authenticated key exchange is to establish a shared
cryptographic key between two or more communication endpoints,
which then use the shared key for protecting communication in-
tegrity and confidentiality. Authenticated key-exchange protocols
should be secure against the so-calledDolev-Yao attacker [19], which
is able to spoof, intercept and modify messages in the network in
arbitrary ways, except when it lacks the necessary cryptographic
keys. The attacker may impersonate one of the communication
endpoints or set itself as a man in the middle (MitM) between them.
Even carefully designed protocols have been found to be vulnerable
to forwarding and interleaving attacks [2][36], in which the attacker
itself is a legitimate participant in the protocol but can mislead
others by cleverly replaying messages. In closed systems, such in-
sider attacks could sometimes be tolerated, but in large systems
and open networks such as the Internet and the Internet of Things,
there always are some malicious “insiders”. Thus, modern security
protocols are required to be immune to these attacks.

The authentication goals of key-exchange protocols can be de-
fined in terms of matching or agreement between the records made
by different endpoints on the protocol execution [15, 37]. The same
goals can be stated as correspondence assertions [45]. These asser-
tions define relations between later and earlier events in the pro-
tocol execution. For example, a common assertion is that, if Alice
accepts a session key to be used with Bob, both Alice and Bob must
have previously declared an intent to create such a session key. This
way, we can make global assertions about the events that should
or should not take place in a distributed system. Injective corre-
spondence further requires that each such declaration of intent can
result in at most one accepted session key. The assertions are typi-
cally parameterized with all the knowledge of protocol inputs and
parameters which should match between the events and endpoints.

An advantage of specifying security properties as correspon-
dence assertions is that, in addition to basic authentication proper-
ties, the assertions capture the protocol designer’s implicit expecta-
tions about its execution and, thus, can help to detect subtle flaws
that might otherwise go unnoticed.

2.2 Identity misbinding
Figure 1 shows an attack on a badly authenticated key exchange.
In the figure, the two communication endpoints A and C perform a
Diffie-Hellman (DH) key exchange, and the endpoints sign both key
shares in order to reach agreement on them. However, a man-in-the-
middle attacker B is located between the endpoints and manipulates
the messages. In messages travelling from A to C, it replaces A’s
identifier and signature with its own. This leads to an inconsistency
in the states of A and C: A correctly thinks that it shares the session
key дxy with C, but C has the non-matching belief that it shares the
key дxy with B. The attack does not compromise secrecy of data
because B does not learn the session key. Moreover, one could argue
that A has correctly authenticated C, and more controversially, that
C has correctly authenticated B because B is entitled to choose any
key share it likes. Nevertheless, something clearly is amiss about

Figure 1: Identity misbinding against signed Diffie-Hellman

the authentication. A and C have different understanding of who
they are communicating with, which violates a correspondence
property that an authenticated key exchange intuitively should
have.

The above attackwas identified byDiffie et al. [15] and it has been
given many names including unknown-key-share [9] and identity
misbinding [33]. In different versions of the attacks, the misled
party may be the initiator or the responder or both. Diffie et al.
initially presented the attack to motivate the station-to-station
(STS) protocol. In basic STS, the signatures are encrypted with the
Diffie-Hellman session key, and the paper also suggests another
variant where a message authentication code (MAC) replaces the
encryption. The function of the encryption or MAC is to bind the
session key to the signatures, which prevents the attacker, who
does not know the session key, from replacing the signatures.

The STS protocol, including both the encryption and MAC vari-
ants, is still vulnerable to misbinding attacks if the attacker B man-
ages to register A’s or C’s public signature key as its own. This
vulnerability is well known and caused by failure of the certification
authority to verify that the subject possesses the private key. Never-
theless, the dependence on the CA following best practices can and
should be avoided. The SIGMA protocol family by Krawczyk [33]
computes the MAC explicitly on the message sender’s identifier,
rather than its signature. The SIGMA protocols are highly influ-
ential because they include the IKEv2 key exchange [31] and its
predecessors in the IPsec protocol suite. As a consequence, resis-
tance to the misbinding attacks is considered one of the critical
requirements for key-exchange protocols designed for the Internet.

2.3 Device pairing and relay attack
Secure device pairing is a bootstrapping process that establishes
a secure channel between two previously unassociated devices.
These devices often communicate over a short-range wireless chan-
nel such as Bluetooth [43], Wi-Fi [28], or Zigbee [6]. While the
goals of device pairing are similar to those of any authenticated
key-exchange protocol, there is one major difference: the devices
typically have no prior security context, such as knowledge of each
other’s public keys or certificates and identifiers. They may not
even have identifiers or an assigned owner before the pairing es-
tablishes those. Additionally, the devices may not be able to rely
on the availability of trusted infrastructure due to the ad-hoc and
local nature of the short-range wireless communication.

Typical device pairing protocols perform a Diffie-Hellman (DH)
or an Elliptic Curve Diffie-Hellman (ECDH) key exchange over the
in-band wireless channel and then use a human-assisted out-of-band

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

454

(OOB) channel to thwart potential impersonation and man-in-the-
middle attackers in the in-band channel. Several researchers have
studied the security and usability of device pairing protocols in
significant detail [22, 26, 30, 42]. The existing literature assumes a
powerful Dolev-Yao type attacker on the in-band wireless channel
and an OOB channel that provides some inherent protection for
the confidentiality and/or integrity of the data exchanged over it.

Bluetooth (see Section 3.1) is one of the most widely deployed
and analyzed wireless technologies. Modern Bluetooth devices use
the Simple Secure Pairing (SSP) [43] protocols, although some may
be backward compatible with the less secure Legacy Pairing meth-
ods. Wireless devices have different input and output capabilities,
which is why SSP supports multiple different user interactions
and is actually a family of key-exchange protocols. In the numeric-
comparison mode, the user is asked to compare six-digit codes on
two device displays while, in the out-of-band mode, the user de-
livers similar verification information securely from one device to
another. Either way, the out-of-band communication by the user
prevents man-in-the-middle attacks on the ECDH key exchange
that takes place over the in-band wireless channel. There is also a
just-works mode for devices that support neither output nor input
of six-digit codes. Obviously, this mode lacks secure authentication.

Research literature on Bluetooth security discusses several at-
tacks that are relevant to pairing protocols in general. It may be
possible to spy on the OOB channel or to misrepresent the device
capabilities so that the devices negotiate the insecure just-works
mode [24]. The attacker can trick remote devices into believing
that they are in direct communication by relaying unmodified pro-
tocol messages between their locations [35]. In the legacy version
of Bluetooth where session encryption was not mandatory, relay-
ing of the authentication messages could result in pairing of the
wrong devices. In modern protocols, this attack is relevant when
the primary goal is the device authentication and not the follow-
ing communication, for example, when a Bluetooth device is used
as a door key or as a location beacon. The Bluetooth just-works
mode can lead to accidental or maliciously induced association with
a wrong peer device, as noted among others by Suomalainen et
al. [44]. If the device supports multiple simultaneous key exchanges,
there can be confusion between the resulting sessions [14]. The
end result in these attacks is akin to identity misbinding because
the reality of the created security associations does not correspond
to the device’s or user’s perception.

Poorly designed internal architecture of a Bluetooth endpoint,
such as a mobile phone, may also lead to attacks. Naveed et al. [38]
describe how malicious applications on an Android smartphone
can hijack connections from attached Bluetooth (medical) devices
in order to steal data. The problem arises from the fact that the
Android permission and security model allows any application
with the Bluetooth permission to communicate with all external
Bluetooth-paired devices. A more general lesson that we can draw
from the paper is that it is important to pay attention to malicious
insiders, such as untrusted apps, residing in the endpoint devices,
which may be able to interfere with the communication without
fully compromising the device.

The pairing protocols critically depend on user actions, such
as comparing or delivering codes. Ellison [20] introduced the con-
cept of security ceremonies where the users are participants to the

protocol and their actions are specified, modelled and analyzed
just like those of the communicating endpoints. Carlos et al. [13]
use Bluetooth as an example for reasoning about basic security
properties of a security ceremony.

2.4 Trusted computing and cuckoo attack
The published work closest to ours comes from the trusted-comput-
ing community. In trusted computing, a computer or amobile device
incorporates a secure hardware component that is certified by the
manufacturer and acts as a trusted entity inside the device. The
most common secure hardware component is a trusted platform
module (TPM) [1], which supervises the boot process of the device
and either enforces secure boot or measures (as a cumulative hash
value) the loaded software. The latter case is also called dynamic
root of trust for measurement (DRTM). The latest microprocessors
have more advanced trusted execution environments (TEE), such
as ARM TrustZone1 and Intel SGX2, which allow trusted software
to be isolated and launched after the device has booted. A common
feature in these technologies is that, in addition to enforcing some
security policies inside the computer, they can attest the integrity
of the device and its software configuration to an external verifier.
This could allow, for example, the user to cryptographically verify
the integrity of a cryptocurrency wallet before storing high-value
secrets to it. The attestation naturally needs to be cryptographically
linked to a secure communication channel [23] with the verifier.

Parno et al. [40] first pointed out the problem that, while users
may be able to cryptographically verify that they are communicat-
ing with a trusted hardware module and measured software, it is
difficult to be certain that they are physically accessing the very
device where that module is embedded. In the cuckoo attack, the
device in the verifier’s physical proximity is not actually trusted
but tricks the verifier into believing so. The cuckoo device achieves
this by forwarding the communication to another device which has
the correct configuration and a DRTM for attesting it.

Fink at al. [21] suggest measuring the round trip times of re-
quests to the trusted device to detect if it is in the proximity of the
verifier. Zhang et al. [46] also investigate the problem of a human
user distinguishing genuine secure hardware from adversarial de-
vices. They divide the presence attestation into two phases: first,
existence checking, which uses the standard remote attestation
protocols, and second, residence checking, which provides assur-
ance that the attesting hardware module is, in fact, in the specific
physical device. We will return to the suggested mechanisms for
residence checking in Section 5. Ding et al. [18] further argue that
presence attestation with DRTM differs significantly from device
pairing where both devices are trusted. The current paper sets out
to investigate whether this is always the case.

2.5 Formal modelling
Formal modelling and model checking are standard methodology in
the development and analysis of key-exchange protocols [7, 10, 17].
Various protocol flaws have been found with these methods but,
perhaps more significantly, formal models are a way to lift the
security-protocol design to a higher abstraction level than message

1https://developer.arm.com/technologies/trustzone
2https://software.intel.com/en-us/sgx

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

455

https://developer.arm.com/technologies/trustzone
https://software.intel.com/en-us/sgx

formats and state machines, and to define precisely the security
properties that the protocol is expected to have.

The model checkers for security protocols are special compared
to other formal modelling tools in that, in addition to taking the
system design as input, they typically have a built-in model of the
Dolev-Yao type powerful attacker, which the researcher does not
need to explicitly define. Instead, the researcher has to specify the
desired security properties. The model checker then determines
whether the attacker is able to play a game against the honest parties
and trick them into violating these properties. There is, however
one type of attack that the researchers need to explicitly consider:
corrupt insiders. The corruption of an insider is often modelled as
a previously honest party handing out its secrets and capabilities
to the attacker, after which it is subsumed into the attacker.

Jia and Hsu [29] develop a formal model of the Bluetooth SSP
for the Murphi model checker [17]. They discuss two potential
vulnerabilities in the numeric-comparison authentication mode.
First, an impersonator device can pretend to be a good one and trick
the user into pairing an honest initiator device with it. The example
given in the paper is one where the entertainment system in a
rental car has been replaced with one that is under the adversary’s
control. Once the unsuspecting user has paired her phone with
it, the system can steal confidential data. Second, a proxy MitM
device can forward the unmodified connection to another device
(similar to [35]). While these threats might be considered obvious
and unavoidable, the formal analysis focuses our attention to them
and enables systematic consideration of the threats.

The most interesting idea of Jia and Hsu for us is the notion of
intention preservation. It means that the initiating device is paired
with the device with which the user originally intended to pair it,
even if the non-initiating device belongs to an intruder. They show
that Bluetooth pairing with numeric comparison has this property.
We develop further the idea of modelling user intention, which
we state as a correspondence assertion. Because of subtly differ-
ent security definitions, we end with a different result regarding
Bluetooth pairing.

3 MISBINDING IN DEVICE PAIRING
We will now look at identity misbinding attacks against wireless
device pairing where user authenticates the key exchange between
two physical devices. Figure 2(a) shows a common structure for
many such pairing protocols. The unauthenticated key exchange
takes place over an insecure in-band channel, and the user with
physical access to the devices authenticates it over a secure out-of-
band channel. The two phases may not always be distinguishable
by time, but they are distinguishable by the channel.

The authentication in user-assisted pairing protocols is typically
based on physical access to the device. That is, the user must see or
touch the devices directly. The devices could have serial numbers,
public keys, or other unique identifiers, but it is the physical access
that defines which devices need to be paired.

We consider a scenario where one of the devices selected by the
user for the pairing is compromised. (Recall that identity misbinding
is an insider attack where one of the intended communication
endpoints is corrupt.) The device has to be compromised at least to
the extent that the user can control the device’s inputs and outputs

unauthenticated
key exchange

physical
OOB

channel

BA

wireless
in-band
channel

physical
OOB

channels

A C

authentication

authentication
relayed

authentication

B

unauthenticated
key exchange

(a)

(b)

wireless
in-band
channel

Figure 2: Identity misbinding against device pairing

on the OOB channel. In Figure 2(b), the user wants to pair devices A
and B. However, device B is malicious and relays the authentication
messages to another device C. Devices A and C end up paired,
which does not correspond to the user’s intention. Device C does
not need to collude with B and may be entirely honest, except that
the attacker can put it into the pairing mode and interact with it.

Let’s try to understand why this attack is not easy to prevent. If
we take guide from other authenticated key-exchange protocols,
such as STS and SIGMA, we might try to prevent the attack by
binding the endpoint identifiers A and B cryptographically to the
key exchange and the created session. This will ensure that the
endpoints of the created session agree on the identities. Sadly, that
does not help in device pairing. The attack by B will cause A and
C to be paired, but if the user is not aware of the identifiers com-
municated in band, the user still thinks A is paired with B. As the
next step towards a solution, we would need to check that the de-
vice identifiers A and B correspond to the user’s expectations. For
example, if device A shows the peer identifier to the user, the user
sees that it is C and not B as intended. However, the typical user
in device pairing does not have any expectations about the device
identifiers: the user just sees two physical devices and wants them
to be paired.

Many pairing protocols are like this: the user’s physical access
to the device defines its identity. Since the physical device identity
cannot be communicated in bits and bytes, it cannot be included into
the messages sent over the in-band or out-of-band channel, and it
cannot be used as input to a cryptographic function. Cryptographic
protocol vulnerabilities of the early days could often be fixed by
adding a missing identifier to the right message, but that is not
the case with device pairing where the endpoints either have no
identifiers or, if identifiers exist, user intentions are not expressed
in terms of them.

So far, our discussion of misbinding may appear as rehashing of
the relay attack in the context of device pairing. This perception
is partly true, but the misbinding attack is actually far easier to
implement. As hinted in Figure 2(b), if all three devices are within

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

456

Figure 3: Misbinding attack against Bluetooth SSP numeric
comparison

the wireless range from each other, B does not actually need to
relay the wireless in-band traffic. It can let A and C communicate
directly over the wireless channel and focus on relaying the au-
thentication messages between the two OOB channels. B can then
pull out after the authentication is complete, which leaves A and C
communicating directly.

Comparing with the cuckoo attack against trusted computing
hardware, there are also similarities. The problem there was the lack
of secure binding between the physical device and the long-term
public key of the DRTM inside it. Our problem is the lack of secure
binding between the physical devices and the ephemeral session
key. The similarity extends to the lack of definite solutions by the
means of traditional security protocol design. However, there are
ways of mitigating the threats, as we will see in Section 5.

Next, we will look at some examples of the attack in actual pair-
ing protocols. That will help us assess the impact of the vulnerability
in a more concrete way.

3.1 Bluetooth case study
We use the widely-studied Bluetooth SSP as a case study of mis-
binding in pairing protocols. The attack is shown in Figure 3. The
human user Alice is unaware of the fact that the device B, to which
she is trying to pair her phone A, is compromised and under the
control of an attacker Mallory. The attacker also has a third device
C, which she keeps hidden from the user. The attacker’s goal in the
misbinding attack is to pair Alice’s device A with the third device C
while Alice believes A is paired with B. For a successful misbinding
attack, A and C must be within Bluetooth radio range from each
other. For example, Mallory and device C could be in the next room
from where Alice performs the pairing process.

From the user’s and the attacker’s points of view, the following
steps occur in the misbinding attack of Figure 3:

(1) Alice wants to pair devices A and B with the goal of estab-
lishing a secure association between them. Alice is unaware
of the fact that device B is compromised and that a third

device C, accessible by the attacker Mallory, is within radio
range.

(2) Alice starts a search for new Bluetooth devices on device A.
She makes device B discoverable, if it is not yet so. Mallory
makes device C discoverable. Device A then presents Alice
with a list of the names of discoverable devices in its vicinity.
Alice chooses the one she thinks is B. At this point, Mallory
needs to arrange things so that Alice mistakenly chooses
C from the list. To achieve this, Mallory should ensure that
the compromised device B remains non-discoverable, even
though Alice thinks otherwise, and ensure that the name
of device C matches the name that Alice expects to see for
device B. (We will discuss the naming in more detail below.)

(3) During the pairing, devices A and C show six-digit codes
and expect the user to compare them. Mallory reads the six-
digit code from the screen of device C and forwards it to the
compromised device B, which displays it to Alice.

(4) Seeing the same six-digit verification code on the screens of
devices A and B, Alice confirms the pairing on both devices.
The action on the compromised device B has no real effect;
instead, Mallory confirms the pairing on device C. This al-
lows the pairing of A and C to complete. Alice now believes
A and B have successfully paired when, in fact, device A is
paired with C.

To understand why the Bluetooth SSP protocol does not prevent
the attack above, we need to look at the protocol in more detail. The
hardest practical obstacle for the attacker is, in fact, not the actual
SSP protocol but the device naming and selection that takes place
before the actual pairing. Bluetooth core specification [43] defines
Inquiry and Paging procedures for discovering nearby devices and
subsequently connecting to one of them. The user typically selects
the name of the non-initiating device from a list of nearby devices
on the initiating device. The device names are strings that aid
the user in identifying the correct peer device. Each device has a
default name that often indicates its make and model, for example
“TomTom Go 510”. Depending on the device, the name may be
user configurable. In the attack, Mallory needs to trick Alice into
choosing device C from the list by its name. Thus, Mallory should
rename C to have the same name as B.

The rare tricky case for Mallory is if she wants to use a device C
that does not have a configurable name, or if Mallory does not have
the permission to change the device name. In that case, Mallory
may be able to choose a device C that has the same make and
model as device B and thus the same default name. If Mallory
absolutely needs to use a device C with a Bluetooth name that is
not configurable and does not match device B, there is still a way
forward. The Inquiry and Paging procedure is not authenticated,
and the attacker can manipulate the device names on the in-band
wireless channel. While that requires more skill than changing the
name of device C on its user interface, message modification on a
wireless channel is within the expected capabilities of a Dolev-Yao
attacker.

Once Alice has been fooled into choosing the wrong device,
the SSP security protocol starts between devices A and C. We will
review the protocol to be certain that it does not present obstacles
to the attack. The numeric-comparison mode of SSP, shown in

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

457

Figure 4: Bluetooth Secure Simple Pairing with numeric
comparison [43]

Figure 4, has several phases that must be completed before an
initiating device A and a non-initiating device B are paired securely.
In phase 1, the devices perform an ECDH key exchange. In phase 2,
the non-initiating device commits to a random nonce Nb, which it
reveals after the initiating device has sent its own nonce Na. Device
A checks the commitment to ensure that the nonces have been fairly
chosen. The user-assisted authentication then takes place. Each of
the devices displays to the human user a six-digit verification code,
which it computes from the ECDH key shares and nonces. If the
codes match, the user confirms successful pairing on both devices,
which allows them to continue. In phase 3, the devices confirm
cryptographically the derived ECDH secret and their input and
output capabilities, which were used to select the authentication
mode in the beginning. In phase 4, the devices derive a link key,
i.e. a shared session key. Finally, in phase 5, they use the link key
for encryption in the Link Manager Protocol.

The critical thing to observe about the SSP protocol is that it does
not even try to verify the device names (or other device properties
likemake, model and serial number). This is understandable because
Bluetooth device names do not uniquely identify a device. The
protocol does bind the link key to the link-layer addresses of the
two devices, but during the pairing each device will accept any peer
address.

Note that only the software in device B needs to be compromised
for the misbinding attack, while devices A and C can be entirely
normal. The only access the attacker needs on device C is to make
it discoverable, to change its name if necessary, and to confirm
the code comparison. Moreover, the attack requires device B to

be compromised only to the extent that the attacker can control
its user interface. We implemented the attacker in device B as a
full-screen app that receives the six-digit code over the 4G data
connection and emulates the pairing process without doing actually
anything. Thus, the vulnerability occurs relatively often in practice,
even though we do not know of actual attack implementations
outside our laboratory.

The above attack against Bluetooth pairing will work for any
version of SSP or Legacy Pairing. Indeed, we believe it will work for
all device-pairing protocols where the device identity is determined
by physical access to the device alone.

3.2 IoT device bootstrapping case study
We will now look at a protocol for security-bootstrapping and
registration of Internet-of-Things (IoT) devices to an online server.
Although the protocol differs considerably from device pairing, they
are similar in the sense that the identity of the correct device is
defined by physical access to it. This makes the protocol vulnerable
to identity misbinding attacks.

Extensible Authentication Protocol (EAP) [3] is an authentication
framework used, for example, in enterprise wireless networks. It
normally assumes that the wireless devices are pre-registered at a
back-end authentication server. This means that the deployment of
new wireless devices is a multi-step process that includes device
registration and credential provisioning.

Nimble out-of-band authentication for EAP (EAP-NOOB) [8] is
an authentication method for EAP that also supports user-assisted
bootstrapping and registration of new devices. It is intended for
off-the-shelf IoT devices that initially have no known identifiers, no
credentials, and no knowledge of their intended owner and network.
EAP-NOOB registers the new devices to the authentication server
and associates them with the user’s account on the server. The
device, called peer, first performs an ECDH key exchange with
the server. The authentication takes place when the user delivers
a single out-of-band (OOB) message from the peer device to the
server, or in case of peer devices with only input capability such as
cameras, from the server to the peer device. Information delivered
in the OOB message enables mutual authentication of the peer and
server, and it authorizes, on one hand, the server and user to take
control of the device and, on the other, the device to be registered to
the server and user account. The protocol does not limit the ways
in which the OOB message is transferred; the implemented ways
include a QR code, an NFC message, and an audio clip. After the
OOB message has been delivered, the device registration completes
in-band between the peer and the server.

The misbinding attack (shown in Figure 5) arises when the peer
device B is compromised. It can trick the user into registering a
different peer device C to the user’s account in the server. From the
user’s and the attacker’s points of view, the following steps occur
in the attack:

(1) Alice initiates the registration of her web camera B to the
wireless network and authentication server. Unknown to
Alice, camera B is compromised and under the control of
Mallory. Camera B pretends to start the EAP-NOOB protocol
with the server.

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

458

Figure 5: Misbinding attack against EAP-NOOB

(2) At the same time,Mallory initiates the registration of another
web camera C to the same network and authentication server.
Camera C starts the EAP-NOOB protocol with the server.

(3) Alice logs into her user account on the server with hermobile
phone and searches for new cameras available for registra-
tion. Finding a new camera that matches the model of camera
B, she retrieves a QR code encoding the OOB message and
shows it to camera B.

(4) The compromised camera B scans the QR code and secretly
passes a picture of it to Mallory. Mallory shows the QR code
to her camera C. This authorizes the registration of camera
C to Alice’s account on the server.

(5) The web camera C and the server now complete the registra-
tion of camera C to the authentication server, associating it
with Alice’s account, and establish credentials for future au-
thentication and wireless network access. Alice mistakenly
believes that the new camera associated with her account is
B, when in fact, it is C.

In order to trick Alice into selecting the wrong camera from the
server, the attacker needs to match its make and model or other
metadata that the user is likely to search for. The attacker can
achieve this by using another camera of the same type. In that case,
the attacker does not need to modify camera C in any way. She
must be able to start the EAP-NOOB registration process on device
C, but this is not difficult: the EAP-NOOB specification suggests
that the protocol could be activated by powering up the device for
the first time or after a hard reset. An alternative for the attacker
is to have an entirely fake device C that is under her control and
spoofs the device metadata copied from B. It could even copy the
serial number of device B.

Unlike in device pairing, Mallory’s device C does not have to be
in close proximity to Alice’s device B. Mallory can run the EAP-
NOOB protocol on her device C from anywhere in the coverage
area of the wireless networks served by the same authentication
server. She only needs the capability of sending or receiving the
OOB message to or from the compromised device B.

Device bootstrapping and registration with EAP-NOOB is de-
signed to be efficient for deploying large numbers of devices. Thus,

the person installing the devices might not be the eventual user,
and the failure of device B to associate with the server might go
unnoticed for some time. In comparison, device pairing with Blue-
tooth is often followed by another user action such as transfer of
media, which may lead to the user detecting the failure of device B
to pair.

4 FORMAL ANALYSIS OF MISBINDING
We modelled the case-study protocols and their security require-
ments with ProVerif [10, 11]. First, we wanted to enhance previous
models of device pairing and especially Bluetooth SSP to capture
the misbinding attack. It was not clear to us why the existing mod-
els missed the attack when so many other, even more subtle issues
have been detected. We also wondered if the attack and the security
goals it violates can be reduced to previously known ones. As a re-
sult, we learned that the formal models can be made more complete
so that they discover the misbinding attack, and that the violated
security properties are different from what has previously been
analyzed. Another goal of our modelling work was to understand
how pairing protocols differ from each other in relation to the mis-
binding vulnerability, and whether registering a physical device
to an online service is fundamentally different from pairing two
physical devices. We found that misbinding occurs in a wide range
of protocols where endpoints are defined by physical access. We
also found that the attacks can be classified into a small number of
variants, and not all protocols are vulnerable to all of them.

4.1 Modelling device pairing
We will mainly discuss Bluetooth SSP with numeric comparison be-
cause of its familiarity to many readers. However, we also modelled
the SSP OOB mode and Wi-Fi Direct [4] with similar results.

In addition to the protocol messages and the device state ma-
chines, we model the security ceremony that includes user intentions,
choices and actions. We follow the example of Carlos [12] and model
the user as a separate process in ProVerif. However, while Carlos
considers pairing between two devices belonging to different users,
we consider pairing where a single user has physical access to both

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

459

intended endpoints. Thus, our model consists of three kinds of
processes: user, initiating device A, and non-initiating device B.

The challenging part of the model was capturing the user inten-
tion, i.e. decision to pair specific two devices, when the devices are
identified by physical access and do not have names or other iden-
tifiers. In the end, the solution is fairly simple and intuitive: the
users and devices have identifiers in the model (see below), but the
identifiers can never be communicated over a channel or used as in-
put to a cryptographic function. Instead, they are used for marking
local events and for checking correspondence properties between
the events, such as whether the user intended the devices to be
paired. This inability to communicate the identifiers goes a long
way towards explaining why the traditional solutions of adding
explicitly or implicitly communicated identifiers are not applicable
to device pairing.

Similar to Chang et al. [14], we use private channels in ProVerif
to model the physical access by the user to the devices. These chan-
nels protect both secrecy and integrity of the communication. In
the case of Bluetooth, the private channels are used both for read-
ing the numeric codes and, if the values match, for confirming the
match to the devices. To initiate pairing, user needs to have access
to two private channels, PhysicalChannelA to an initiator device
and PhysicalChannelB to a non-initiator device. We use these phys-
ical channels as the device identifiers, which is both practical and
semantically correct. For the users, on the other hand, we simply
create new identifiers.

Compromised endpoints are commonly modelled by leaking
their secrets, such as private keys, to a public channel. Consequently,
the built-in attacker model of the model-checking tool can emulate
any honest or malicious behavior by that endpoint. In the Bluetooth
model, however, the devices do not have any master secrets. Instead,
wemodel the compromise of a device by leaking its private channel to
the network. This allows the attacker to take control of that channel.

In addition to modelling the compromise of devices, we also
model the compromise of a user. This is done to conceptually dis-
tinguish between a tampered device and a malicious user having
physical access to an intact device. There is no real difference be-
tween the two in the Bluetooth case.

The user model is shown below. The user (i) selects two devices
and logs her decision to pair them as an event, (ii) compares the six-
digit verification codes displayed by the devices, and (iii) confirms
a match to the devices. The user may be compromised any time,
yielding control of the physical access channels to the attacker.

l e t U s e rP ro c e s s (User : User_ t , Phys i ca lChanne lA : channel ,
Phys i c a lChanne lB : channe l) =

(
even t HasAccess (User , Phys i ca lChanne lA) ;
even t HasAccess (User , Phys i ca lChanne lB) ;
(∗ Decide to p a i r A and B with A as i n i t i a t o r ∗)
even t I n t endToPa i r (User , Phys ica lChanne lA ,

Phys i c a lChanne lB) ;
(∗ Rece i v e Va and Vb ∗)
i n (Phys ica lChanne lA , (= CodeTag , Va : Hash_t)) ;
i n (Phys i ca lChanne lB , (= CodeTag , Vb : Hash_t)) ;
(∗ Numeric compar ison ∗)
i f Va = Vb then

(∗ Confirm to A ∗)
out (Phys ica lChanne lA , (OkTag , Va)) ;
(∗ Confirm to B ∗)

out (Phys i ca lChanne lB , (OkTag , Vb))
) | (

even t CompromiseUser (User) ;
out (c , Phys i ca lChanne lA) ;
out (c , Phys i c a lChanne lB)

) .

Intuitively, misbinding is a violation of the following security
property: two devices are paired only if their user intended them to be.
When formalizing the absence of misbinding as a correspondence
property in ProVerif, we need to be more precise: If two devices
complete the pairing with the same link key and a user has physical
control of at least one of them, then either the user previously intended
the two devices to be paired, the user is compromised, or both devices
are compromised. In ProVerif, this correspondence property can be
defined as follows:
query Phys i ca lChanne lA : channel , Phys i ca lChanne lB : channel ,

K : Key_t , User : U se r_ t ;
(even t (HasAccess (User , Phys i ca lChanne lA)) && (∗ or B ∗)
even t (I n i t i a t o r C omp l e t e (Phys ica lChanne lA , K)) &&
even t (Non i n i t i a t o rComp l e t e (Phys i ca lChanne lB , K)))

==>
(even t (I n t endToPa i r (User , Phys ica lChanne lA ,

Phys i c a lChanne lB)) | |
even t (CompromiseUser (Use r I d)) | |
(even t (CompromiseDevice (Phys i ca lChanne lA)) &&
even t (CompromiseDevice (Phys i ca lChanne lB)))) .

As expected, ProVerif returned false for the query and produced
a counterexample, i.e. an execution trace that violates the security
property. There are two versions of the query, one with Physical-

ChannelA and another with PhysicalChannelB on the second line.
The queries can be refined to exclude already analysed attacks or
to focus on specific cases.

wireless
in-band
channel

physical
OOB

channels

A C

authentication
relayed

authentication

B

unauthenticated
key exchange

D

relayed
authentication

Figure 6: Double misbinding

Investigating further, we found five different types of misbinding
attacks with ProVerif. One of them is the basic misbinding attack
described in Section 3 and shown in Figure 2(b). In that attack, the
compromised device is the non-initiator B, and there is a compro-
mised user with physical access to the third device C. Other attacks
arise as variations of the first one: On one hand, the compromised
device can be the initiator A or the non-initiator B. On the other
hand, device C may be a compromised one or an uncompromised
device accessed by a compromised user. These choices make four
different variants of the misbinding attack.

It came as a surprise to us that there is a fifth type of misbinding
attack, which we call double misbinding. In this attack, shown in
Figure 6, there are two honest users. Each one of them is trying to
pair two devices, one of which is compromised. The compromised
devices collude so that, as the end result, the two uncompromised
devices are paired.

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

460

Figure 7: Five variants of misbinding found by ProVerif

Double misbinding is easiest to understand in the out-of-band
mode of Bluetooth SSP, where the user transfers some information
OOB from one device to another. In that case, one compromised
device receives the OOB message from the first honest user and for-
wards it secretly to the second compromised device, which outputs
it to the second honest user. The attack is also possible in SSP with
numeric comparison because all the values needed for computing
the verification codes Va and Vb are transmitted on the wireless
link (see Figure 4). The attacker can sniff these values, compute Va
and Vb, and show them on the displays of the two compromised
devices (devices B and C in Figure 6).

The five variants of misbinding are summarized in Figure 7. Each
sub-figure shows two rooms. The honest user tries to pair two de-
vices, initiator A1 and non-initiator B1, in her room but one of
them ends up being paired (indicated by the thick red arrow) with a
device in the room above. The sub-figures show the locations of the
honest users, compromised users, and compromised devices. The
black one-directional arrow is specific to Bluetooth SSP with nu-
meric comparison. It shows how the attacker forwards the six-digit
code from one device to another or, in the double-misbinding case
of Figure 7(e), sniffs its inputs from the wireless communication.

Afterwards, we systematically enumerated the different com-
binations of initiator and non-initiator devices, compromised and
uncompromised users and devices, and user physical access in a
setting of maximum two users and four devices. This analysis con-
firmed that, after removing impossible and equivalent cases, the
five attack variants remain. Increasing the number of users and
devices does not seem to give raise to any new types of attacks
because there is maximum that can be involved in a single pairing.

4.2 Modelling device bootstrapping
Although the ProVerif models of EAP-NOOB and Bluetooth differ
greatly, the parts relevant to detecting misbinding are similar. The
main difference is that, in EAP-NOOB, only the peer device is
identified by the physical access channel. The EAP-NOOB server
has a strong cryptographically verifiable identity (HTTPS URL
and web certificates), and we assume that the server cannot be
compromised. The query for the absence of misbinding attacks is
as follows:

query OobChannelS : channel , OobChannelP : channel , K : Key_t ,
User : Use r_ t ;

(even t (H t tp sAcce s s (User , OobChannelS)) &&
even t (Se rverComple te (OobChannelS , K)) &&
even t (PeerComplete (OobChannelP , K)))

==>

(even t (CompromiseUser (User)) | |
even t (I n t endToPa i r (User , OobChannelS , OobChannelP)) | |
(even t (CompromisePeer (OobChannelP)) &&
even t (CompromiseServer (OobChannelS)))) .

Again, ProVerif finds a counterexample to this query. Because
only the peer side can be compromised, there are only two possible
variants of misbinding. One is the attack of Figure 3(b) with server
as A, compromised peer device as B, and an uncompromised peer
device as C. In the other attack variant, both peer devices are com-
promised and there is no need for a user to operate device C. These
variants correspond to Figure 7(a) and 7(c) if we interpret A1 as the
authentication server, B1 as Alice’s wireless device, and B2 as the
attacker’s device.

5 MITIGATION
5.1 Authentication solutions
As explained in Section 2.2, the STS and SIGMA protocols and
their variants [9, 15, 33] tackle misbinding by binding endpoint
identities cryptographically to the created session. These solutions
are suitable for situations where the devices have certificates, public
keys for authentication, and unique names. This is typically not the
case in device pairing. Moreover, as we explained in Section 3, the
endpoints in device pairing have no a-priory knowledge of each
other’s identifiers, and neither does the typical user who is assisting
the key exchange.

The common way to communicate the device identifier, such as
model and serial number, to the user is printing them on an iden-
tification plate attached to the device. Together with a certificate
issued by the manufacturer, this information can be used for authen-
ticating the device. Another possibility is to print a fingerprint of
the device’s public-key onto the device, e.g. as a hexadecimal value.
If a metal plate, sticker or printing on the device is not considered
tamper-proof enough, the identifiers could be etched to the device
enclosure. While such physical indicators can ultimately be coun-
terfeited, the burden on the attacker is increased significantly. The
disadvantage of these solutions is that the user needs to compare
the authenticated device identifiers with the serial-number plates
or key fingerprints, which complicates the pairing process.

5.2 Presence checking
As noted in Section 2.4, trusted-computing research has not put
much faith in the printed serial numbers or public-key fingerprints.
Instead, the researchers have tried to find more secure ways of
checking the presence of a DRTM inside a physical device. We

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

461

can generalize these approaches from DRTM to any device with
a trusted computing base (TCB) that is surrounded by potentially
compromised layers of software. The techniques for DRTM pres-
ence checking could be applied to checking the physical presence
of the pairing endpoint for a given device, which could prevent the
misbinding attacks.

The round-trip time measurement suggested by Fink [21] de-
pends on the latency caused by the cuckoo in the communication
chain. In our attacks against device pairing, the in-band communica-
tion takes place directly with the third device, and timing measure-
ment is unlikely to be able distinguish between two devices within
the Bluetooth radio range. This issue of distance bounding has been
widely studied in relation to RFIDs and wireless keys [25][41].

Ding et al. [18] provide a summary of several other solutions.
One is a hardware-based secure channel, i.e. a trusted path, that
allows the user to communicate directly with the DRTM or TCB
inside the device. This could, for example, be an LED indicator light
or a special-purpose USB port. The need for such a feature in smart
devices is well known, but the idea has never been widely adopted
by device manufacturers. The great variety of manufacturers and
form factors in smart devices would alsomake it difficult for the user
to know which feature can be truly trusted. Another solution is to
enclose the devices into a Faraday cage to prevent them from com-
municating with external entities during the key-presence checking.
This approach was previously suggested for bootstrapping sensor
nodes wirelessly [34]. Zhang et al. [46] propose several presence
checking methods based on analog channels, which do not provide
strong security guarantees but make the attacks impractical. One
method is based on comparing the GPS location measurements
by the two endpoints, and another on comparing images captured
by co-located devices of their immediate environment. They also
propose measuring the timing of a screen-to-camera video channel,
which would be difficult to forward to a remote device without
causing a detectable delay.

5.3 Asset tracking
We believe the practical approach to detecting misrepresented de-
vice identities might be asset tracking, i.e. bookkeeping of the phys-
ical assets that belongs to an organization or an individual. This
requires each device to have a unique identifier, which is registered
into a database when the user purchases a device. In the simplest
case, the database is accessed only by human users, in which case
any existing asset tracking system or database can be used.

When the organization knows the models and serial numbers of
its devices and the purpose assigned to each one, the information
can be used for cross-checking during device pairing. For example,
if there is only one new display device allocated for Alice, Alice
can compare the device information from the database with the
identifier authenticated in the device pairing process when she
deploys the device.

For this to work, each device needs to know its own identifier and
learn the peer identifier during the key exchange. The identifiers
should be bound to the cryptographic key exchange in such a
way that agreement on session key cannot be reached without also
agreeing on the identifiers. Each device should show the identifier of
its peer to the user, e.g. when initiating the pairing protocol or when

confirming the numeric comparison. In Bluetooth SSP protocol,
this would require changes to the input of the verification codes,
while EAP-NOOB already has a built-in authenticated message field
(PeerInfo) for communicating such auxiliary peer information. Of
course, the software of an uncompromised device should not allow
the users to modify the device identifier. As the result of these
measures, device A in the scenario of Figure 2(b) would show the
identifier of the unknown device C to the user and the attacker
cannot replace it with the expected identifier of device B.

Manufacturer-issued device certificates [16, 27] can further help
the process by providing secure information about the types and
models of the devices. This will reduce the reliance on the asset
database because all other information except correctness of the
device identifier can be communicated in the certificate.

For the average consumer, it is difficult to keep track of purchased
devices over any longer span of time. However, this obstacle may be
disappearing as smart devices are increasingly cloud connected and
their ownership is therefore often registered by the manufacturer or
some other cloud service. The same online service can replace the
corporate asset-tracking system for an individual user. Furthermore,
there are proposals for logging Internet-of-Things devices to a
blockchain [32, 39], which could also be used for asset tracking.

Above, we have mostly discussed device pairing and Bluetooth,
but the same solutions also work for EAP-NOOB and device regis-
tration to the cloud. The main difference is that only one endpoint
of the key exchange is a physical asset that needs to be tracked.
The fact that the authentication server is online and provided to the
user as a service means that it could help with ownership tracking
or connect directly to the manufacturers on the user’s behalf.

5.4 On Bluetooth SSP and double misbinding
As noted in Section 4.1, SSP with numeric comparison is vulnerable
to double misbinding because all the inputs for computing the
verification codes Va and Vb are transmitted on the wireless link
and can be sniffed. If Va and Vb were computed as function of the
ECDH shared secret, the two compromised devices could not show
the value on their displays. This would prevent double misbinding,
although not the simpler misbinding attacks. Similar protocols
in the future might consider taking advantage of the secrecy to
limit the space that the attacker has for maneuvering. A possible
disadvantage is that the devices would have to compute the ECDH
shared secret before displaying the verification codes, which could
impact the user experience on devices with slow processors. The
current SSP protocol also has a clean design where the six-digit
verification codes are not at all expected to be secret.

6 DISCUSSION
It remains to be discussed how serious the misbinding vulnerability
is and whether we should really be worried about it. We do not
want to be alarmist but instead try to provide balanced arguments
for thinking about the issue.

First, the vulnerability is not specific to Bluetooth SSP and EAP-
NOOB, the examples discussed in this paper. To back this claim,
let us briefly consider another prominent bootstrapping protocol.
Device Provisioning Protocol (DPP) [5] is a bootstrapping mecha-
nism recently standardized by the Wi-Fi Alliance for configuring

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

462

Wi-Fi network information on devices with limited user interfaces.
DPP relies on a configurator, e.g. a smartphone application, for boot-
strapping all other devices, called enrollees, in the network. Every
enrollee must have an asymmetric key pair, which is communicated
to the configurator over an out-of-band (OOB) channel together
with communication metadata such as the radio channel and band.
The misbinding attack against DPP is almost trivial: when the user
is configuring a compromised device B, the attacker simply replaces
the public key and communication metadata output from B with
those of another device C. In one variant of DPP, public key is
printed as a QR code, and in that case, the device compromise is
equal to replacing this piece of paper.

Any pairing or bootstrapping protocol that relies solely on the
user’s physical identification of the endpoints will be equally vul-
nerable regardless of the protocol design. In fact, even strong au-
thentication of the endpoint identifiers does not prevent misbinding
unless each endpoint knows what the other’s identifier should be.

One factor that increases the risk of misbinding attacks against
out-of-band authentication is that they are easy to implement. The
compromised device only needs to forward authenticationmessages
on the user-interface level. Compare this to relaying communication
at the radio or logical link layer, or to forwarding application mes-
sages. This makes misbinding an attractive attack for technically
less competent attackers. In our attack implementations against
Bluetooth or EAP-NOOB, the compromise of device B meant simply
installing a malicious app that emulated the pairing user interface
at the attacker’s command.

Misbinding depends on the user trying to pair with or register a
device B that is compromised. Thus, there must be a (partially) cor-
rupt insider involved. The user is misled because the user makes a
bad decision and trusts the corrupt device. Some protocol designers
might dismiss the problem at this point, thinking that it is outside
their threat model. One counterargument is that the corrupt device
is not the one that ends up being paired, and thus the honest device
C also suffers. Another is that the Internet of Things will be full
of corrupt insiders, just like the regular Internet. Also, we should
protect the users from their own mistakes whenever possible.

The practical impact of misbinding attacks is somewhat difficult
to grasp. It has been demonstrated with the help of two example
scenarios, one presented by Diffie et al. in the original STS paper
and the other by Krawczyk in a lecture:

• A connects to bank C, over a supposedly secure session, to
deposit an electronic coin. Since B mounted a misbinding
attack, bank C thinks the coin was deposited by B.
• B and C are fighter jets, and A is their commander. B has
been compromised by the enemy. A tells B to self-destruct,
but because B mounted a misbinding attack, the command
goes to C.

The banking scenario does not seem to have obvious equivalents
in the world of physical devices. The fighter jets, on the other hand,
are devices, and we can construct a related IoT example:

• B and C are IoT devices, and A is the user’s computer. B has
been infected by malware. User wants to connect A to B and
wipe B’s memory. Because B mounts a misbinding attack,
the user wipes C instead.

Note that all these scenarios require some prior relation between
the endpoints, and the misbinding attack leads to a failure of corre-
spondence between that prior relation and the newly established
connection. In pairing and bootstrapping, there often is no such
common history. Either one of the endpoints is a new, fresh device,
or the history is not significant because the endpoints have no se-
cure way of knowing that they have reconnected to the same peer.
This may be one reason why the practical impact of misbinding for
IoT devices remains somewhat elusive.

We also need to compare misbinding to alternative attacks. In
Figure 2(b), the attacker in device B can achieve almost the same
results by accepting the connection from A, establishing another
connection to C, and then forwarding the application-layer mes-
sages between A and C. The main difference between misbinding
and such relaying of communication is that the misbinding attacker
can remove itself from the communication chain after the pairing.
Thus, the continuation of the attack does not depend on the com-
promised device B being online or within radio range. Furthermore,
the user is in physical control of the compromised device B but
not of C. If the user disables device B, e.g. by disconnecting it from
the network or even by physically destroying it, device C and is
connection with A will nevertheless persists — unknown to the
user.

Since the design of STS and IKE, there has been consensus among
security protocol designers that misbinding vulnerabilities are not
acceptable in authenticated key-exchange protocols for computer
networks and for the Internet. In device pairing, there is no similar
consensus, and the attack has been mostly ignored with the excep-
tion of the trusted-computing community. We do not expect this
paper to stop people from using protocols like Bluetooth SSP. The
misbinding attacks and impact scenarios are relatively marginal
compared to the advantage of encrypting wireless communication
and having basic authentication in place, and the value of these
is not nullified by misbinding. The attacks should, however, not
be ignored because they are so widely applicable to device-pairing
and IoT bootstrapping protocols. Our message is that protocol and
system designers should understand the misbinding vulnerability
for physical devices, keep eyes open for unexpected consequences
in new situations, and make a balanced judgment about whether
additional countermeasures are needed.

7 CONCLUSION
We studied identity-misbinding (or unknown-key-share) attacks in
device pairing protocols where the devices are identified by physi-
cal access rather than cryptographic credentials. We showed that
Bluetooth and other similar device-pairing protocols are vulnerable
to this attack regardless of their cryptographic details. The same
vulnerability also exists in protocols for security-bootstrapping IoT
devices. We confirmed the attacks by implementing them. Formal
modelling allowed us to discuss the precise definition of misbinding,
which led to the discovery of a new attack variant, double misbind-
ing. We also discussed potential mitigation mechanisms, arguing in
favor of solutions based on asset tracking. While the vulnerability
to identity misbinding does not make the existing device pairing
protocols completely insecure, it is a threat that needs to be fully

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

463

understood also in device pairing, and this paper is a step towards
that goal.

8 ACKNOWLEDGMENTS
We would like to thank Eric Rescorla for his inspiring comments
on EAP-NOOB and Kaisa Nyberg for insightful discussion on Blue-
tooth SSP. This work was supported by Academy of Finland (grant
number 296693).

REFERENCES
[1] ISO/IEC 11889-1:2015. 2015. Information technology – Trusted platform module

library – Part 1: Architecture. Standard. International Organization for Standard-
ization.

[2] Martin Abadi and Roger Needham. 1996. Prudent Engineering Practice for
Cryptographic Protocols. Transactions on Software Engineering 22, 1 (1996), 6–15.

[3] Bernard Aboba, Larry J. Blunk, John R. Vollbrecht, James Carlson, and Henrik
Levkowetz. 2004. Extensible Authentication Protocol (EAP). http://tools.ietf.org/
rfc/rfc3748.txt. RFC 3748.

[4] Wi-Fi Alliance. 2016. Wi-Fi Peer-to-Peer (P2P) Technical Specification, v. 1.7. Tech-
nical Report. Wi-Fi Alliance.

[5] Wi-Fi Alliance. 2018. Device Provisioning Protocol Specification Version 1.0. Tech-
nical Report. Wi-Fi Alliance.

[6] ZigBee Alliance. 2012. ZigBee Specification. ZigBee Alliance Document 053474r20.
ZigBee Alliance.

[7] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuéllar, P. Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, et al. 2005. The AVISPA Tool for the Auto-
mated Validation of Internet Security Protocols and Applications. In Proceedings
of the International conference on computer aided verification. Springer Berlin
Heidelberg, Berlin, Heidelberg, 281–285.

[8] Tuomas Aura and Mohit Sethi. 2019. Nimble out-of-band authentication for EAP
(EAP-NOOB). Internet-Draft draft-aura-eap-noob-05. Internet Engineering Task
Force.

[9] Simon Blake-Wilson and Alfred Menezes. 1999. Unknown Key-Share Attacks on
the Station-to-Station (STS) Protocol. In Proceedings of the International Workshop
on Public Key Cryptography. Springer-Verlag, Berlin, Heidelberg, 154–170.

[10] Bruno Blanchet. 2001. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In Proceedings of the 14th Computer Security Foundations Workshop.
IEEE, 82–96.

[11] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2018. ProVerif
2.00: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial. INRIA.

[12] Marcelo Carlomagno Carlos. 2014. Towards a Multidisciplinary Framework for the
Design and Analysis of Security Ceremonies. Ph.D. Dissertation. Royal Holloway,
University of London.

[13] Marcelo Carlomagno Carlos, Jean Everson Martina, Geraint Price, and Ricardo Fe-
lipe Custódio. 2013. An Updated Threat Model for Security Ceremonies. In Pro-
ceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, New
York, NY, USA, 1836–1843.

[14] Richard Chang and Vitaly Shmatikov. 2007. Formal Analysis of Authentication
in Bluetooth Device Pairing. In Proceedings of the Joint Workshop on Foundations
of Computer Security and Automated Reasoning for Security Protocol Analysis.

[15] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. 1992. Authenti-
cation and Authenticated Key Exchanges. Designs, Codes and cryptography 2, 2
(1992), 107–125.

[16] Digicert. 2019. Device Certificates. https://www.digicert.com/device-certificates/.
Accessed: 11.5.2019.

[17] David L. Dill. 1996. The Murphi Verification System. In Proceedings of the Inter-
national Conference on Computer Aided Verification. Springer-Verlag, London, UK,
UK, 390–393.

[18] Xuhua Ding and Gene Tsudik. 2018. Initializing trust in smart devices via presence
attestation. Computer Communications 131 (2018), 35–38.

[19] Danny Dolev and Andrew Yao. 1983. On the Security of Public Key Protocols.
Transactions on Information Theory 29, 2 (1983), 198–208.

[20] Carl M. Ellison. 2007. Ceremony Design and Analysis. IACR Cryptology ePrint
Archive (2007).

[21] Russell A. Fink, Alan T. Sherman, Alexander O. Mitchell, and David C. Challener.
2011. Catching the Cuckoo: Verifying TPM Proximity Using a Quote Timing Side-
channel. In Proceedings of the International Conference on Trust and Trustworthy
Computing. Springer-Verlag, Berlin, Heidelberg, 294–301.

[22] Samta Gajbhiye, Monisha Sharma, Sanjeev Karmkar, and Sanjay Sharma. 2016.
Design, Implementation and Security Analysis of Bluetooth Pairing Protocol in
NS2. In Proceedings of the International Conference on Advances in Computing,
Communications and Informatics (ICACCI). IEEE, 1711–1717.

[23] Kenneth Goldman, Ronald Perez, and Reiner Sailer. 2006. Linking Remote Attes-
tation to Secure Tunnel Endpoints. In Proceedings of the first workshop on Scalable
trusted computing. ACM, New York, NY, USA, 21–24.

[24] Keijo Haataja and Pekka Toivanen. 2010. Two Practical Man-in-the-middle
Attacks on Bluetooth Secure Simple Pairing and Countermeasures. Transactions
on Wireless Communications 9, 1 (2010), 384–392.

[25] Gerhard P. Hancke and Markus G. Kuhn. 2005. An RFID Distance Bounding
Protocol. In Security and Privacy for Emerging Areas in Communications Networks,
2005. SecureComm 2005. First International Conference on. IEEE Computer Society,
Washington, DC, USA, 67–73.

[26] Shaikh Shahriar Hassan, Soumik Das Bibon, Md Shohrab Hossain, and Mo-
hammed Atiquzzaman. 2018. Security Threats in Bluetooth Technology. Com-
puters & Security 74 (2018), 308–322.

[27] IEEE. 2009. IEEE Standard for Local and metropolitan area networks - Secure Device
Identity. Technical Report. IEEE. 1–77 pages. https://doi.org/10.1109/IEEESTD.
2009.5367679

[28] IEEE. 2016. IEEE Standard for Information technology–Telecommunications and
information exchange between systems Local and metropolitan area networks–
Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. Technical Report. IEEE. 1–3534 pages.

[29] David Jia and Richard Hsu. 2013. Formal Modeling and Analysis of Bluetooth 4.0
Pairing Protocol.

[30] Ronald Kainda, Ivan Flechais, and A. W. Roscoe. 2009. Usability and Security
of Out-of-band Channels in Secure Device Pairing Protocols. In Proceedings of
the 5th Symposium on Usable Privacy and Security. ACM, New York, NY, USA,
11:1–11:12.

[31] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen.
2014. Internet Key Exchange Protocol Version 2 (IKEv2). http://tools.ietf.org/rfc/
rfc7296.txt. RFC 7296.

[32] DavidW. Kravitz and Jason Cooper. 2017. Securing User Identity and Transactions
Symbiotically: IoTMeets Blockchain. In Proceedings of the Global Internet of Things
Summit (GIoTS). IEEE, 1–6.

[33] Hugo Krawczyk. 2003. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenti-
cated Diffie-Hellman and Its Use in the IKE Protocols. In Annual International
Cryptology Conference. Springer Berlin Heidelberg, Berlin, Heidelberg, 400–425.

[34] Cynthia Kuo, Mark Luk, Rohit Negi, and Adrian Perrig. 2007. Message-in-a-bottle:
User-friendly and Secure Key Deployment for Sensor Nodes. In Proceedings of the
5th international conference on Embedded networked sensor systems. ACM, New
York, NY, USA, 233–246.

[35] Albert Levi, Erhan Çetintaş, Murat Aydos, Çetin Kaya Koç, and M. Ufuk Çağlayan.
2004. Relay Attacks on Bluetooth Authentication and Solutions. In International
Symposium on Computer and Information Sciences. Springer Berlin Heidelberg,
Berlin, Heidelberg, 278–288.

[36] Gavin Lowe. 1995. An Attack on the Needham-Schroeder Public-Key Authenti-
cation Protocol. Inform. Process. Lett. 56, 3 (1995), 131–133.

[37] Gavin Lowe. 1997. A Hierarchy of Authentication Specifications. In Proceedings
of the 10th Computer security foundations workshop. IEEE Computer Society,
Washington, DC, USA, 31–43.

[38] Muhammad Naveed, Xiaoyong Zhou, Soteris Demetriou, XiaoFeng Wang, and
Carl A. Gunter. 2014. Inside Job: Understanding and Mitigating the Threat of
External Device Mis-Binding on Android. In Proceedings of the Network and
Distributed System Security Symposium (NDSS).

[39] Martin Nuss, Alexander Puchta, and Michael Kunz. 2018. Towards Blockchain-
Based Identity and Access Management for Internet of Things in Enterprises. In
Proceedings of the International Conference on Trust and Privacy in Digital Business.
Springer International Publishing, Cham, 167–181.

[40] Bryan Parno, Jonathan M McCune, and Adrian Perrig. 2011. Bootstrapping Trust
in Modern Computers. Springer Science & Business Media.

[41] Kasper Bonne Rasmussen and Srdjan Capkun. 2010. Realization of RF Distance
Bounding. In Proceedings of the USENIX Security Symposium. USENIX Association,
Berkeley, CA, USA, 389–402.

[42] Nitesh Saxena, Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. 2006. Secure
Device Pairing based on a Visual Channel. In Proceedings of the Symposium on
Security and Privacy. IEEE.

[43] Bluetooth SIG. 2016. Bluetooth Specification Version 5.0. Core Spec-
ification. Bluetooth SIG. https://www.bluetooth.com/specifications/
bluetooth-core-specification.

[44] Jani Suomalainen, Jukka Valkonen, and N. Asokan. 2007. Security Associations
in Personal Networks: A Comparative Analysis. In Proceedings of the European
Workshop on Security in Ad-hoc and Sensor Networks. Springer Berlin Heidelberg,
Berlin, Heidelberg, 43–57.

[45] Thomas Y.C. Woo and Simon S. Lam. 1993. A Semantic Model for Authentication
Protocols. In Proceedings of the IEEE Computer Society Symposium on Research in
Security and Privacy. IEEE Computer Society, Washington, DC, USA, 178–194.

[46] Zhangkai Zhang, Xuhua Ding, Gene Tsudik, Jinhua Cui, and Zhoujun Li. 2017.
Presence Attestation: The Missing Link in Dynamic Trust Bootstrapping. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security. ACM, New York, NY, USA, 89–102.

Session 6A: IoT Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

464

http://tools.ietf.org/rfc/rfc3748.txt
http://tools.ietf.org/rfc/rfc3748.txt
https://www.digicert.com/device-certificates/
https://doi.org/10.1109/IEEESTD.2009.5367679
https://doi.org/10.1109/IEEESTD.2009.5367679
http://tools.ietf.org/rfc/rfc7296.txt
http://tools.ietf.org/rfc/rfc7296.txt
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

