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Abstract

The main objective when managing inventories in blood supply chains is to establish an effi-

cient balance between the wastage and shortage of blood units. The uncertain demand and the

perishable nature of blood units can result in over- or under-stocking and increase wastage and

shortage costs. In this study, we analyze how a proactive transshipment policy can avoid future

shortages in addition to mitigate wastage. We consider a network of hospitals with uncertain

demand in which each hospital makes decisions on the quantity to order from a central blood

bank and to transship to other hospitals in each review period. We formulate the problem as a

two-stage stochastic programming model. To generate scenarios, the Quasi-Monte Carlo sam-

pling approach is employed and the optimal number of scenarios is determined by conducting

stability tests. We performed numerical experiments to evaluate the performance of the proposed

model and investigate its potential benefits of the outlined proactive transshipment. The devel-

oped model is used to compare the optimized policy with the current practice in some hospitals in

Australia and with a no-transshipment policy. The numerical results indicate significant potential

cost savings in comparison with the current policy in use and the no-transshipment policy.
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1. Introduction

Due to the specific characteristics of blood units such as perishability and limited donor popula-

tion, managing their supply chain to make sure they are efficiently used is a highly challenging

task. Blood is sourced from a semi-unpredictable supply as it is completely reliant on donations

and, as yet, cannot be produced artificially. The American Blood Organization stated that 60% of

the United States’ population is eligible to donate blood but only about 5% actually does (America’s

Blood Centers, 2011). The situation is similar in Australia. According to the Australian Red Cross

Blood Service, only 3.3% of Australians donate blood while 1 in 3 Australians will require blood

transfusion in their lifetime. The percentage of blood donor in the population is even smaller in

developing countries (Zhou et al. [90]). Nagurney and Dutta [59] noted that the average donation

rate is significantly lower in developing countries than in developed countries.

In addition to the uncertain nature of supply and perishable characteristic of blood, the demand

for blood products is uncertain and varies from day to day, typically presenting higher demand

during weekdays. Furthermore, the demand for blood occurs at hospitals, which increases the

complexity of the problem as usually there are many hospitals in the network. These facts indicate

that balancing supply and demand of blood in an efficient manner requires careful planning that

considers several perspectives and uncertain factors.

Keeping the balance between shortage and outdate of blood is the major challenge related to the

management of the blood inventory at hospitals [41]. Due to the perishable nature of blood,

having an excessive number of blood units in inventory would inevitably increase wastage [20].

Attributable to the nature of the supply of blood, wastage is not only an economic problem but

also has a normative social effect, as wasting a unit of blood is a waste of the donors’ time, ef-

fort, and contribution as well. Stanger et al. [77] observed that the wastage at hospitals has been

significantly higher than the wastage at blood centers, which is more undesirable as an outdated

item at one hospital could be used at another hospital to help save a person’s life. On the other

hand, an insufficient number of blood products in inventory might put human lives at a consider-

able risk. Therefore, blood inventory management has to take into account the trade-off between
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shortage and wastage.

When operating within a network of facilities (such as hospitals), one achievable opportunity to

improve the performance is transshipment. Lateral transshipment consists of any stock move-

ments between locations in the same echelon of an inventory system. This approach convention-

ally balances stock by reallocating the network’s inventory. In other words, transshipment could

be used as an effective way to adjust the existing discrepancy between the current/future demand

and the inventory of blood units among hospitals. For instance, Stanger et al. [76] conducted a

survey on the effect of transshipment in the United Kingdom’s blood supply chain and showed

that transshipment of blood between hospitals enhances flexibility in blood supply management

and diminishes the number of outdated units. Moreover, transshipment supports hospitals in

dealing with shortages more efficiently by using nearby hospitals’ stocks. Furthermore, Abbasi

et al. [3] indicated that blood transshipment in a large network of hospitals can improve the per-

formance measures of blood supply chains and possibly help to reduce the shelf life of red blood

cells to ensure that patients receive fresher units. Although transshipment has been considered

in the literature [32, 83, 25], few studies have considered the effect of relying on lateral transship-

ment when managing inventories of perishable items, and of blood in particular. In this paper,

we show how transshipment can be proactively considered in an inventory control system as a

powerful mechanism to rebalance the blood inventory in a network of hospitals and ultimately

to reduce costs associated with shortage, outdate, holding, ordering, and transshipment.

In the context under study, we consider that the hospitals optimally decide the amount to be

ordered and transshipped every day, with the support of the proposed model. The proactive

transshipment decisions are made at the same time instant in which hospitals place their orders

to replenish their inventories. We assume the perspective of a centralized planner that manages

several hospitals simultaneously and consider a system comprising a network of hospitals fac-

ing uncertain demand with general probability distribution. Therefore, at the beginning of each

period and before demand is known (i.e., observed), the planner can decide to replenish the in-

ventory at the hospitals either by placing orders to the blood bank or via transshipment from the

other hospitals in the network.
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Tomodel the aforementioned context, we develop a mathematical model using two-stage stochas-

tic programming (2SSP) in a rolling horizon framework to devise optimal ordering and transship-

ment policies for a blood inventory system. Stochastic programming is a framework that can

be used to model optimization problems with uncertain input parameters, being better suited to

characterize real-world problems and their inherent uncertainties. Dantzig [23] introduced 2SSP

in the 50’s for the first time, to handle uncertainty in mathematical programming. Since then, it

has been studied extensively both in theory and computational aspects. Some examples of 2SSP

applications in inventory management are discussed in the literature review section presented

next.

In the standard form of a 2SSP model, decision variables are divided into two groups, namely first-

and second-stage decisions. First-stage decisions must be made before the actual realization of the

random (uncertain) parameters. Second-stage decisions are made when the uncertain parameters

have been unveiled. The goal in this framework is to find values for the first-stage decisions that

are feasible for all (or almost all, in the case where probabilistic constraints are used) scenarios

and to optimize the objective function with respect to current and expected future costs.

In the 2SSP framework, uncertainty is represented by a finite set of scenarios that approximate

the original stochastic phenomenon. Since most of the methods for generating scenarios involve

randomness, the result must be stable with respect to the scenario sample used, meaning that if

one generates several samples of scenario sets and solves the optimization problemwith these sets,

similar optimal values for the objective function and decision variables should be observed. We

opted for aQuasi-Monte Carlo method to generate scenarios and reach stability without having to

consider a prohibitive number of discrete scenarios. We performed a stability analysis to confirm

the suitability of the scenario set generated. These scenarios were generated considering realistic

data for the daily demand of blood, based on the average and standard deviation for one type of

blood to examine the dynamics of our model.

Multistage stochastic programming is a generalization of the 2SSP that would be more naturally

suitable to represent the dynamics of the problem at hand. However, to avoid problems related to
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having multiple decision stages and, ultimately, to make the problem computationally tractable

(i.e., solvable in a reasonable time), very often multistage stochastic programming models are re-

formulated and approximated by 2SSP models. We achieve this by combining two central ideas.

The first is that we rely on a simplified approximation of the future (i.e., second-stage) decisions.

This plays a key role in the second idea, which is the use of a rolling horizon method. In this

method, every decision stage (i.e., days in the planning horizon) is solved as a 2SSP model where

its inputs are decisions from the previous stage (initial inventory and its age profile), and future

decisions are represented by this simplified future approximation. In Section 3, we provide the

details of the simplifications made and how we incorporate them in this rolling-horizon frame-

work.

Our main contributions to the existing literature can be summarized as follows. First, we de-

velop a new 2SSP model to obtain the optimal order and transshipment quantities using a flexible

methodology to cope with the uncertain nature of demand, i.e., without any assumptions on the

demand distribution. For example, our model can also consider non-homogeneous demand distri-

bution, which is a novel feature in the related literature. This is made possible by the combination

of a 2SSP framework with an rolling-horizon strategy that simulates the daily use of the proposed

decision support tool, which together, allows us to benefit from the flexibility of the 2SSP ap-

proach and the computational tractability from the rolling horizon strategy. The employment of

the aforementioned strategy in the context of this research is novel, to the best of our knowledge.

Second, we assess the benefits of proactive transshipment on the performance measures of blood

supply chains. In addition, we are the first to provide numerical evidence of the benefits of proac-

tive transshipment to improve the performance of a network of hospitals that is not limited to

two locations only. Furthermore, we perform several numerical experiments to assess the im-

pact of ordering frequency, enforcing the First-In-First-Out (FIFO) issuing policy in this setting,

and using alternative ordering policies, which provided relevant insights concerning the impor-

tance of proactive transshipment in the management of the hospital network and the benefits

that employing the proposed decision support tool could bring to the problem of managing blood

inventories.
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The remainder of this paper is structured as follows. Section 2 provides a review of the related

literature on blood inventory management and lateral transshipment. In Section 3, we present a

detailed description of the proposedmodel. In Section 4, we present themathematical formulation

of the 2SSP model. Section 5 contains numerical study and Section 6 offers conclusions.

2. Literature review

The literature review related to this study is presented in two categories: blood inventory man-

agement and lateral transshipment.

2.1. Blood inventory management

As blood is a precious perishable commodity, many researchers have focused on the manage-

ment of blood which was initiated by Millard [57] in 1959 and van Zyl [81] in 1963. Nahmias [61]

and Prastacos [71] presented a review of early research in blood inventory management and Be-

liën and Forcé [11] published a review paper of blood inventories and supply chain management.

More recently, Osorio et al. [64] provided a comprehensive literature review of quantitative mod-

els for blood supply chain management. A variety of methodologies, such as queueing theory

and Markov chains, statistical analysis, simulation, and optimization, have been used alone or in

combination to analyze the supply chain of blood products. In addition, there are several recent

studies considering inventory models for a general class of perishable items with deterioration

rate [9, 47, 52].

Queueing theory and Markov chains have been used to model and analyze blood inventories in

early research. Pegels and Jelmert [68] and Abbasi and Hosseinifard [1] investigated the effects of

modified FIFO and LIFO issuing policies on the average on-hand inventory and the average age

of issued blood using Markov chains. Brodheim et al. [15] proposed a fixed-order-quantity model

for perishable products and formulated the problem as a Markov chain to compute the average
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age of blood in inventory and the probability of blood shortage. Cumming et al. [21] proposed

a Markovian population model that aimed to keep the balance between supply and demand of

blood. Kopach et al. [48] applied a queuing framework to model a red blood cell inventory system

with two demand levels: urgent and non-urgent demand. Hosseinifard and Abbasi [40] used a

queuing theory frameworkwith a Poisson demand distribution to evaluate the effects of inventory

pooling for the blood supply chain.

Simulation has been frequently used as a method to optimize the blood supply chain due to the

complexity of blood inventory problems, despite the fact that the optimality of the solution ob-

tained could not be guaranteed. Rytilä and Spens [73] used discrete event simulation to improve

blood supply chain efficiency. Duan and Liao [28] developed a new replenishment policy based on

old inventory ratio for highly perishable items. They applied a simulation-optimization approach

to optimize replenishment policies. Katsaliaki and Brailsford [44] used discrete event simulation

to minimize costs, shortage and wastage in the blood supply chain by determining optimal or-

dering policies. Mustafee et al. [58] improved their model by proposing a distributed simulation

approach to reduce simulation run time. Kamp et al. [43] studied the availability of blood products

in pandemic situations in Germany using simulation methods. Abbasi et al. [3] and Blake et al.

[13] used simulation modeling to evaluate the impact of reducing the shelf life of red blood cells

in Australian and Canadian blood supply chains, respectively.

Statistical analysis methods, such as linear regression, survival analysis, and logistic regression,

have been used to support decision making in the blood supply chain. Melnyk et al. [56] used

survival analysis to classify blood donors and increase donor satisfaction by improving the layout

of collection stations. Bosnes et al. [14] used a logistic regression model to predict blood donor

arrivals. Godin et al. [33] applied a logistic regressionmodel to obtain the main factors of repeated

blood donation. Heddle et al. [37] applied logistic regression techniques to determine factors that

affected red blood cells outdating. Perera et al. [69] analyzed blood stock, using the t-test and

determined factors affecting stock level and wastage.

Due to the complexity of blood inventory management problems, optimization methods such as
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stochastic dynamic programming, integer programming and linear programming have been used

less frequently. Haijema et al. [36] proposed a stochastic dynamic programming and simulation

approach to design optimal order-up-to-level inventory policies for platelet production. Kendall

and Lee [46] proposed a goal programming model to allocate blood units to hospitals and mini-

mize wastage. They evaluated solutions based on stock availability, the age of blood, the outdate

rate, and the availability of fresh blood. Pitocco and Sexton [70] used a data envelopment analysis

model to evaluate the efficiency of seventy blood centers. Hemmelmayr et al. [38] proposed an

integer programming model to determine optimal delivery days by minimizing wastage and de-

livery costs. They considered the known daily demand for each hospital and investigated whether

switching from the current vendee-managed inventory setup to a vender-managed inventory sys-

tem could be beneficial. Şahin et al. [75] developed an integer programming model to address the

location-allocation decision problems in the regionalization of blood services. They considered

the total population of cities as demand for blood and validated their models by using real data

for Turkish Red Crescent blood services. Gunpinar and Centeno [35] applied an integer program-

ming model to minimize the total cost including shortage cost, outdate cost, holding cost, and

purchasing cost for a single level inventory system with uncertain demand.

Two-stage stochastic programming has being considered a suitable framework for inventoryman-

agement problems other than blood supply chain management. Fattahi et al. [29] studied a multi-

period replenishment problem under centralized and decentralized supply chain systems using

two-stage stochastic programming. They assumed a safety-stock-based policy with uncertain

demand for a supply chain consisting of one retailer and one manufacturer. Cunha et al. [22]

developed a two-stage stochastic programming model to determine the optimal strategies of a

replenishment control system considering uncertain demand and periodic review. Dillon et al.

[26] proposed a two-stage stochastic programming model to manage red blood cells inventory.

They considered periodic review policies with a fixed ordering point and minimized the total cost

as well as shortage and wastage considering uncertain demand.
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2.2. Lateral transshipment

Transshipment has been considered in the literature as a tool to balance inventory among loca-

tions in the same echelon to reduce shortage. Lateral transshipment policies can be classified into

proactive and reactive transshipment [67]. Most past studies considered reactive transshipment,

in which transshipment occurs when an inventory shortage is realized [8, 10, 16, 39, 54, 66, 79,

80, 84, 85, 86, 88, 89]. In these studies, the transshipment time was considered negligible to make

the problem tractable.

Proactive transshipment takes place at fixed points in time before observing the demand. Most of

the work on proactive transshipment considered a periodic review setting. Allen [6] presented a

multi-echelon redistribution model for proactive transshipment for the first time. The author con-

sidered a single period with multiple inventory locations and obtained an optimal redistribution

of stock. Agrawal et al. [5] proposed a dynamic programming formulation in which the trans-

shipment time was determined dynamically. They developed an algorithm to obtain the optimal

time of the transshipment and stock levels at retailers. Lee et al. [51] proposed a new proactive

transshipment policy, called the Service Level Adjustment (SLA) policy, in which they consid-

ered the service level to determine the quantity of transshipment. Burton and Banerjee [16] used

simulation to analyze and compare the cost effect of a proactive transshipment and a reactive

transshipment in a two-echelon supply chain network.

Tagaras and Vlachos [78] considered a two-location system with non-negligible transshipment

times and used simulation to analyze the operational characteristics of a pooling policy. They

found proactive transshipment to be beneficial, especially when the demand is highly variable.

Jönsson and Silver [42] studied a two-echelon distribution systemwith a central warehouse. They

minimized the total backorders by applying limitations on the timing of transshipment. Lee and

Whang [50] considered a two-period model consisting of a manufacturer and several retailers

and obtained optimal stock level as well as optimal proactive transshipment policy. Rong et al.

[72] considered a proactive transshipment game in a decentralized system with two demand sub-

periods.
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Li et al. [53] considered a decentralized system with two locations and determined the optimal

quantity of orders considering proactive transshipment. Glazebrook et al. [32] proposed a hybrid

lateral transshipment policy such that the transshipment decisions aremadewhen a location faces

a shortage that resembles a reactive transshipment policy, however, the quantity of transshipment

can exceed the current shortage to avoid future imbalance in the inventory system. Glazebrook

et al. [32] employed dynamic programming to solve their model, using a heuristic to approximate

the future cost of a decision. In approximating this future cost, they assumed no transshipment

is performed in the future.

Recently, Abouee-Mehrizi et al. [4] proposed a proactive transshipment model to minimize the

mismatch between supply and demand. They considered a finite-horizon multi-period inventory

system for two locations and determined optimal joint replenishment and transshipment policies.

Meissner and Senicheva [55] considered a multi-location, multi-period inventory system with

proactive transshipment and used approximate dynamic programming to determine an optimal

order policy and transshipment policy.

The aforementioned studies focused on applying lateral transshipment to improve the perfor-

mance of a non-perishable inventory. However, a gap found in the literature is the limited number

of studies that consider effects of transshipment on perishable inventory, especially on blood in-

ventory. Cheong [19] studied the impact of proactive transshipment for perishable products. The

author presented an algorithm to determine the optimal quantities of orders and transshipment for

a single perishable product with a two-period lifetime (‘old’ or ‘fresh’) in a single period planning

horizon, which does not allow capturing the dynamics of inventory system. The proposed model

is not applicable to the blood supply chain management without considerable simplification, since

the shelf life of products are greater than two; red blood cells units have a shelf life of 42 days and

platelets have a shelf life of 5 days [3]. Nakandala et al. [62] considered a periodic review two-stage

inventory system with compound Poisson demand for a fresh food supply chain and formulated

a decision rule system to minimize the total cost considering reactive lateral transshipment. They

determined the quantity of transshipment by the trade-off among expiration, purchase, backo-

rdering, transshipment and holding costs and showed that adopting lateral transshipment can be

10



beneficial. Assuming a Poisson probability distribution for demand limits the applicability of their

model to the blood supply chain as previous studies showed that the demand of blood units does

not follow a Poisson distribution [34, 3]. Furthermore, they implemented reactive transshipment

in their model, whereas our model considers proactive transshipment. Wang et al. [82] andWang

and Ma [83] studied transshipment of blood units between blood banks (e.g., blood banks in dif-

ferent regions) to remedy overstock and to respond to the observed shortages due to emergency

situations such as natural disasters. Therefore, they considered reactive transshipment as the de-

cision was to select the blood units that should be transshipped from the rescue blood banks to

the affected blood bank. Dehghani and Abbasi [25] developed a model for lateral transshipment

of blood products. Their model was limited to Poisson demand distribution and only works for

the transshipment of perishable items between two locations, whereas, our model is not limited

to any demand distribution and can be applied to a network of hospitals. Zhang et al. [87] devel-

oped a model to explore the optimal ordering and transshipment policies. However, their study

was limited to transshipment decisions between two locations. Further, unlike our study, they

considered reactive transshipment, in which the transshipped items were used to meet realized

shortages, while we consider proactive transshipment in a network of hospitals. To the best of

our knowledge, this study is the first to consider lateral transshipment of perishable items (e.g.

blood) in a network of inventory locations (e.g. multiple hospitals) that is not restricted to a

specific demand distribution.

3. Problem setting and modeling premises

We consider a network with N hospitals and denote them with index i ∈ N := {1, 2, . . . , N}.

The planning horizon is divided into T periods of uniform length (generally representing days)

and are denoted by t ∈ T := {1, 2, . . . , T}. The hospitals considered as references for this study

employ a periodic inventory review policy, denoted by (R,S), meaning that at each review point

(e.g., every R-th morning), the hospital reviews the inventory status and places an order to raise

the inventory level to the target S. The (R,S) policy withR = 1 is currently used (for some small

hospitals, R = 2 is used as well) in some hospitals in Australia due to its reasonable efficiency
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and simplicity [3]. However, in this study, the proposed model allows for the use of a dynamic

periodic inventory policy and thus, does not enforce the (R,S) policy.

Furthermore, we assume that all hospitals place their orders with the central blood bank (CBB)

for new batches of blood units at the start of each period t ∈ T := {1, 2, . . . , T}. We denote

the order quantity of hospital i ∈ N at the beginning of period t by yti . Ordering from the CBB

to hospital i ∈ N costs Ri per blood unit. We do not assume fixed costs in our model, however

the adaptation to include such costs is straightforward from a modeling perspective, but would

require the inclusion of binary variables to capture the ordering event, as it is done, for example,

in Dillon et al. [26]. We assume that each batch of blood has a shelf life of M periods. Therefore,

if some of the blood units at hospital i are not used within M periods, they must be discarded,

incurring an expiry cost Ei. We also assume that the orders can only be used to fulfill future

demand, starting from the next day (i.e., with a lead time of one period), as it takes from a few

hours to one day for the blood units to arrive in the setting under study. Hence, orders placed in

period t can only be used to fulfill demands from period t+ 1 onwards.

Hospitals can also transship blood from their inventory to other hospitals in the network. We rep-

resent the transshipment amount in period t from hospital i to hospital j, with i, j ∈ {N : i ̸= j},

by xt
ij := (xt

ij1, x
t
ij2, . . . , x

t
ijM), where xt

ijm, m ∈ {1, 2, . . . ,M}, denotes the amount of trans-

shipped blood units that have remaining shelf lifem at the beginning of period t. Transshipment

from hospital i to hospital j costs Cij per blood unit. At the end of period t, each hospital i ∈ N

observes a random demand Dt
i . If the hospital does not have enough inventory, it can place an

emergency order to fulfill the excess demand. We assume that emergency order costsGi per unit

to hospital i. If hospital i ∈ N has an excess of inventory after fulfilling all its demand, a holding

cost of Hi per unit is incurred for unexpired blood units at the end of period t.

We denote the inventory at hospital i ∈ N at the beginning of the first period by B1
i :=

(B1
i1, B

1
i2, . . . , B

1
iM). B1

im, represents the quantity of blood that has a remaining shelf life of

m ∈ {1, 2, . . . ,M} periods at the beginning of period 1. We assume that the inventory at the

beginning of the current period (i.e., t = 1) is known. We represent the quantity of shortage in
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period t ∈ T at hospital i ∈ N by f t
i and denote the total inventory at hospital i ∈ N at the end

of period t ∈ T by vti . We also denote the amount of outdated blood in period t ∈ T at hospital

i ∈ N by oti.

Figure 1 illustrates the dynamics of the system in the time horizon (the notation used in Figure

1 has been defined in Section 4.1). At the start of each period t ∈ T := {1, 2, . . . , T}, the quan-

tity to order is set to bring the inventory position to S (represented by the dotted line)). Next,

the demand (Dt
i(ξ)) for each period is observed (represented by the dashed line connecting two

successive periods). At the beginning of the planning period, each hospital decides the transship-

ment quantity (xijk). We assume that the transshipped blood units arrive instantly because the

transshipment time is negligible for the time scale considered (days), as it takes much less than a

day for the transshipment to occur. On the other hand, the blood ordered from the CBB (y1i and

yti(ξ)) arrives at the end of each period, hence being only available (in stock) for the next period.

Outdated units oti(ξ) are discarded (i.e., discounted from the inventory level) at the end of period

t ∈ T := {1, 2, . . . , T}.
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Figure 1: The dynamics of the inventory system at hospital i. The y-axis shows the inventory status at hospital i. y1i ,

S, xijk and xjik are the first-stage decisions. It shows the transshipped items are available at the beginning of each

period and the ordered items from the blood bank arrive at the end of the period and are practically available at the

beginning of the next period. Note that only y1i , xijk and xjik are implemented since the model is optimized at the

beginning of each period t in the rolling horizon approach to decide the order and transshipment amounts at that

period.

For the sake of computational tractability, we adopted a few simplifications when modeling the
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problem. First, we assumed that no blood substitution is considered (i.e., all patients received

blood of their own ABO type and Rh factor) and that crossmatching rejection rates are negligible.

We also consider that inventory capacity at each hospital is not a limitation. The combination of

these aspects allows us to manage blood types individually, without having to consider multiple

blood types simultaneously.

We consider the order and transshipment quantities for the current period (which is represented

by t = 1) and target level (S) for future periods as the first-stage decisions, while the quantity of

order for the remaining period (t = {2, . . . , T}) under each of the scenarios is the second-stage

decisions. To approximate the future behavior of the system, we adopted two important simpli-

fying premises. First, we consider that no transshipment decisions are available in the second

stage part of the 2SSP model. We stress that this is to preserve the non-anticipative nature of the

transshipment decisions (as they must be made before observing the realization of the demand).

Naturally, decisions concerning transshipment in future periods are considered in the framework,

when the model is re-optimized in the next period in the rolling-horizon setting (further details

are presented in Section 5), thus guaranteeing that the non-anticipativity of these decisions are

preserved. We highlight that a similar approximation is also considered in previous studies that

consider transshipment (e.g. [32]). Second, we assume that in future periods, the system behaves

as an (R,S) system, also to enforce non-anticipativity for the decisions made in terms of ordered

quantities after the future demand scenarios are observed. These two simplifications allow us to

formulate the problem as a 2SSP model with a reasonable approximation of the expected future

cost of the system. Otherwise, the problem would have to be posed as a multi-stage model (in-

stead of a two-stage model), rendering it an even more computationally challenging problem, and

ultimately compromising its practical appeal.

Nevertheless, to guarantee that the dynamic nature of the decision process is represented, we

embed the 2SSPmodel into a rolling-horizon approach, meaning that while the decisions aremade

over a long planning horizon, only the decisions for the first period (i.e., the first-stage decisions,

with the exception of S) are actually implemented. The process is successively repeated for each

period in the planning horizon, at which each of the initial conditions (such as initial inventory
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level and age profile) are given by the decisions obtained in the previous period (Algorithm 1 in

Section 5 further explains how the rolling horizon approach is implemented using the proposed

2SSP model).

4. Model formulation

We formulate the aforementioned problem as an optimization model to determine the optimal

quantities of order and transshipment that minimizes the total expected cost of the system. We

consider the order and transshipment quantities for the current period (which is represented by

t = 1) and target level (S) for future periods as first-stage decisions, while the quantity of order

for the remaining period (t = {2, . . . , T}) in each of the scenarios are second-stage decisions.

The objective function is composed of five cost components: ordering, transshipment, holding,

outdating, and shortage costs. The first-stage costs are associated with ordered and transshipped

quantities for the first period, while the second-stage costs consist of expected holding, outdating,

and shortage costs for all periods and the expected ordering cost for the second period onwards.

4.1. Mathematical notations

The mathematical notations used in the model formulation are given as follows.

4.1.1. Indices and sets

t ∈ T := {1, 2, . . . , T} - time horizon;

i, j ∈ N := {1, 2, . . . , N} - hospitals;

ξ ∈ Ξ := {1, 2, . . . ,Υ} - scenarios in scenario set Ξ;

m, k ∈ M := {1, 2, . . . ,M} - remaining shelf life.
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4.1.2. Decision variables

y1i , yti(ξ) - order quantity of hospital i ∈ N at period t = 1 and t ∈ {2, . . . , T} in scenario ξ ∈ Ξ,

respectively;

xt
ij - quantity of transshipped units from hospital i ∈ N to hospital j ∈ N in period t ∈ T ;

xt
ij := (xt

ij1, x
t
ij2, . . . , x

t
ijM), where xt

ijm represents the quantity of transshipped blood that has

remaining shelf life m ∈ M at the beginning of period t ∈ T ;

Si - target inventory level at hospital i ∈ N ;

istim(ξ) - inventory level of blood with shelf life m ∈ M at the beginning of period t ∈ T in

scenario ξ ∈ Ξ, at hospital i ∈ N ;

ietim(ξ) - inventory level of blood with shelf life m ∈ M at the end of period t ∈ T in scenario

ξ ∈ Ξ, at hospital i ∈ N ;

atim(ξ)- quantity of blood units with shelf life m ∈ M used to fulfill demand in period t ∈ T in

scenario ξ ∈ Ξ, at hospital i ∈ N ;

f t
i (ξ) - quantity of shortage in period t ∈ T in scenario ξ ∈ Ξ, at hospital i ∈ N ;

vti(ξ) - total inventory at hospital i ∈ N in scenario ξ ∈ Ξ, at the end of period t ∈ T ;

oti(ξ) - quantity of outdated units in period t ∈ T in scenario ξ ∈ Ξ, at hospital i ∈ N .

4.1.3. Parameters

B1
im - initial inventory of units with shelf life m ∈ M at hospital i ∈ N ;

M - maximum shelf life;

Gi - emergency order cost at hospital i ∈ N ;

Hi- holding cost per unit per period at hospital i ∈ N ;

Ei - expiry cost per unit at hospital i ∈ N ;

Ri - ordering cost per unit to hospital i ∈ N ;

Cij - transshipment cost from hospital i ∈ N to hospital j ∈ N (i ̸= j);

P (ξ) - probability associated with scenario ξ ∈ Ξ;
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D(ξ)ti - total demand at hospital i ∈ N in period t ∈ T in scenario ξ ∈ Ξ.

4.2. Mathematical model

In this section, we present the mixed-integer linear programming (MILP) model developed to rep-

resent the problem discussed in this study. The MILP model represents the deterministic equiva-

lent model of the 2SSP model [12]. For the sake of formulation clarity, we assume that all indices

are defined within their original domain set (i.e., ∀i is equivalent to ∀i ∈ N , and so forth), unless

otherwise specified.

min . z =
∑
i

Riy
1
i +

∑
i

∑
j∈N\{i}

∑
m

Cijx
1
ijm+

∑
ξ

P (ξ)

[∑
i

[
Hiv

1
i (ξ) + Eio

1
i (ξ) +Gif

1
i (ξ)+

∑
t∈T \{1}

(
Riy

t
i(ξ) +Hiv

t
i(ξ) + Eio

t
i(ξ) +Gif

t
i (ξ)

)] (4.1)

s.t.:

is1im +
∑

j∈N\{i}

x1
jim =

∑
j∈N\{i}

x1
ijm + a1im(ξ) + ie1im(ξ), ∀i,m, ξ (4.2)

istim(ξ) = atim(ξ) + ietim(ξ), ∀i,m, t ∈ T \ {1}, ξ (4.3)

is1im = B1
im, ∀i,m (4.4)∑

m

atim(ξ) + f t
i (ξ) = Dt

i(ξ), ∀i, t, ξ (4.5)

vti(ξ) =
∑

m∈M\{1}

ietim(ξ), ∀i, t, ξ (4.6)

oti(ξ) = ieti1(ξ), ∀i, t, ξ (4.7)

ieti(m+1)(ξ) = ist+1
im (ξ), ∀i,m ∈ M \ {M}, t ∈ T \ {T}, ξ (4.8)

is2iM(ξ) = y1i , ∀i, ξ (4.9)

ist+1
iM (ξ) = yti(ξ), ∀i, t ∈ T \ {1}, ξ (4.10)
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Si −
∑
m

istim(ξ) = yti(ξ), ∀i, t ∈ T \ {1}, ξ (4.11)

Si, y
1
i ∈ Z+, ∀i (4.12)

x1
ij ∈ Z+, ∀i, j (4.13)

yti(ξ) ∈ Z+, ∀i, t ∈ T \ {1}, ξ (4.14)

is1im ∈ Z+ ∀i,m (4.15)

istim(ξ) ∈ Z+ ∀i,m, t ∈ T \ {1}, ξ (4.16)

f t
i (ξ), o

t
i(ξ), v

t
i(ξ) ∈ Z+ ∀i, t, ξ (4.17)

atim(ξ), ie
t
im(ξ) ∈ Z+ ∀i,m, t, ξ. (4.18)

Objective function (4.1) consists of costs referring to ordering, transshipment between hospitals

and expected costs associated with holding, outdate, and shortage. Constraint (4.2) sets the bal-

ance of blood units in the first period, while constraint (4.3) establishes the same balance for the

remaining periods, in which no transshipment between hospitals is considered. Constraint (4.4)

states that at the beginning of the planning horizon, the initial inventory is known beforehand

(notice that (4.4) can be trivially removed via substitution in (4.2)). Constraint (4.5) models the

demand fulfillment, in which the demand is fulfilled with blood of different ages (represented by∑
m atim(ξ)) and part of it is eventually not fulfilled (represented by f t

i (ξ)). Constraint (4.6) accu-

mulates the total inventory in the end of period t for cost calculation, discounting the fraction to

be discarded due to outdate, as represented in (4.7). Constraint (4.8) models the aging process of

the inventory. At any given period t, the total of blood units with shelf lifem (ietim(ξ)) is available

as initial inventory with shelf lifem− 1 in t+1 (becoming ist+1
im−1). Constraint (4.9) specifies that

the order placed in period 1 arrives at period 2 (assuming a lead time of one period). Note that

is2iM(ξ) could be simplified by removing its dependency to scenarios. Similarly, constraint (4.10)

models orders that arrive at period 3 onward (i.e., t > 2), which is assumed to follow a (R,S)

policy with R = 1, as modeled in (4.11). Last, (4.12) to (4.18) define the domain of the decision

variables.

The allocation of accessible red blood cells (RBCs) for transfusion to patients is of vital importance.

Some recent medical research studies have suggested that health outcomes could be affected by
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the age of transfused blood, especially for trauma patients [74], as stored red blood cells undergo

biochemical changes that affect their function. In response to these clinical findings, there is

interest in the clinical community in designing optimal issuing policies (e.g., [7, 1]). Considering

that the effect of red blood cell’s age cannot be overlooked, the First-in-First-out (FIFO) policy is

often employed as an issuing policy.

A non-trivial characteristic of the optimal solutions obtained from the proposed model is that

they do not necessarily follow the FIFO policy (i.e., issuing blood units in decreasing order of

age) to fulfill demand. As it will be shown in the computational experiments presented later, the

consideration of transshipment opportunities and costs trade-offs render this simple issuing rule

is not optimal in terms of minimizing overall cost. We highlight that this is a well-known fact in

the perishable inventory control literature (see, for example, [31, 60, 63, 18]). Nevertheless, the

current practice of hospitals is to follow the FIFO policy. To model this behavior, one can adapt

the model to follow the FIFO policy by including the following constraints:

a1i1(ξ) = min{D1
i (ξ), is

1
i1(ξ) +

∑
j∈N\{i}

x1
ji1 −

∑
j∈N\{i}

x1
ij1}, ∀i, ξ (4.19)

a1im(ξ) = min{D1
i (ξ)−

m−1∑
j=1

a1ij(ξ), is
1
im(ξ) +

∑
j∈N\{i}

x1
jim −

∑
j∈N\{i}

x1
ijm}, ∀i, ξ,m ∈ M \ {1}

(4.20)

ati1(ξ) = min{Dt
i(ξ), is

t
i1(ξ)}, ∀i, t ∈ T \ {1}, ξ (4.21)

atim(ξ) = min{Dt
i(ξ)−

m−1∑
j=1

atij(ξ), is
t
im(ξ)}, ∀i, t ∈ T \ {1}, ξ,m ∈ M \ {1} (4.22)

Constraint (4.19) enforces that the demand D1
i (ξ) is, if possible, fulfilled with the net amount

(current inventory (is1i1(ξ)) plus incoming units
(∑

j∈N\{i} x
1
ji1

)
minus the units transshipped

from hospital i
(∑

j∈N\{i} x
1
ij1

)
) of units with shelf life m = 1. In case the latter is not sufficient

to fully satisfy the demand, the remaining demand (D1
i (ξ)−a1i1 form = 2, for example) is satisfied

with younger units with shelf life m = 2, . . . ,M, considered in order of age. This is enforced by

constraint (4.20). Analogously, (4.21) and (4.22) enforce the same logic for the later time periods,

without transshipment decision variables.
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Note that constraints (4.19) to (4.22) are not linear with respect to the decision variables. However,

they can be converted into linear functions by applying the subsequent constraints (where λ is a

large positive number and btim(ξ) are auxiliary binary variables).

ati1(ξ) ≤ Dt
i(ξ), ∀i, t, ξ (4.23)

a1i1(ξ) ≤ is1i1(ξ) +
∑

j∈N\{i}

x1
ji1 −

∑
j∈N\{i}

x1
ij1, ∀i, ξ (4.24)

ati1(ξ) ≤ isti1(ξ), ∀i, t ∈ T \ {1}, ξ (4.25)

Dt
i(ξ)− ati1(ξ) ≤ λbti1(ξ), ∀i, t, ξ (4.26)

is1i1(ξ) +
∑

j∈N\{i}

x1
ji1 −

∑
j∈N\{i}

x1
ij1 − a1i1(ξ) ≤ λ(1− b1i1(ξ)), ∀i, ξ (4.27)

isti1(ξ)− ati1(ξ) ≤ λ(1− bti1(ξ)), ∀i, t ∈ T \ {1}, ξ (4.28)

atim(ξ) ≤ Dt
i(ξ)−

m−1∑
j=1

atij(ξ), ∀i, t, ξ,m ∈ M \ {1} (4.29)

a1im(ξ) ≤ is1im(ξ) +
∑

j∈N\{i}

x1
jim −

∑
j∈N\{i}

x1
ijm, ∀i, ξ,m ∈ M \ {1} (4.30)

atim(ξ) ≤ istim(ξ), ∀i, t ∈ T \ {1}, ξ,m ∈ M \ {1} (4.31)

Dt
i(ξ)−

m−1∑
j=1

atij(ξ)− atim(ξ) ≤ λbtim(ξ), ∀i, t, ξ,m ∈ M \ {1} (4.32)

is1im(ξ) +
∑

j∈N\{i}

x1
jim −

∑
j∈N\{i}

x1
ijm − a1im(ξ) ≤ λ(1− b1im(ξ)), ∀i, ξ,m ∈ M \ {1} (4.33)

istim(ξ)− atim(ξ) ≤ λ(1− btim(ξ)), ∀i, t ∈ T \ {1}, ξ,m ∈ M \ {1} (4.34)

btim(ξ) ∈ {0, 1}, ∀i,m, t, ξ (4.35)

4.3. Scenario generation and stability tests

In this study, we generate scenario sets using a quasi-Monte Carlo (QMC) sampling approach.

The QMC generates samples known as low-discrepancy sequences by employing quasi-random

numbers, which are intended to increase the accuracy of the estimator by generating highly uni-

form points. These low-discrepancy sequences are engineered to fill the sample space uniformly

up to a specific density and thus have the potential to accelerate the convergence rate associated
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with the Monte Carlo method. The most widely used low-discrepancy sequence is the Sobol se-

quence, as it has proved to be more effective and produced accurate results for various problems.

For further details concerning QMC sampling, we refer the reader to Caflisch [17] and Owen [65].

When relying on a sampling method for scenario generation, the most common source of insta-

bility is an insufficient number of scenarios to fully represent the uncertain phenomena. The size

of scenario sets is strongly connected to the quality of the representation of the stochastic param-

eters, and thus, by increasing the number of scenarios, the discrete approximation (i.e., empirical

distribution obtained from the generated scenarios) converges to the true distribution. However,

it is important to note that the larger this set is, the more challenging the problem becomes in

terms of computational effort.

The sample size in this studywas determined by considering in-sample and out-of-sample stability

tests. The in-sample stability test allows for defining the optimal number of scenarios to be used

in the 2SSP model such that increasing the number of scenarios beyond that will not significantly

change the obtained objective function value. In-sample stability was measured considering the

average value and standard deviation of the optimal objective function value for each of scenarios

within a given scenario set sample.

Out-of-sample stability test aims to verify whether the solution obtained is dependent on a specific

set of scenarios. To test for out-of-sample stability, one can assess if the performance of first-stage

decisions observed for a given scenario set is consistent with the performance observed for other

scenario sets. The term out-of-sample refers to the fact that stability is judged on a different

sample than that used to obtain the solution. In the experiments presented next, out-of-sample

stability was measured by calculating the average value and standard deviation of the optimal

objective function value for a given first-stage solution in a collection of 1000 scenario samples

randomly drawn directly from the probability distribution (thus different from that obtained from

QMC sampling and used to obtain the given first-stage solution). The steps of obtaining the results

of in-sample and out-of-sample stability tests are outlined in Appendix B. For further details, the

readers are referred to Kaut and Wallace [45].
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We performed the stability test considering model (4.1) - (4.18). In the out-of-sample stability

test as
∑

m istim(ξ) could become greater than Si the model could become infeasible. To avoid

infeasibility in the out-of-sample stability test, we substitute expression (4.11) with the following

constraints:

yti(ξ) = max{Si −
∑
m

istim(ξ), 0}, ∀i, t ∈ T \ {1}, ξ (4.36)

We used the same cost data and parameters (T = 7) as in Section 5 and tested 20 scenario-sets

with the size varying from 10 to 200 in increments of 10. A scenario-set with 200 scenarios can be

thought as 200 distinct matrices of size N by T , where each matrix represents a scenario ξ ∈ Ξ

and has entriesDt
i(ξ) for i = {1, . . . , N} and t = {1, . . . , T}. We highlight that the QMCmethod

generates a unique scenario tree for each sample size since it is not randomized.

Figures 2a and 2b, depict the average and standard deviation of the objective function value for all

replications performed to assess out-of- and in-sample stability. As can be observed from these

figures, the scenario generation based on QMC sampling presented no significant change in the

average value and/ or reduction in the standard deviation observed for scenario sets larger than

50 when analyzing in-sample stability. A similar behaviour was observed for sets larger than 100

scenarios concerning out-of-sample stability. Therefore, scenario sets with Υ = 100 scenarios

were used in the experiments presented next, as the stability assessment indicated this scenario

set size as the minimal number of scenarios to achieve an acceptable level of stability.

22



 

40

45

50

0 50 100 150 200

M
on

et
ar

y 
un

its
 ($

)

Number of scenarios

Standard deviation

275

280

285

0 50 100 150 200

M
on

et
ar

y 
un

its
 ($

)

Number of scenarios

Average value
 

(a) Out-of-sample stability
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(b) In-sample stability

Figure 2: Scenarios sample stability results.

5. Computational experiments

We consider a network of four hospitals composed of two small and two large hospitals. The

performance metrics reported are based on simulating 18500 successive days of this network (i.e.,

the model is solved 18500 times for each experiment). The number of simulation runs in the

rolling horizon algorithm was set according to the Dvoretzky-Kiefer-Wolfowitz (DKF) inequality

[49] which provides an estimate of the total number of simulations required to obtain an empirical

cumulative distribution of cost components with an error less than 1% with confidence level of

95% (as used in [2]). For the sake of comparability, the same scenario sets generated at each

simulation run were used in all experiments. Each simulation step (i.e., each execution of the

model plus overheads with updates of values and calculation of indicators) took less than aminute

on a typical personal computer. The simulation procedure was coded in Python 2.7.10 and the

MILP models were solved using IBM ILOG CPLEX 12.6.2. Algorithm 1 describes the steps of each
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simulation run of implementing the 2SSP model using the proposed rolling horizon approach.

Note that to update the inventory, in Step 6 of Algorithm 1, demands are fulfilled from the oldest

units in inventory at each hospital in the simulation runs regardless of the mathematical model

used (in Step 2). That means once the results obtained from any of the models (e.g. the TS model),

in the implementation/simulation phase a FIFO approach is applied to fulfill the demand. The

reason is linked to the fact that at the stage of running the model (TS Model or TS-FIFO En-

forcement), the demand has not been realized yet. Thus the realized demand (in the implementa-

tion/simulation phase) is not necessarily the same as the demand in the set of demand scenarios

used in the models which justifies the use of a FIFO approach in demand fulfilment. In other

words, the decision variables to determine the demand fulfilment were scenario indexed and are

not actionable in the implementation/simulation phase.

Algorithm 1: The rolling-horizon algorithm.

for t = 1, . . . , 18500 do
Step 1: Generate Υ demand scenarios for the next T periods;

Step 2: Run the 2SSP model using the initial inventories at the current period t;

Step 3: Implement the orders and transshipment decisions;

Step 4: Update inventory levels according to transshipment decisions;

Step 5: Observe the demands at each hospital (generated according to the considered

demand probability distribution functions);

Step 6: Update the inventories available at the beginning of next period according to

the observed demands, outdates and incoming orders. Note that demands are fulfilled

from the oldest units in inventory at each hospital in all models;

Step 7: Compute the actual (observed) cost of the current period. It comprises of

holding, ordering, transshipment, and shortage (i.e., emergency orders) costs,

according to the observed demands;

The daily demand varies during the week, with significantly less (and often zero) demand on

weekends. Thus, we assumed that the uncertain demand followed a zero-inflated negative bi-

nomial distribution. The zero-inflated negative binomial (ZINB) distribution has three param-
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eters: the inflated probability of zero (π), the number of trials (r), and the probability of suc-

cess in each trial (p) [27]. The reason for assuming this distribution is that the negative bi-

nomial distribution is a flexible discrete distribution and can take the index of dispersion over

one. In previous research it has been noted that the distribution of demand for blood com-

ponents has the index of dispersion over one, and thus using Poisson distribution (known to

have an index of dispersion equal to one) underestimates the demand variability [34, 1]. In

addition, as there is often no demand on some days especially on weekends (as, with excep-

tion of emergency operations, surgeries are not scheduled on weekends), we use ZINB distri-

bution that simply inflates the probability of observing zero demand. As the actual demand

forecasts for red blood cells could not be made available, demand data for hospitals 1, 2, 3,

and 4 were sampled from ZINB(π = 0.6, r = 4, p = 0.6), ZINB(π = 0.6, r = 3, p = 0.57),

ZINB(π = 0.25, r = 15, p = 0.57) and ZINB(π = 0.25, r = 15, p = 0.48), respectively [24].

We set the shelf life of the blood units to 21 days as it is considered the red blood cells’s shelf

life at some blood services [30]. Note that in our experiments we assume that the average age of

issue of red blood cells to a hospital is 10 days. It means that on average the units stay for 10 days

in the collection centers, processing centers and blood banks before being issued to a hospital.

Therefore, the remaining shelf life of units received by hospitals is set at 11 days. To enforce the

importance of the outdate cost compared to the holding cost, we assume that the holding cost for

11 days of one blood unit is strictly less than its outdate cost. Otherwise, the model would prefer

to discard rather than hold inventory to meet the demand, which is not aligned with the explicit

priorities of this context. We assume that all cost components are equal at all hospitals and the

value of holding cost, emergency order cost, expiry cost, order cost and transshipment cost are

set at 1, 16, 13, 1, and 1.5 monetary units per unit per period, respectively.

We explore how the optimized inventory control policies obtained using the proposed approach

perform when compared to the policy currently in practice at some hospitals used as reference

for this study. A daily review inventory policy is applied at these hospitals, implying that the

inventory status is checked every day and, if the inventory falls below a desired inventory level

S, which is set to be four times the average daily demand, an order is placed to lift the inventory up
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to S (i.e., base stock policy). In terms of current transshipment policy, the small-sized hospitals

transship their units of red blood cells that have less than a predefined residual shelf life to a

given large-sized hospital within their network. Therefore, for the current policy, we assume

that hospitals 1 and 2 are the two small-sized hospitals which can transship their red blood cells

units with less than 6 days remaining shelf life only to hospitals 3 and 4, respectively. We stress

that, contrary to the current policy observed, the proposed model allows both hospitals 1 and 2

to transship units to either of hospitals 3 and 4, as well between them. Figure 3 schematically

represents the transshipment flows for current policy (left) and the optimized policy (right).

 

- Arrival of orders - Transshipment

Current policy Optimized policy (TS Model)

Hospital 3

Hospital 4

Hospital 1

Hospital 2

Hospital 3 Hospital 1

Hospital 4 Hospital 2

 

Figure 3: Schematic representation of hospital networks; solid line arrows represent possible directions for trans-

shipment.

The numerical experiments presented in this section are threefold. First, we compare the inven-

tory control policy devised by the proposed model with the current policy. Second, we assess

the effect of enforcing the FIFO issuing policy when considering transshipment. However, as the

CPU times required to solve the MILP models considering the FIFO policy for each simulation run

was over 20 minutes (and thus too computationally demanding to be executed a sufficient num-

ber of times to obtain reliable results), we opted for enforcing (4.19) and (4.20) but dropping (4.21)

and (4.22), as (4.21) and (4.22) enforce FIFO for future periods and do not involve the first-stage

decisions. We believe that this approximation does not compromise the reliability of the policies

obtained by the proposed model, as the second-stage decisions are an approximation of the fu-
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ture and are eventually replaced in our rolling horizon scheme. Last, as some regional and small

hospitals may, in practice, place their orders every other day, we also analyze the implications of

small hospitals ordering every other day.

To decide the length of the planning horizon to be considered in the two-stage model, we per-

formed a sensitivity analysis considering distinct lengths (i.e., values of T ). Trading off compu-

tational burden and quality of the solution, we opted for a seven-day planning horizon (T = 7).

In Table 1, we compare the shortage rates (defined as the total observed shortages divided by the

total observed demand) and outdate rates (defined as the discarded blood units divided by the total

available inventory) for each value of T . As can be observed in Table 1, increasing the value of

T does not conclusively improve the performance of the optimal policy, which lead us to believe

that a seven-day planning horizon is adequate.

Shortage Outdate Average cost

T=7 0.013 0.006 76.652

T=10 0.011 0.007 77.472

T=20 0.016 0.006 77.616

Table 1: Shortage rate, outdate rate and average cost for different T (the shortage cost per unit=16, the outdate cost

per unit=13).

Henceforth, the name TS Model is used for the proposed model, described in Section 4, TS-FIFO

Enforcement is used for the TS Model that follows the FIFO issuing policy, Current Policy is used

for the model that simulates the current policy adopted at the hospitals, and No Transshipment is

used when the hospitals do not use transshipment at all.

In the first set of experiments, we compared the four aforementionedmodels. The results obtained

in terms of shortage rate, outdate rate and the total service level for each model are shown in

Table 2, while Table 4 presents the average daily component costs. The total shortage rate and

the total outdate rate presented in Tables 2, 5, A1, A4, A6, and A8 were calculated as follows. The

total shortage rate is given by
∑t=18500

t=1

∑
i∈N f t

i /
∑t=18500

t=1

∑
i∈N Dt

i and the total outdate rate

27



is obtained from
∑t=18500

t=1

∑
i∈N oti/

∑t=18500
t=1

∑
i∈N

∑j=M
j=1 bti,m, where Dt

i , bti = (bti,1, ..., b
t
i,M), f t

i

and oti denote the demand, inventory, shortage, and outdate at hospital i at period t, respectively.

Several important observations can be drawn from Tables 2 and 4. First, the four policies have

comparable performance, both in terms of shortage and outdate. The Current Policy, as those

obtained by the proposed model, is very efficient in regard to avoiding shortage and outdate. We

also highlight the positive impact that the consideration of transshipment has when the Current

Policy is compared to the No Transshipment policy in terms of wastage of blood units in the

smaller hospitals (Hospitals 1 and 2). In terms of enforcing the FIFO policy, in Table 4 one can see

that it causes a small reduction in the transshipment performed, at the expense of exposing the

system to higher outdating costs.

Table 3 presents the average order and transshipment for each hospital. As can be seen, the

average order and transshipment quantities in the Current Policy are higher than those of TS

Model, specially for small hospitals. Overall, the TS Model orders and transships units more

efficiently than compared to the other models, since the quantity of orders and transshipment can

be coordinated to reduce the inventory level, as well as the outdate and the total costs.

Analyzing Table 4, it becomes evident that the policy devised by the TS Model is considerably

more efficient in terms of expected costs. The average total cost for Current Policy is nearly

58% higher than those obtained with the TS Model. The statistical information regarding the

distribution of cost also allows one to conclude that the TS Model is less affected by scenarios of

high costs (as shown by the P1 and P95 values). The results of Table 4 also reveals that relaxing

the FIFO constraints in the TS Model might trigger more transshipment, which leads to a lower

observed outdate rate than that observed using the TS-FIFO Enforcement model.
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Hospitals TS Model TS-FIFO Enforcement Current Policy No Transshipment

Shortage Outdate Shortage Outdate Shortage Outdate Shortage Outdate

Hospital 1 0.024 0.014 0.023 0.025 0.006 0.000 0.000 0.387

Hospital 2 0.034 0.128 0.034 0.175 0.027 0.000 0.005 0.285

Hospital 3 0.014 0.000 0.015 0.000 0.000 0.031 0.000 0.008

Hospital 4 0.010 0.001 0.010 0.001 0.016 0.001 0.022 0.001

Total 0.013 0.006 0.014 0.008 0.010 0.010 0.012 0.047

Service level 0.986 0.986 0.990 0.988

Table 2: Shortage and outdate rate for each hospital (the shortage cost per unit is 16; the outdate cost per unit is 13).

The total figures presented in “Total” row was calculated based on the total shortage, the total outdate and the total

demand at all hospitals. The total shortage is obtained as the total observed shortages divided by the total observed

demand; the total outdate is computed as the total outdated units divided by the total inventory.

Hospitals TS Model TS-FIFO Enforcement Current Policy No Transshipment

Average Order Trans. Order Trans. Order Trans. Order

Hospital 1 1.468 0.534 1.419 0.469 2.558 1.500 1.733

Hospital 2 0.819 0.124 0.820 0.094 1.813 0.912 1.289

Hospital 3 9.029 0.768 9.134 0.875 7.200 0.000 8.544

Hospital 4 11.120 0.125 11.117 0.138 11.043 0.000 11.875

Table 3: The average daily order and transshipment (the shortage cost per unit=16, the outdate cost per unit=13).
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TS Model TS-FIFO Enforcement Current Policy No Transshipment

Total cost parcels

Holding cost 45.294 45.133 87.615 85.117

Order cost 22.436 22.490 22.615 23.442

Shortage cost 4.869 4.885 3.576 4.395

Outdate cost 1.727 2.441 2.972 14.390

Transshipment cost 2.326 1.576 3.618 —

Total cost statistics

Average 76.652 77.312 120.396 127.344

Std. dev. 22.516 22.860 28.691 34.153

Median 73.000 74.000 115.000 118.000

Skewness 4.093 3.977 4.460 3.032

P5 54.000 54.500 96.000 95.000

P95 105.500 107.500 159.000 189.000

Table 4: The average daily component costs (the shortage cost per unit is 16, the outdate cost per unit is 13). P5 and

P95 denote the fifth percentile and the 95 percentile respectively.

To confirm our result, we set the shortage cost at 15, outdate cost at 12 and consider the other cost

parameters as the same as the previous example. As shown in Appendix A, Table A1, we observed

that changing the shortage cost and outdate cost does not affect the shortage and outdate rates

of Current Policy and No Transshipment models. Table A2 in Appendix A presents the average

order and average transshipment quantities for all policies. The results are consistent with those

observed in previous experiment. Table A3 (Appendix A) presents the breakdown of total cost

for the second experiment. Analogously to the results of the first experiment, the figures illus-

trate the superior performance of TS Model and TS-FIFO Enforcement over the Current Policy

and No Transshipment models. Moreover, the results are consistent with those observed in pre-

vious experiment. To investigate larger variations in shortage and outdate costs, further results

are presented in Appendix A (Table A4 to Table A9). The results in Appendix A also indicate a

consistently superior performance of the TS Model.
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Small hospitals usually have smaller order volumes than large hospitals. Therefore, it is reasonable

that orders are placed every other day, as it is practiced in several hospitals [3, 90]. To apply this

restriction in the TS Model, we add a constraint to set the orders of small hospitals at zero on the

days that they are not allowed to order. Tables 5 and 6 present the results when small hospitals

place their orders every second day.

Hospitals TS Model TS-FIFO Enforcement Current Policy No Transshipment

Shortage Outdate Shortage Outdate Shortage Outdate Shortage Outdate

Hospital 1 0.020 0.004 0.021 0.007 0.010 0.000 0.001 0.376

Hospital 2 0.021 0.004 0.021 0.015 0.036 0.000 0.012 0.275

Hospital 3 0.012 0.000 0.012 0.000 0.000 0.031 0.000 0.008

Hospital 4 0.010 0.000 0.010 0.000 0.016 0.001 0.022 0.000

Total 0.012 0.001 0.012 0.003 0.011 0.010 0.012 0.045

Service level 0.988 0.988 0.989 0.987

Table 5: Shortage and outdate rate for each hospital when small hospitals order every other day (the shortage cost

per unit is 15; the outdate cost per unit is 12). The total shortage is obtained as the total observed shortages divided by

the total observed demand; the total outdate is computed as the total outdated units at divided by the total inventory

(considering all hospitals).

As can be observed in Table 5, the system has the lowest total outdate rate in the TS Model. The

results in Table 6 show all the cost components for the TS Model are smaller than the Current

Policy and No Transshipment models, except for the shortage costs. This particular effect is a

consequence of the overall costminimization perspective thatmodel adopts, as it can be confirmed

by the reductions observed in the overall costs. The trade-off opportunities exploited by this

model could be straightforwardly controlled by enforcing service-level constraints (as in [26], for

example). Furthermore, comparing the results of Tables A3 and 6 indicates that the restriction of

ordering every other day slightly increases the total cost in all policies.

As previously discussed, the TSModel assumes an (R,S) policy for future periods to approximate

the future cost of (implementable) decisions made in the current period, namely the order and
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TS Model TS-FIFO Enforcement Current Policy No Transshipment

Total cost parcels

Holding cost 47.771 47.575 86.702 84.248

Order cost 22.399 22.492 22.594 23.385

Shortage cost 4.056 4.082 3.613 4.219

Outdate cost 0.743 1.877 2.701 12.682

Transshipment cost 2.743 2.737 3.494 —-

Total cost statistics

Average 77.712 78.399 119.103 124.534

Std.dev. 20.412 20.948 27.307 33.776

Median 75.000 76.000 114.000 115.000

Skewness 3.973 3.733 4.091 2.819

P5 56.500 56.500 94.000 93.000

P95 103.500 107.000 158.000 190.000

Table 6: The average daily component costs when small hospitals order every other day (the shortage cost per unit=15,

the outdate cost per unit=12). P5 and P95 denote the fifth percentile and the 95 percentile respectively.

transshipment quantities. To investigate the impact of this simplification, we compare the order

quantities obtained in each time period of the rolling horizon algorithm (i.e., the value of Si for

i ∈ N ) with the actual inventory level at the beginning of the time period plus the order decided

for that same period (the actual dynamic inventory policy implemented by the model) for each

hospital. The results obtained from the rolling horizon approach are summarized in Figure 4.

Figure 4 illustrates that, for each hospital, the average of the decided Si values for all periods in the

rolling horizon approach (represented by ‘Average S’) is reasonably close to the average inventory

level obtained from the policy implemented by the model (‘Average Inventory’). These results

indicate that the simplification of using the (R,S) policy to approximate the inventory system

in future periods represents the future behavior of the system reasonably well. Note that, as a

consequence of having a adequate number of scenarios being generated using the QMC sampling

method, the standard deviation of Si’s are considerably small, in accordance to the indications

from the in- and out-of-sample stability tests performed.
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Figure 4: The average actual inventory at the begining of a period plus the actual order (shown as Average Inventory

in the plot) and the average of S. The line on each bar shows mean ± standard deviation of the related quantity of

the bar (the shortage cost per unit=16, the outdate cost per unit=13).

Figure 5 shows the average and standard deviation of age of blood units at transfusion time for

various transshipment policies. The No Transshipment policy has the worst average age at trans-

fusion in hospitals 1, 2 and 3 and its average age at transfusion in hospital 4 is almost same as

other transshipment policies. Employing the TS and TS-FIFO Enforcement models improves the

average age of transfusion in the two large hospitals (hospitals 3 and 4) in comparison to the Cur-

rent policy. The Current Policy has the lowest average age at transfusion at hospitals 1 and 2 (two

small hospitals), which is due to the fact that, in the Current Policy, older units are transshipped

from small hospitals to large hospitals.

The aggregated average age at transfusion for all hospitals for the TS Model, the TS-FIFO En-

forcement model, the Current Policy and No Transshipment policy are 11.972, 11.941, 13.812, and

14.230, respectively. These figures also show that the TS and the TS-FIFO Enforcement models

outperform the Current and No Transshipment policies in terms of the overall average age at

transfusion. They also indicate that the TS and the TS-FIFO Enforcement models are very similar
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in terms of the aggregated average age at transfusion. The reason why both TS and TS-FIFO En-

forcement models provide a similar average age at transfusion is linked to the fact that the FIFO

policy for fulfilling the demands is enforced for both models in the simulation runs (in Step 6 of

Algorithm 1).
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Figure 5: Average Age at transfusion in various transshipment policies. The line on each bar shows mean± standard

deviation of the age at transfusion (the shortage cost per unit is 16; the outdate cost per unit is 13).

6. Conclusion

We proposed a decision support tool to decide on proactive transshipment in order to reduce total

cost as well as wastage and shortage in the blood supply chain. We considered a blood inventory

system consisting of a number of hospitals with uncertain demand and developed a two-stage

stochastic programming model to calculate the optimal order and transshipment quantities for

each hospital that minimize the total expected cost. To tackle the uncertain nature of the demand,

we generated scenarios using a Quasi-Monte Carlo sampling approach and conducted stability

analysis tests to obtain a reliable number of scenarios.

34



We evaluated the performance of the proposed model by performing numerical experiments com-

paring the performance of the proposed inventory control policy with the current transshipment

policy applied in the hospitals. Our numerical results showed that considerable cost benefits can

be obtained through reductions in the levels of safety stock as well as wastage by using the pro-

posed model, which also illustrated the benefits of proactive transshipment in the blood supply

chain. Furthermore, the results showed that the proposed transshipment policies can also improve

the age of units at transfusion, which is a desirable outcome for blood supply chains.

To the best of our knowledge, this work is the first to analyze both replenishment and proactive

transshipment in a network of hospitals. Thus, for future research, we believe that significant

advantages can be achieved by deployment of our model in more general networks of hospitals

where proactive transshipment is applied. An initial relevant extension in this direction would be

to extend our model to include different types of blood for cases when substitution (i.e., demand

fulfillment using a compatible alternative blood type) is considered, as blood substitutions could

improve the performance of the blood inventory management system. Also, it would be worth

investigating efficient solution methods and the employment of parallel computation strategies

to allow for the consideration of larger networks, more scenarios, and multiple tiers.
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Appendix A - Further Numeral Results on Comparing TS Model with Current and No

Transshipment policies

Hospitals TS Model TS-FIFO Enforcement Current Policy No Transshipment

Shortage Outdate Shortage Outdate Shortage Outdate Shortage Outdate

Hospital 1 0.026 0.016 0.025 0.028 0.006 0.000 0.000 0.387

Hospital 2 0.034 0.122 0.034 0.167 0.027 0.000 0.005 0.285

Hospital 3 0.014 0.000 0.014 0.000 0.000 0.031 0.000 0.008

Hospital 4 0.012 0.001 0.012 0.001 0.016 0.001 0.022 0.001

Total 0.015 0.006 0.015 0.008 0.010 0.010 0.012 0.047

Service level 0.985 0.985 0.990 0.988

Table A1: Shortage and outdate rate for each hospital (the shortage cost per unit is 15; the outdate cost per unit is

12). The total shortage is obtained as the total observed shortages divided by the total observed demand; the total

outdate is computed as the total outdated units divided by the total inventory (considering all hospitals).

Hospitals TS Model TS-FIFO Enforcement Current Policy No Transshipment

Ave.order Ave.trans Ave.order Ave.trans Ave.order Ave.trans Ave.order

Hospital 1 1.414 0.489 1.373 0.431 2.558 1.500 1.733

Hospital 2 0.827 0.133 0.826 0.103 1.813 0.912 1.289

Hospital 3 9.004 0.739 9.079 0.815 7.200 0.000 8.544

Hospital 4 11.162 0.129 11.182 0.139 11.043 0.000 11.875

Table A2: The average daily order and transshipment (the shortage cost per unit is 15; the outdate cost per unit is 12).
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TS Model TS-FIFO Enforcement Current Policy No Transshipment

Holding cost 44.550 44.570 87.615 85.116

Order cost 22.407 22.462 22.615 23.442

Shortage cost 4.970 4.934 3.353 4.121

Outdate cost 1.579 2.200 2.744 13.283

Transshipment cost 1.490 1.489 2.412 —-

Total cost statistics

Average 75.742 76.398 119.944 125.962

Std.dev. 22.126 22.195 26.986 31.868

Median 72.000 73.000 115.000 118.000

Skewness 3.953 3.871 4.297 3.005

P5 54.000 54.000 96.000 95.000

P95 104.525 106.000 156.000 182.000

Table A3: The average daily component costs (the shortage cost per unit=15, the outdate cost per unit=12). P5 and

P95 denote the fifth percentile and the 95 percentile respectively.

Hospitals TS Model Current Policy No Transshipment

Shortage Outdate Shortage Outdate Shortage Outdate

Hospital 1 0.023 0.019 0.006 0.000 0.000 0.387

Hospital 2 0.032 0.170 0.027 0.000 0.005 0.285

Hospital 3 0.012 0.000 0.000 0.031 0.000 0.008

Hospital 4 0.010 0.001 0.016 0.000 0.022 0.000

Total 0.012 0.008 0.010 0.010 0.012 0.047

Service level 0.988 0.99 0.988

Table A4: Shortage and outdate rate for each hospital (shortage cost per unit=18, outdate cost per unit=13)
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TS Model Current Policy No Transshipment

Total cost parcels

Holding cost 46.210 87.615 85.117

Order cost 22.502 22.615 23.442

Shortage cost 4.990 4.023 4.945

Outdate cost 2.232 2.972 14.390

Transshipment cost 2.407 3.618 —

Total cost statistics

Average 78.342 120.843 127.893

Std. dev. 23.948 30.416 36.074

Median 75.000 115.000 118.000

Skewness 4.437 4.684 3.361

P5 55.500 96.000 95.000

P95 108.000 161.525 190.000

Table A5: The average daily component costs (shortage cost per unit=18, outdate cost per unit=13). P5 and P95 denote

the fifth percentile and the 95 percentile respectively.

Hospitals TS Model Current Policy No Transshipment

Shortage Outdate Shortage Outdate Shortage Outdate

Hospital 1 0.024 0.015 0.006 0.000 0.000 0.387

Hospital 2 0.033 0.169 0.027 0.000 0.005 0.258

Hospital 3 0.015 0.000 0.000 0.031 0.000 0.008

Hospital 4 0.010 0.001 0.016 0.000 0.022 0.000

Total 0.013 0.007 0.010 0.010 0.012 0.047

Service level 0.987 0.990 0.988

Table A6: Shortage and outdate rate for each hospital (shortage cost per unit=16, outdate cost per unit=15)
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TS Model Current Policy No Transshipment

Total cost parcels

Holding cost 45.251 87.615 85.117

Order cost 22.468 22.615 23.442

Shortage cost 4.875 3.576 4.395

Outdate cost 2.481 3.43 16.604

Transshipment cost 2.365 3.618

Total cost statistics

Average 77.440 120.854 129.558

Std. dev 22.904 30.533 36.991

Median 74.000 115.000 119.000

Skewness 3.942 4.581 2.795

P5 54.500 96.000 95.000

P95 108.000 162.000 198.000

Table A7: The average daily component costs (shortage cost per unit=16, outdate cost per unit=15). P5 and P95 denote

the fifth percentile and the 95 percentile respectively.

Hospitals TS Model Current Policy No Transshipment

Shortage Outdate Shortage Outdate Shortage Outdate

Hospital 1 0.026 0.020 0.006 0.000 0.000 0.387

Hospital 2 0.041 0.144 0.027 0.000 0.005 0.285

Hospital 3 0.018 0.000 0.000 0.031 0.000 0.008

Hospital 4 0.013 0.001 0.016 0.000 0.022 0.000

Total 0.017 0.006 0.010 0.010 0.012 0.047

Service level 0.983 0.990 0.988

Table A8: Shortage and outdate rate for each hospital (shortage cost per unit=14, outdate cost per unit=11)
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TS Model Current Policy No Transshipment

Total cost parcels

Holding cost 42.738 87.615 85.117

Order cost 22.371 22.615 23.442

Shortage cost 5.331 3.129 3.846

Outdate cost 1.591 2.515 12.176

Transshipment cost 2.439 3.618

Total cost statistics

Average 74.514 119.492 124.581

Std. dev 22.051 25.308 29.606

Median 71.000 115.000 118.000

Skewness 3.741 4.107 2.967

P5 52.000 96.000 95.000

P95 105.500 153.000 176.000

Table A9: The average daily component costs (shortage cost per unit=14, outdate cost per unit=11). P5 and P95 denote

the fifth percentile and the 95 percentile respectively.

Appendix B - The steps of in-sample and out-of-sample stability tests.
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Algorithm 2: The in-sample stability algorithm.

for K = 10, 20, 30, . . . , 200 do
Step 1: Generate a set of scenarios with K demand scenarios and call in DK ;

Step 2: Run the 2SSP model given the set of scenarios generated in previous step;

for i = 1 to K do
Step 2: Compute the objective function of the 2SSP model for scenario i and store

the optimal objective value;
Step 3: Compute the average and standard deviation of optimal objective value

obtained in previous step. They are the average and the standard deviation of the

objective function in ‘in sample stability test’ using K scenarios in 2SSP model.

Algorithm 3: The out-of-sample stability algorithm.

for K = 10, 20, 30, . . . , 200 do
Step 1: Generate a set of scenarios with K demand scenarios and call in DK ;

Step 2: Run the 2SSP model given set DK and and obtain/store the decision variables

of the first stage i.e., x1
ij’s, y1i ’s and Si’s;

for i = 1 to 1000 do
Step 3: Generate a scenario and solve the 2SSP model given the generated scenario

by considering (fixing) the decision variables of the first stage equal to the values

obtained in Step 2. Store the optimal objective value;
Step 5: Compute the average and standard deviation of optimal objective value based

on 1000 results (obtained in previous steps). They are the average and the standard

deviation of the objective function in ‘out of sample stability test’ using K scenarios.
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