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Abstract— Recently, the penetration of photovoltaic (PV) units 

and plug-in electric vehicles (PEVs) has been quickly increased 
worldwide. Due to the intermittent nature of PV and the 
stochastic nature of PEVs, several operation problems can be 
noticed in distribution systems, including excessive energy losses 
and voltage violations. In this paper, an optimization-based 
algorithm is proposed to accurately determine the optimal 
locations and capacities of multiple PV units in the presence of 
PEVs to minimize energy losses while considering various system 
constraints. The proposed algorithm considers the uncertainty of 
PV and loads, and the stochastic nature of PEVs. Furthermore, 
the operational constraints of PEVs are incorporated in the 
optimization model: 1) arrival and departure times, 2) initial 
state of charge (SOC), 3) minimum preset state of charge by the 
owner, and 4) the time-of-use electricity tariff, and 5) different 
charging control schemes. The optimal PV planning model is 
formulated as a two-layer optimization problem that ensures an 
optimal PV allocation while optimizing PEV charging 
simultaneously. A two-layer metaheuristic method is developed to 
solve the optimization model considering annual datasets of the 
studied distribution systems. The results demonstrate the efficacy 
of the proposed algorithm. 

 
Index Terms--Distribution systems; photovoltaic; plug-in 

electric vehicle; energy losses; optimal allocation. 

I.  INTRODUCTION 
S the annual demand on electricity grows, the use of 
distributed energy resources (DER) in power distribution 

systems has remarkably increased throughout the world. 
Photovoltaic (PV) is one of the most promising DER types.  
Indeed, the connection of PV units to distribution systems has 
several benefits to various entities, such as utility, owner, and 
final user. It is a fact that PV units with their active/reactive 
power control functionalities can improve the reliability of the 
power supply, enhance voltage profile, enhance power quality, 
and minimize energy losses [1]–[4]. Nevertheless, the 
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integration of such intermittent PV units with the uncertainty 
feature into existing systems can also lead to various technical, 
financial, and regulatory consequences. These consequences 
should be considered when deciding the highest allowed PV 
penetration.  

Along with the rise of the PV penetration, the interest in 
plug-in electric vehicles (PEVs) has been intensely increasing 
worldwide [5], [6]. It is reported by the international energy 
agency that the number of various electric vehicle types was 
about one million in 2015 [7]. A list of countries, which are 
labeled as the electric vehicle initiative group, follow a future 
policy to grow the number of such vehicles to 20 million by 
2020 [8]. PEVs are electric-based cars in which battery 
systems are utilized and charged during the parking period by 
the grid [9]–[11]. Since the average parking time of vehicles is 
normally more than 90% of the day [12], their battery systems 
can be controlled by the utility to exchange the power, thereby 
mitigating the technical problems of DER [13]. However, if 
PEVs are not properly controlled, congestion problems can 
result in the power lines of distribution systems [14], [15].  

In the literature, numerous methods have been directed to 
the optimal allocation of PV in distribution systems. In [16], a 
planning approach based on the probabilistic has been 
proposed to allocate various DER types, including PV, for 
minimizing the energy losses in the distribution system 
considering system constraints. In [2], [17], [18], analytical 
formulae have been proposed for the optimal allocation of 
DER without considering the intermittent generation of 
renewable-based DER types. An analytical method has been 
proposed in [19] to allocate a single PV unit for minimizing 
losses with considering load variation and probabilistic PV 
generation. A probabilistic multi-objective algorithm has been 
proposed in [20] for the optimal DER planning considering the 
minimization of economic costs and pollutant emissions, and 
load uncertainties. Different metaheuristic methods have been 
proposed to solve the DER allocation problem, e.g. genetic 
algorithms [21], tabu search [22], simulated annealing [23], 
and ant colony optimization [24]. In [12], the role of energy 
storage systems as an important factor to be considered for 
accelerating the integration of DER to distribution systems has 
been highlighted. Various methods have been proposed in 
[25], [26] for optimizing grid integrated solar PV systems. The 
authors of [27] have investigated various possibilities to 
integrate uncertain renewable-based DER types by smart 
charging policies of different electric vehicle fleets. 

The aforementioned literature review illustrates that 
considerable research work has been performed with respect 
to determining the optimal location and capacity of PV in 
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distribution systems. However, most of the proposed work is 
based on assumptions to simplify the planning model of PV 
with PEVs. Some of these methods assume either a single 
allocation of PV or consider deterministic models of PV and 
loads while they do not consider PEVs. Even the methods that 
consider the intermittent and uncertain nature of PV and loads, 
they do not consider the presence of PEVs. The existing 
methods do not consider the different control schemes of 
PEVs units, their stochastic nature, and their detailed model in 
the PV allocation problem. Hence, this allocation problem still 
requires more investigations and developments. 

In this paper, an algorithm is proposed to accurately 
determine the optimal locations and capacities of multiple PV 
units to minimize energy losses considering PEVs and various 
system constraints. The merits of the proposed algorithm are 
the consideration of the uncertainty of PV and loads, and the 
stochastic nature of PEVs. The operation constraints of PEVs 
and the time-of-use (TOU) electricity tariff are considered in 
the optimization model. Different charging control schemes of 
PEVs are considered, i.e, uncontrolled charging, controlled 
charging, and smart charging based on the TOU electricity 
tariff. A two-layer optimization method, i.e. gravitational 
search algorithm (GSA), is formulated to solve the PV 
allocation problem and optimize PEV simultaneously.  

II.  PROBLEM FORMULATION 
A.  Objective function 

The key objective of the proposed approach is to determine 
the optimal locations and capacities of PV with considering 
the effect of PEVs. Minimizing the total annual energy losses 
of the distribution system with all possible combinations of 
PV power and load is considered as an objective function. The 
probability density function (pdf) of the load demand and PV 
power have been split into several states to be incorporated as 
a multi-state variable in the planning problem. The solar 
irradiance and load demand are constrained within specified 
limits. For each state, the power losses should be calculated 
and weighted according to the probability of occurrence of this 
state during the whole planning period. Each time segment 
represents T hours; hence, the objective function can be 
formulated as follows: 

,
1 1

( )
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t t
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t g
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= =
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where ,
t

loss gP and ( )t
com gprob   are the active power losses in 

the distribution system and combined probability of the load 
and solar irradiance at time segment t during state g, 
respectively; Nt and Ns are the total number of the time 
segments and  total number of the states at each time segment 
(which is equal to the product of the states of PV output power 
and the states of the load), respectively; χ is a matrix of two 
columns that include all possible combinations (216 states) of 
the PV output power states and the load states. In χ, column 1 
represents the PV output power as a percentage of the rated 

power, and column 2 represents the load level as a percentage 
of peak load. ,1, , , ,, ,t t t

G g PV i g d gP P P , and , ,
t

CS j gP are the active power 
of the grid, PV power, demand power and charging station 
power, respectively. NPV and NCS are the number of PV units 
and the number of charging stations, respectively. 
B.  Constraints 

The following equality and inequality constraints are taken 
into account in the optimization model. 
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where Gij, Bij, ,
t

i gV , and ,
t
ij g are the conductance of the line ij, 

susceptance of line ij, voltage magnitude at bus i, and the 
difference of the voltage angles at bus i and j during state g 
and time instant t, respectively. ,1,

t
G gQ and ,

t
d iQ are the grid 

reactive power and demand reactive power, respectively. 
max,

, ,
t

cs i gP .and min,
, ,

t
cs i gP  are the maximum and minimum active power 

of the ith charging station, respectively. min
,PV iP and max

,PV iP  are the 
minimum and maximum power of ith PV, respectively. Vmin 
and Vmax are the minimum and maximum voltage limits, 
respectively. 1,

t
gV and 1,

t
g are the voltage and angle at the slack 

bus (bus 1), respectively. ,
t
ij gI and max

,ij gI are the current and 
maximum allowable current of the line ij, respectively. NB and 
Nl are the number of buses and number of loads, respectively. 

b is set of the PV and CS buses. SOCn,d,g and SOCn,min,g are 
the state of charge (SOC) of nth PEV at departure time and 
minimum preset SOC by the owner, respectively. 

C.  Modeling of PEV battery 
The SOC of the battery is updated at time segment t 

according to its charging and it can be given as follows: 
-1

, , , , , , ,
,
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where X and Y belong to {0,1}, in which X.Y = 0 because the 
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charging and discharging of the PEV battery cannot coexist at 
the same time. ηch and ηdc are the charging and discharging 
efficiencies, respectively. , ,

t
ch n gP and , ,

t
dc n gP are the charging 

and discharging powers of nth PEV, respectively. 
Each PEV is charged/discharged with a certain percentage 

of the total optimized charging/discharging power of the 
charging station. This percentage depends on the capacity of 
the battery (Cn), SOC ( ,

t
n gSOC ), and time left until departure 

(Tn). Therefore, the amount of charging/discharging power for 
each PEV battery n at time segment t can be computed as 
follows: 
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(14) 

According to (13) and (14), the optimal active power of the 
charging station can be divided among the batteries of the 
PEVs by using the aggregator based on their current SOC and 
the left time until the departure. This model is used in the 
second layer of the optimization problem (Section V). 
D.  Modeling of PEV Stochastic Nature 

The PEV profile is not deterministic, but it contains 
stochastic variables where PEVs are not connected to the 
distribution system at the same time. It is assumed that the 
PEVs are charged/discharged only at charging stations, and 
they begin charging/discharging from/to the distribution 
system as soon as their arrival. In this paper, arrival time and 
the initial SOC of each PEV are assumed to be random 
variables with a normal pdf [28]. Therefore, the pdf of daily 
arrival time (initial parking time) and the initial SOC of PEV 
battery can be given as follows: 
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The means and standard deviations are 
A

t
T =18 and 

A
t
T =5 

hours for daily arrival time, and they are t
SOC =50% and 

t
SOC =14% for the SOC, respectively [29]. 

III.  MODELING OF SOLAR IRRADIANCE AND LOAD  
In this section, the stochastic models of PV generation and 

load are explained. Beta pdf is used to model hourly solar 
irradiance [16], [30], while the hourly load is modeled by 
using a normal pdf [31]. 
A.  Modeling of Solar Irradiance  

To describe the probabilistic nature of solar irradiance, a 

Beta pdf is used for each time segment t, and it can be 
formulated as follows: 
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 where αt and βt are the parameters of Beta pdf at time segment 
t (shape parameters); Г is the gamma function. 

The Beta pdf parameters (αt, βt) can be computed by 
utilizing the mean (µt) and standard deviation (σt) of the 
random solar irradiance R at each time segment as follows: 
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The probability of solar irradiance for each state can be 
calculated as follows: 

( ) ( )
2
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S

S

R
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where ( )t
R sprob G  is the solar irradiance probability in state s; 

RS1 and RS2 are the solar irradiance limits of state s. 
Once the Beta pdf is generated for a specific time segment, 

the output power during the different states can be calculated 
for this segment as follows: 

s s s
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s scell avs SC i cellI R I K T= + −  (23) 

s scell OC v cellV V K T= −  (24) 
where VMPP, IMPP, VOC, ISC, Vcells, Icells, and N are the voltage at 
the maximum power point, current at the maximum power 
point, open-circuit voltage, short circuit current, cell voltage, 
cell current, and the number of PV modules, respectively. 
Tcells, TA, Ravs, NOT, Ki, and Kv are the cell temperature, ambient 
temperature, average solar irradiance, nominal operating 
temperature of the cell, current temperature coefficient, and 
voltage temperature coefficient, respectively.  
B.  Load Demand Modeling  

The future load demand of the distribution system is 
uncertain at any given time segment. Therefore, a normal pdf 
is utilized to model the distribution of the load demand [31], 
as follows: 
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The load demand probability of each state for each time 
segment t can be given as follows: 
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( )
2

1

( ) .
y

y

l

t t
l y n

l

prob G f l dl=   (26) 

where ( )t
l yprob G is the solar irradiance probability in state y; 

ly1 and ly2 are the load demand limits of state y. 
C.  Combined PV-load model 

To generate the model of combined PV-load, the modeling 
of the PV power and the load represented by (20) and (26) are 
used. In this study, the sates of solar irradiance and load are 
assumed to be independent. Hence, the combined probability 
of the solar irradiance and load can be determined by 
convolving the two probabilities, as given in the following: 

( ) ( ) ( )t t t
com g R s l yprob prob G prob G =   (27) 

Based on (27), the model of PV–load is determined by 
listing all possible combinations of the PV power and the load. 
Therefore, the complete PV–load model is computed by: 

( ) , : 1:g com g Sprob g N   = =
 

  (28) 

where ψ is the complete annual PV-load model; probcom(χ g) is 
a column that symbolizes the combined probability based on 
matrix χ.  

IV.  GRAVITATIONAL SEARCH ALGORITHM (GSA) 
The GSA is a newly heuristic optimization algorithm, and 

it has been proposed by Rashedi et al. [32]. In this algorithm, 
the search agents are a collection of objects (masses) which 
interact with each other. This interaction is based on the 
Newtonian gravity and the laws of motion. The main idea of 
GSA can be described as follows: 

If a system has N objects (masses) in a d-dimensional 
search space, the position of the ith object can be given by 

1 2, , , , , 1,2, ,d q
i i i i iX x x x x for i N = =   (29) 

where d
ix is the position of the ith object in the dth dimension; q 

defines the space dimension of the problem, i.e. the number of 
decision variables. 

After estimating the population fitness, the inertial mass of 
each object can be calculated as follows: 
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where fiti(t) is the fitness value of ith object at time instant t; 
best(t) is the best fitness value; worst(t) is the worst fitness 
value. For minimization problem, best(t) and worst(t) can be 
given as follows: 

 1, ,
( ) min ( )jj N
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

=  (32) 

 1, ,
( ) max ( )jj N
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Based on Newton gravitation, at time instant t, the 
gravitational force that acts on object i in dth dimension can be 
described as follows: 
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
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where G(t) is the gravitational constant at time instant t; Mi(t) 
and Mj(t) are the inertial mass of the objects i and j, 
respectively; ri is a random number in the interval [0, 1]; kbest 
is a linear function that decreases over time where its initial 
value is N (the minimum value is 1); ε is a small number that 
is equal 2-52; Sij(t) is the Euclidean distance between object i 
and j and can be given as follows: 

2
( ) ( ), ( )ij i jS t X t X t=  (35) 

 Based on the law of motion, the acceleration of the ith object 
in dth dimension at time t can be given by the following 
equation: 

( )
( )

( )

d
d i
i

i

F t
a t

M t
=  (36) 

Each iteration process, the velocity, and position of the 
particle can be updated according to the following: 

( 1) ( ) ( )d d d
i i i iv t rand v t a t+ =  +  (37) 

( 1) ( ) ( 1)d d d
i i ix t x t v t+ = + +  (38) 

where d
ix and d

iv are the position and velocity of the object at 
time t in dth dimension, respectively. In this work, only agents 
satisfying the constraints are retained for the next generation. 

It is important to mention that the gravitational constant 
G(t) has a great effect on the performance of GSA. G(t) is 
randomly initialized at the start and reduces overtime for 
controlling the search accuracy. G(t) is a function of its initial 
value (G0) and time (t) where G0 is decided arbitrarily. The 
gravitational constant can be computed as follows, 

0( ) exp - tG t G
tmax


 

=  
 

 (39) 

where α is a user-specified constant term; t is the current 
iteration; tmax is the maximum number of iterations. 

It is important to note that the main purpose of this work is 
to build an optimization model for the allocation problem. 
This optimization can be solved by any available optimization 
algorithm [33], [34]. We have selected GSA as it has high 
performance according to several previous publications, which 
means that it can find the global optimal solution in a fast way. 

V.  SOLUTION PROCESS  
The block diagram of the proposed approach is described 

generally in Fig. 1. As shown in the figure, optimal planning 
of the PV in the presence of PEVs has been considered as a 
two-layer optimization problem that is solved using GSA. 
Because of the complexity of the problem, the GSA is used in 
both layers and called optimizer 1 for the first layer and 
optimizer 2 for the second layer. To attain high accuracy and 
low computational time, the population size and number of 
iterations of optimizer 1 (30, 100) are chosen to be larger than 
those in optimizer 2 (25, 50). The main problem and sub-
problem are solved using optimizer 1 and optimizer 2, 
respectively. 
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In the first layer, where it is the main problem, the 
optimizer 1 should determine the locations and capacities of 
the PV for the planning period. To do so, the optimal charging 
/discharging power of the charging stations should be 
considered. The number of PEVs connected to the distribution 
system is a stochastic variable. Therefore, the optimal 
scheduling of PEVs is a probabilistic process in practice 
(second layer). The outputs of the second layer, as a sub-
problem for an optimal planning problem, are the probabilistic 
optimal charging/discharging power profiles.  

To calculate the value of the objective function for each 
state at time segment t, load flow analysis is used.  The 
solution process of this combinatorial problem is described in 
the following paragraph. 

Optimizer 1 which is used in the first layer suggests 
candidate locations and capacities of the PV. These locations 
and capacities are used in the second layer to calculate the 
daily energy losses and the daily optimal charging/ 
discharging power of the charging stations. It is important to 
note that the locations and capacities of the PV are kept fixed 
during the executing of optimizer 2. This procedure does not 
affect the searching for optimal locations and capacities of the 
PV, because the pdf of the PEVs will be used with each 
candidate location and capacity. As shown in Fig. 1, the 
planning problem contains an internal optimization problem as 
a sub-problem. Hence, in each iteration of optimizer 1, the 
internal optimization problem should be performed completely 
several times for several candidate locations and capacities of 
PV. In each iteration of optimizer 2, the load flow analysis 
should be performed several times to compute the optimal 
charging/discharging powers of the charging stations for each 
state at time segment t as well as the value of the 
corresponding objective function. The summation of the 
whole individual objective functions (at all states and time 
segments) is considered the objective function of the optimizer 
1 (annual energy losses). This process is repeated until 
optimizer 1 converges.    

VI.  RESULTS AND DISCUSSIONS  
The IEEE 33-bus distribution system has been selected to 

test the proposed approach as shown in Fig. 2. The line and 

bus data of that system are available in [35]. Four PEV 
charging stations are assumed to be connected at buses (18, 
21, 23, and 33) as shown in Fig. 2. Each charging station 
accommodates 60 PEVs. Based on the arrival time, the daily 
distribution of the PEVs at the charging stations follows Fig. 
3, and the initial SOC of each PEV is calculated based on (16).  

The PEVs of Tesla Model S with a battery capacity of 85 
kWh is used in this paper [36]. Each PEV is assumed to be 
parked at the charging station for 12 hours (from the arrival 
time till the next departure time). For each state, the PEV 
cannot discharge to the grid (vehicle-to-grid) if its SOC is less 
than 75%. To ensure that the SOC of the PEV battery at the 
departure time is high enough, the PEV discharges to the grid 
(vehicle-to-grid) considering the constraint given in (11). The 
maximum power rate of charging/discharging has been chosen 
to be 0.2 of the battery capacity (Cn=85 kW) [37]. The PV is 
assumed to be operated at unity power factor. To demonstrate 
the effectiveness of the proposed approach, it has been tested 
for one, two, and three locations of PV. Furthermore, the 
proposed approach has been performed with and without 
considering the TOU electricity tariff. The planning period 
considered in this paper is three years and it is represented by 
any day within this period (24 hours). The simulation results 
have been performed using MATLAB.  
A.  Optimal Locations and Capacities of PV without 
Considering TOU 

In this subsection, the proposed approach has been executed 
and compared with the base case and another approach 
without considering the electricity tariff. The base case and 
different approaches can be described as follow: 
Base case: this is the reference case in which there is no PVs 
are connected to the distribution system and the PEVs start to 
charge once they arrive at the charging station with the 
uncontrolled charging technique. 

First layer (for the main problem using optimizer 1 )
Control variables are the locations and capacities of PV 

Second layer (for sub-problem: 24-hour analysis in the 
presence of PEVs using optimizer 2  )

Control variables are the charging/discharging powers of charging stations 

 Load flow 
( Time resolution is 1 hour)

 Candidate location 
and capacity are 

determined

The annual energy 
losses is calculated
(objective function)

Probabilistic values 
are specified

 Energy losses of all 
states are 

determined 

Until optimizer 1 
converges 

Until optimizer 2 
converges 

 
Fig.  1.  The proposed approach for determining the locations and 
capacities of PV. 
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Fig.  2.  Single line diagram of the 33-bus distribution system. 
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Approach 1: in this approach, the optimal locations and 
capacities of the PV are determined without considering the 
effect of uncontrolled charging of PEVs.  
Approach 2: this is the proposed approach in which the 
optimal locations and capacities of the PV are determined with 
considering the effect of PEVs. The PEVs are considered to 
charge/discharge with the optimal charging/discharging 
technique.    

  The outcomes of the planning problem for the different 
approaches are shown in Table I, and Figs. 4, 5 and 6. The 
results demonstrate that in the case of Approach 1 and 
Approach 2, there is a significant reduction in the annual 
energy losses by connecting the PV to the distribution grid 
when compared to the reference case (Base case). However, 
the reduction of the annual energy losses for Approach 2 is 
higher than Approach 1. For instance, the reductions of annual 
energy losses in the case of Approach 2 are 38%, 43%, and 
46% for 1 PV, 2 PVs, and 3 PVs, respectively. While they are 
30%, 37%, and 41% in the case of Approach 1. Note that with 

increasing the number of PVs, the reduction of annual energy 
losses is increased.  

The improvement percentage of Approach 2 over 
Approach 1 is given in Fig. 7. From this figure, it can be noted 
that the improvement percentage depends on the number of 
PVs connected to the distribution system in which the 
improvement of Approach 2 decreases with increasing the 
number of PVs. The percentages of the improvement in the 
case of Approach 2 over Approach 1 are 11.46%, 10.07%, and 
9.36% for 1 PV, 2 PVs, and 3 PVs, respectively. 

The SOC of all PEVs at the charging stations with 
uncontrolled charging technique (in the case of Base case and 
Approach 1) are given in Fig. 8. To avoid results repetition, 
this figure is drawn one time because it is the same for 1 PV, 2 
PVs, and 3 PVs in the case of Approach 1. From this figure, it 
can be seen that the SOC of PEVs are reached to their full 
state in a short period even though they will remain in the 
charging station for 12 hours. Because of the high changing 
power, the system losses are increased. 

Fig. 9 shows the SOC of all PEVs at the charging stations 
with the optimal charging/discharging technique with different 

TABLE I 
RESULTS OF DIFFERENT APPROACHES WITH DIFFERENT NUMBERS OF PVS 

Number 
of PVs 

Applied 
approach 

Optimal 
location 

Optimal 
capacity 
(MW) 

Energy 
losses 

(MWh) 

Energy loss 
reduction 

(%) 
No PVs Base case - - 1793 0 

1 PV Approach 1 6 3.29 1259 30 
Approach 2 6 3.66 1116 38 

2 PVs 
Approach 1 6 2.41 1138 37 14 0.84 

Approach 2 6 2.41 1023 43 14 0.82 

3 PVs 

Approach 1 
6 1.48 

1062 41 14 0.85 
31 0.89 

Approach 2 
6 1.34 

963 46 14 0.97 
31 1.09 

 

 
Fig. 4.  Active power losses during the planning period (1 PV). 

 
Fig. 5.  Active power losses during the planning period (2 PVs). 

 
Fig. 6.  Active power losses during the planning period (3 PVs). 
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Fig. 7.  Annual energy improvement in the case of Approach 2 over 
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Fig. 8.  SOC of PEVs using the uncontrolled charging technique in the Base 
case and Approach 1. 
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numbers of connected PVs. The PEVs that arrive at the end of 
the previous day have been considered where they would 
continue charging at the beginning of the sample day. From 
the figure, we can note that the SOC of each PEV can 
increase/decrease based on its state (charging/discharging) to 
reduce the losses of the distribution system. Furthermore, the 
battery of each PEV at the departure time (after 12 hours from 
its connection to the grid) has sufficient SOC for driving (not 
less than 60% at departure time). These results demonstrate 
that the considering of PEVs with the optimal 
charging/discharging technique when determining the optimal 
location and capacity of the PVs can significantly decrease the 
energy losses of the distribution system. Regarding the SOC 
of PEVs at the other charging stations, they are similar to the 
charging station at bus 18 in the case of uncontrolled charging 
while they are different in the four charging stations in the 
case of controlled charging/discharging. In general, all PEVs 
will have SOC at the departure time as preset by the owner 

If the level of SOC at departure time is set to be 65% (e.g., 
in the case of 3 PVs), the annual energy losses will be 968 
MWh which is high compared to 963 MWh in the case of 60% 
(Table I). This rise in the annual energy losses is achieved by 
increasing the charging power to satisfy SOC level and so the 
available energy to be discharged is decreased. Fig. 10 shows 
the SOC of all PEVs at the charging stations considering 

minimum SOC at departure time is 65%. 
B.  Optimal Locations and Capacities of PV with Considering 
TOU 

In this subsection, four different cases have been performed 
using the proposed approach (considering of PEVs) with 
considering the effect of TOU for determining the optimal 
location and capacity of the PV as follows:  
Case 1: Optimal locations and capacities of the PV are 
determined with considering PEVs in the case of the 
uncontrolled charging technique. 
Case 2: Optimal locations and capacities of the PV are 
determined with considering PEVs in the case of the 
uncontrolled off-peak charging technique. i.e., the PEVs 
cannot charge during the peak period in which the electric 
price is high. The peak period is 16.00-22.00 h. 
Case 3: Optimal locations and capacities of the PV are 
determined with considering PEVs in the case of uncontrolled 
off-peak charging and uncontrolled on-peak discharging. 
Case 4: Optimal locations and capacities of the PV are 
determined with considering PEVs in the case of the optimal 
charging/discharging technique. In this case, during off-peak, 
maximum charging power is 0.2Cn power while the maximum 
discharging power is 60% of the maximum charging power. 
On the other hand, during the peak period, maximum 
discharging power is 0.2Cn while the maximum charging 
power is 60% of the maximum discharging power.  

Table II illustrates the results of the different cases. From 
this table, we can note that the PV locations are the same as 
those in subsection A, while the PV capacities are different. 
Compared with the reference case (Base case), the annual 
energy losses are significantly decreased in the four cases. 
Case 4 gives better energy losses reduction than the other 
cases, while Case 3 is the worst case in terms of energy losses 
reduction. The energy losses reduction in Case 4 are 39%, 
44%, and 48% for 1 PV, 2 PVs, and 3 PVs, respectively. 
However, they are 30%, 37%, and 41% for Case 1, 25%, 31%, 
and 35 % for Case 2, and 23%, 28%, and 32% for Case 3, 
respectively. By comparing Case 4 in Table II with Approach 
2 in Table I, we can note that the consideration of TOU gives 
a further reduction in annual energy losses.  

Figs. 11, 12, and 13 show the SOC of all PEVs at the 
charging stations for Case 2, Case 3, and Case 4 when 3 PVs 
are connected to the distribution system, respectively. The 
SOC of PEVs in Case 1 is the same as Fig. 8, while the SOC 
of PEVs for Case 2, Case 3, and Case 4 when 1 PV and 2 PVs 
are connected to the distributions system follow the same 

 
(a) 

 
(b)  

 
(c)  

Fig. 9.  SOC of PEVs using the optimal charging/discharging technique in 
the case of Approach 2. a) 1 PV, b) 2 PVs, and c) 3 PVs. 

 
Fig. 10.  SOC of PEVs using the optimal charging/discharging technique in 
the case of Approach 2 considering that the minimum SOC at departure 
time is 65% (3 PVs).  
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trend when 3 PVs are connected. 

C.  Optimal Locations and Capacities of PV for a larger 
distribution system 

Here, we study the impact of the charging/discharging 
schemes of PEVs on the allocation results of PV for a larger 
distribution system (69-bus system [30]). As illustrated for the 
small 33-bus distribution system, the PV locations with 
considering different charging/discharging schemes of PEVs 
are the same, but their capacities are different. However, this 
trend is not a general one for all distribution systems. To 
demonstrate this fact, we allocate 3 PV units to the larger test 
distribution system by considering uncontrolled and controlled 
PEVs. As shown in Table III, the optimal PV locations are 
buses 11, 17, and 64 for the case of uncontrolled PEVs, while 
different locations are obtained for the case of controlled 
PEVs (buses 11, 18, and 61). It is worth noting that controlled 
PEVs yields higher energy loss reduction compared to 
uncontrolled PEVs, thanks to the consideration of optimal 
charging/discharging of PEVs. 

VII.  CONCLUSIONS 
In this paper, an optimization-based algorithm has been 

proposed to accurately allocate multiple PV units with the 
presence of PEVs to minimize energy losses without violating 
the system constraints. The proposed optimization model also 
incorporates several operation constraints of PEVs. A 
metaheuristic method, i.e. GSA, has been developed to solve 
the two-layer optimization problem. The merit of the proposed 
algorithm is that it accurately allocates PV to minimize the 
objective function and optimize the PEV charging/discharging 
in a simultaneous manner. To demonstrate the effectiveness of 
the proposed algorithm, it has been compared with the existing 
approaches that ignore the effect of PEVs and TOU in the PV 

planning problem. Based on the calculated results, the 
following conclusions can be drawn: 

- The proposed approach which considers the 
uncertainty of PVs and stochastic nature of PEVs is 
an effective way to accurately allocate PV units while 
maximizing their benefits to distribution systems. 

- The charging scheme of PEVs can greatly affect the 
allocation results of PV (optimal locations and sizes), 
especially for large distribution systems. 

- The benefits of the proposed approach for large-scale 
single PV units are higher than those of lower-scale 
distributed PV units. 

TABLE II 
RESULTS OF DIFFERENT CASES OF THE PROPOSED APPROACH WITH 

CONSIDERING TOU 

Number 
of PVs 

Applied 
Case  

Optimal 
location 

Optimal 
capacity 
(MW) 

Energy 
losses 

(MWh) 

Energy loss 
reduction 

(%) 

1 PV 
 

Case 1 6 3.59 1253 30 
Case 2 6 3.48 1347 25 
Case 3 6 3.43 1389 23 
Case 4 6 3.42 1096 39 

2 PVs 

Case 1 6 2.58 1132 37 14 0.95 

Case 2 6 2.51 1242 31 14 0.91 

Case 3 6 2.49 1291 28 14 0.89 

Case 4 6 2.36 1005 44 
14 0.99 

3 PVs 

Case 1 
6 1.54 

1055 41 14 0.95 
31 0.99 

Case 2 
6 1.54 

1174 35 14 0.91 
31 0.95 

Case 3 
6 1.51 

1227 32 14 0.89 
31 0.94 

Case 4 
6 1.53 

937 48 14 0.96 
31 0.90 

 

 

 
Fig. 11.  SOC of PEVs using the off-peak uncontrolled charging 
technique for Case 2 (3 PVs). 

 
Fig. 12.  SOC of PEVs using the off-peak uncontrolled charging and on-
peak uncontrolled discharging technique for Case 3 (3 PVs). 

 
Fig. 13.  SOC of PEVs using the optimal charging/discharging technique 
and considering TOU for Case 4 (3 PVs). 

 
TABLE III 

RESULTS OF 69-BUS DISTRIBUTION SYSTEM CONSIDERING CONTROLLED 
AND UNCONTROLLED PEVS  

Number 
of PVs 

Applied 
approach 

Optimal 
location 

Optimal 
capacity 
(MW) 

Energy 
losses 

(MWh) 

Energy loss 
reduction 

(%) 
No PVs Base case - - 1812 - 

3 PVs 

Uncontrolled 
PEVs 

11 0.88 
1058 42 18 0.45 

64 1.93 

Controlled 
PEVs 

11 0.83 
895 51 17 0.50 

61 2.31 
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The practical significance of the results is even more 
prevalent in the context where distribution system operators 
receive financial remuneration (as part of the system usage 
tariff) for the estimated losses on their networks. In such 
regulatory setups, the optimized PV sizes/locations and PEV 
schedules can be used for benchmarking the losses occurring 
at actual PV and PEV penetration situations. Such 
investigations can help in assessing whether an actual situation 
is beneficial or causing additional costs for the operators. In 
the future work, various DER types and other energy storage 
devices will be incorporated in the optimization model. In 
addition, the proposed method will be expanded to consider 
the demand growth, DER prices, and other technical 
objectives. 
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