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Abstract

For three-dimensional cellular plate-like structures with a triangular (ex-
truded lattice) microarchitecture, the article develops a pair of two-scale plate
models relying on the anisotropic form of Mindlin’s strain gradient thermoe-
lasticity theory. Accordingly, a computational homogenization method is
proposed for determining the constitutive parameters of the related higher-
order constitutive tensors. First, a Reissner–Mindlin plate model is derived
by dimension reduction from a general framework of three-dimensional or-
thotropic strain gradient thermoelasticity and written as a variational for-
mulation. An isogeometric conforming Galerkin method is formulated ac-
cordingly. Second, the plate model is modified in order to reduce the num-
ber of the constitutive strain gradient parameters. These steps are then
repeated by following the kinematical assumptions of the Kirchhoff plate the-
ory. Third, in order to see the cellular microarchitecture as a homogeneous
three-dimensional material with classical modulae of transversal isotropy,
classical computational homogenization is accomplished for determining the
corresponding material parameters. Fourth, in order to see the cellular struc-
tures as two-dimensional plates, a non-classical homogenization procedure is
proposed for the identification of the strain gradient modulae of the plate
models. Finally, a set of numerical examples illustrates the reliability and
efficiency of the resulting plate models in homogenizing cellular plate-like
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structures into strain gradient plate models capturing the bending size ef-
fects induced by the microarchitecture.

Keywords: Cellular plates, Lattice microarchitecture, Strain gradient
thermoelasticity, Reissner–Mindlin plate, Kirchhoff plate, Size effects,
Isogeometric analysis

1. Introduction

From the days of the industrial revolution, the ability to design, engineer
and manufacture a desired material microstructure has been a key to the
development of new materials and enhanced, or even extraordinary, material
properties. The sprouts of today’s physics, materials science and engineer-
ing manifest that the material substance of the future solids and structures
will be fundamentally more diverse and versatile than that of the current
counterparts. Cellular or lattice metamaterials, specifically, from nano- and
micro-scales onwards [1, 2, 3, 4, 5, 6] and often inspired by nature [7], have
become an extremely promising class of lightweight, functional metamateri-
als [8, 9, 10, 11]. This has primarily followed from the rapid development of
additive manufacturing technologies for different parent materials and across
the scales [1, 6, 9]. The extreme fundamental properties of lattice archi-
tectures have increased the attractiveness of this class of metamaterials as
well. Indeed, high and adjustable stiffness-to-weight, strength-to-weight and
surface-to-volume ratios as well as high ductility [12, 8, 9, 11] and band
gaps in wave propagation [13, 14, 15, 16] make different kinds of lattices apt
for a variety of applications in machines, vehicles, buildings or bioproducts,
e.g., in the form of lightweight parts, dampers, absorbers, insulators, heat
exchangers and filters [12, 17, 8, 9, 11]. The large variety of applications
stems from the diversity and versatility of different lattice types provide for
the architected material heterogeneity, typically categorized in the following
ways [12, 8, 9, 11]: open-cell (truss) or closed-cell (web/plate/shell) lattices;
periodic (topology, shape and size fixed), pseudoperiodic (fixed topology
but different shapes and sizes), disordered or randomized lattices (differ-
ent topologies, shapes and cell sizes); homogeneous or heterogeneous lattices
(constant or varying/gradual strut/shell thickness); nonhierarchical or hier-
archical (possibly fractal) lattices.

Modeling the physics and mechanics of solids and structures with lat-
tice microarchitecture is neither trivial nor computationally cheap for sev-
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eral reasons. Even for the most fundamental case of modelling one single
lattice cell, i.e., a representative volume element (RVE) basically serving
periodic lattices, there are several hindrances [18, 12]: a large number of
nodes or intersection domains connecting structural members (struts or cell
walls); bar/beam or plate/shell models are inaccurate for relative lattice den-
sities greater than one percent [4]; most of the theoretical results [3] are not
valid for higher relative lattice densities [4]; parent material size effects (at
nano-scale, in particular) [19, 20]; parent material microstructure and im-
perfections resulting from manufacturing processes [21, 22, 23]. For microar-
chitecture solids and structures with graduality or hierarchy, there are many
additional obstacles: full-field 3D solid models, even for node/intersection
modeling alone [24], are extremely costly; bar/beam or plate/shell models
are computationally costly at least in 3D [25]; complex spatial configurations
lead to favoring the simplest cases of analysis. The simplest cases mean
the following: 2D configurations and periodic lattices [26, 17]; truss lattices
with simple structural models (bars or beams) [27]; standard (computational)
continuum homogenization for RVEs [28]. Designing extraordinary metama-
terial properties, in particular, might require peculiar topologies and hence
either detailed and extremely costly full-field models or multi-scale contin-
uum models. With respect to this direction, the following obstacles can be
recognized: size effects [25, 29, 30, 31, 32] or band gaps [13, 14, 16, 33, 10]
are not captured by the standard Cauchy continuum; extraordinary meta-
material properties might be ruled by internal or boundary layers of higher
strain gradients [34, 35, 36]; size effects dominate thin structures having a
microarchitecture (thickness comparable to cell size) [31, 25, 29].

This article focuses on the theoretical and numerical physico-mathematical
modeling of thin and thick plate structures composed of a cellular microar-
chitecture metamaterial. The thermomechanical modelling of this type of
microarchitectural structures is accomplished in the framework of orthotropic
strain gradient thermoelasticity. More precisely, a plane triangular regular
lattice is extruded in the third spatial coordinate direction in order to form
a cellular metamaterial. Transversally isotropic plate structures with differ-
ent thicknesses are made of this metamaterial in the following manner of
transversal stacking, uniaxial repetition and extrusion: when viewing from
the extrusion direction, the lateral face of the plate looks like a triangular
truss (for the thickness of one single triangular cell) or a stack of triangular
trusses (for the thicknesses of more than two triangular cells), see Fig. 6.2.
In particular, our focus is on the modeling of the size effects of thermal and
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mechanical bending – with size effects, we refer to the number of cells in the
thickness direction. In essence, it is shown that with anisotropic generalized
plate models of the Kirchhoff and Reissner–Mindlin types – dimensionally
reduced from a three-dimensional orthotropic Mindlin type strain gradient
solid [37] – the size-dependent mechanical bending of thin and thick plates is
captured in a theoretically novel and computationally efficient way. Mechan-
ical and thermal bending of plane beams with the triangular microarchitec-
ture has been recently studied in [25, 29]. In general, it should be pointed
out that different microarchitectures or structural deformation states can-
not be captured with one single generalized continuum description: in the
chosen triangular microarchitecture in structural bending, internal rotational
degrees of freedom are inactive (the cellular web is in a stretching-dominated
deformation state) opposite to modeling granular materials, for instance, for
which Cosserat-type continua seem to be a proper choice [38, 39].

Literature on homogenization towards generalized continua is still quite
limited: there exist contributions for general principles [40, 41, 42], for the
Cosserat continuum [43, 44], for micromorphic media [45, 46, 47, 48], and
for higher gradient continua [49, 50, 51, 31, 25, 14]. Most importantly, only
a few works on strain gradient continuum mechanics proposes generalized
homogenization methods [49, 51, 25, 14, 52, 53] for determining the consti-
tutive parameters of the higher-order constitutive tensor pairing the strain
gradients and their dual variables, the double forces. Literature on gen-
eralized continua in general is already vast, especially for the derivations,
formulations and parameters studies on thin structures and plane problems
(see [44, 54, 55, 56, 57, 58, 59, 60, 61, 62] and [63, 64, 65, 31, 66], respectively,
and the references therein). For modeling microarchitectures by generalized
continuum models, literature is more limited [67, 68, 35, 36, 25, 29, 14] –
especially for modelling anisotropic microarchitectures requiring richer con-
stitutive laws than the limited ones of gradient elasticity with separable
weak non-locality [69, 70, 71] (having origins in the works of Aifantis and
co-workers [72, 73, 74] considering one single length scale parameter).

The present work proposes a computational homogenization method for
determining the required set of non-classical material parameters of the
higher-order constitutive tensor (acting on the gradients of the curvature
tensor and shear vector) by generalizing the method proposed in [25] for
uniaxial beam bending. The approach relies on matching the global re-
sponses of full-field simulations with the corresponding ones of the chosen
generalized plate model for a representative family of simple test problems.
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The material parameters of the classical elasticity tensor are determined by
the techniques of classical computational homogenization [75] and then re-
duced to the plane stress counterparts of the plate model (acting on the
curvature tensor and shear vector). For the generalized plate models – de-
rived here for the first time for orthotropic thermoelasticity – isogeometric
conforming Galerkin methods are utilized (cf. [63, 58, 64, 59, 60, 61, 62]),
while the computational model validation is based on full-field finite element
analysis with standard solid elements. The core novelties of the work can
be listed as follows: (i) a formulation of a Mindlin-type orthotropic three-
dimensional strain gradient thermoelasticity theory; (ii) the corresponding
Kirchhoff and Reissner–Mindlin plate models and their constitutively reduced
versions (with four higher-order material parameters); (iii) a computational
homogenization method for determining the higher-order constitutive param-
eters; (iv) demonstrations for the reliability and efficiency of the computa-
tionally light generalized plate models and isogeometric Galerkin methods in
capturing the bending size effects induced by the microarchitecture of cellular
plate-like structures.

The rest of the article is organized as follows: Section 2 formulates the
orthotropic strain gradient thermoelasticity theory. Sections 3 and 4 derive
the corresponding plate models with variational formulations and conform-
ing Galerkin formulations. Section 5 focuses on the classical computational
homogenization, whereas Section 6 introduces the homogenization procedure
for determining the higher-order elastic modulae. Section 7 consists of exam-
ples considering both mechanical and thermal bending. Some of the mathe-
matical and numerical details are reported in the Appendices.

2. Orthotropic strain gradient thermoelasticity

By following the principle of virtual work (PVW) δWint = δWext, the
variation of the internal, or strain, energy stored in a second grade solid can
be written as [37]

δWint =

∫

B

(σijδεij + µijkδηijk)dB, i, j, k = 1, 2, 3 (2.1)

where B is a volume occupying the solid in a three-dimensional (3D) space,
σij and εij denote, respectively, the components of the Cauchy stress and
strain tensors, whereas µijk and ηijk stand, accordingly, for the components
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of the double stress and strain gradient tensors. The strain tensor being the
symmetric part of the displacement gradient and the strain gradient tensor
can be formally expressed in the following component form:

εij = (uj,i + ui,j)/2, ηijk = εij,k = (uj,ik + ui,jk)/2. (2.2)

For centrosymmetric second grade thermoelastic materials, constitutive
equations are written in the form of the classical and generalized [29] Duhamel–
Neumann laws

σij = Cijkl(εkl − εθkl), (2.3)

µijk = Aijklmn(ηlmn − ηθlmn), (2.4)

where Cijkl and Aijklmn stand, respectively, for the components of fourth
and sixth rank stiffness tensors (see [76] for symmetry conditions). The
expressions in parentheses in (2.3) and (2.4) denote the elastic parts of strains
and strain gradients, accordingly, while εθij and ηθijk stand, respectively, for the
components of the classical thermal eigenstrain tensor and its higher-order
counterpart. By explicitly writing the components of the classical thermal
eigenstrain and recalling the second expression in (2.2), the higher-order
thermal counterpart takes the form

εθij = θαij, ηθijk = εθij,k = (θαij),k, (2.5)

where αij are thermal expansion coefficients and θ denotes the tempera-
ture change. The constitutive equations (2.3) and (2.4), respectively, can be
rewritten in the form

σij = Cijkl(εkl − θαkl), µijk = Aijklmn(εlm − θαlm),n, (2.6)

where it is explicitly seen that the elastic part of the higher-order state vari-
able is nothing but the gradient of the classical elastic strains. This is compat-
ible with a situation where constant or linear temperature changes produce
zero stresses (both Cauchy and double) in a body made of a homogeneous
material and experiencing zero loadings.

By utilizing the Voigt notation, the constitutive equation (2.3) for or-
thotropic materials can be represented as

[
σ1

σ2

]
=

[
Ĉ1 0

0 Ĉ2

] [
ε1 − εθ
ε2 − 0

]
, (2.7)
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where different stress and strain vectors and constitutive matrices are defined
as

σ1 =




σxx
σyy
σzz
σxy


 , σ

2 =

[
σyz
σxz

]
, ε1 =




εxx
εyy
εzz
γxy


 , ε

θ = θ




αxx
αyy
αzz
0


 , ε

2 =

[
γyz
γxz

]
, (2.8)

Ĉ1 =




Ĉ11 Ĉ12 Ĉ13 0

Ĉ12 Ĉ22 Ĉ23 0

Ĉ13 Ĉ23 Ĉ33 0

0 0 0 Ĉ66


 , Ĉ2 =

[
Ĉ44 0

0 Ĉ55

]
. (2.9)

For orthotropic materials which are described by nine (9) independent clas-
sical elastic moduli with units of force per area, it is convenient to split the
constitutive relation (2.3) into two parts such that shear stresses with respect
to z-coordinate are separated.

Within second grade elasticity, the higher-order stiffness tensor of or-
thotropic solids brings fifty one (51) additional elastic moduli. For the con-
stitutive law (2.4) corresponding to double stresses, we utilize the analogue
of the Voigt notation proposed in [77] and extend it towards thermoelasticity
as




µ1

µ2

µ3

µ4


 =




Â1 0 0 0

0 Â2 0 0

0 0 Â3 0

0 0 0 Â4







η1 − η1
θ

η2 − η2
θ

η3 − η3
θ

η4 − 0


 , (2.10)

where the matrix of the higher-order moduli is block-diagonal. In this case,
the constitutive equation is split into four parts in which the double stress
conponents are combined as follows:

µ1 =




µxxx
µyyx
µxyy
µzzx
µxzz



, µ2 =




µyyy
µxxy
µxyx
µzzy
µyzz



, µ3 =




µzzz
µxxz
µxzx
µyyz
µyzy



, µ4 =



µxyz
µxzy
µyzx


 . (2.11)
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The corresponding components of the strain gradient tensor are collected as

η1 =




εxx,x
εyy,x
εxy,y
εzz,x
εxz,z



, η2 =




εyy,y
εxx,y
εxy,x
εzz,y
εyz,z



, η3 =




εzz,z
εxx,z
εxz,x
εyy,z
εyz,y



, η4 =



εxy,z
εxz,y
εyz,x


 . (2.12)

The components of higher-order temperature strain tensor, or the gradient
of the temperature strain tensor, are collected in the form

η1
θ =




(θαxx),x
(θαyy),x

0
(θαzz),x

0



, η2

θ =




(θαyy),y
(θαxx),y

0
(θαzz),y

0



, η3

θ =




(θαzz),z
(θαxx),z

0
(θαyy),z

0



. (2.13)

The symmetric submatrices of the higher-order elastic moduli,

Âi =




âi11 âi12 âi13 âi14 âi15

âi22 âi23 âi24 âi25

âi33 âi34 âi35

âi44 âi45

âi55



, Â4 =



â4

11 â4
12 â4

13

â4
22 â4

23

â4
33


 , (2.14)

contain, respectively, fifteen (15), for each i = 1, 2, 3, and six (6) independent
elastic moduli with units of force.

3. Thermoelastic strain gradient Reissner–Mindlin plate model

This section starts with a derivation for a dimensionally reduced Reissner–
Mindlin plate model within the theory of the previous section, followed by
the corresponding variational formulation and its discretization. Finally, the
plate model is further reduced by proposing a set of constitutive assumptions
(with a discussion on the propriety of these assumptions).

3.1. Dimension reduction

A plate structure is assumed to occupy a three-dimensional domain

B = Ω× (− t
2
,
t

2
), (3.1)
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where Ω ⊂ R2 denotes the midsurface of the plate and t stands for the
thickness of the plate in the z-direction. For simplicity, the thickness is
assumed to be constant. By adopting the classical kinematical Reissner–
Mindlin assumptions, the components of the displacement field appear in
the form

ux = −zβx(x, y), uy = −zβy(x, y), uz = w(x, y), (3.2)

where w : Ω → R and β = (βx, βy) : Ω → R2, representing the transverse
deflection of the midsurface and the rotation vector, respectively, with βx
and βy being, accordingly, rotations around the y- and x-axes, serve as the
independent unknowns of the problem, as in the classical elasticity theory
for Reissner–Mindlin plates.

By applying the plane stress assumption σzz = 0 and by utilizing the
kinematical relations (2.2) and (3.2), the constitutive equations (2.7) take
the standard form of the Reissner–Mindlin plate model:

[
σ1

σ2

]
=

[
C1 0
0 C2

] [
−zk − εθ
γ − 0

]
, (3.3)

where

σ1 =



σxx
σyy
σxy


 , C1 =



C11 C12 0
C12 C22 0
0 0 C66


 , k =




βx,x
βy,y

βx,y + βy,x


 , (3.4)

σ2 =

[
σyz
σxz

]
, C2 =

[
C44 0
0 C55

]
, γ =

[
w,y − βy
w,x − βx

]
, εθ = θ



αxx
αyy
0


 . (3.5)

It should be noted that C1 now corresponds to a plane stress state and C2

includes the so-called shear correction factor, as detailed in Appendix A.
For double stresses, we adopt assumptions µzzx = µzzy = µzzz = µxzz =

µyzz = 0 which, with the kinematical relations (2.2) and (3.2), lead to the
following representation of the constitutive equations (2.10):




µ1

µ2

µ3

µ4


 =




A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4







−zk1 − η1
θ

−zk2 − η2
θ

k3 − η3
θ

k4 − 0


 , (3.6)
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where the active double stresses are listed as

µ1 =



µxxx
µyyx
µxyy


 , µ2 =



µyyy
µxxy
µxyx


 , µ3 =




µxxz
µxzx
µyyz
µyzy


 , µ4 =



µxyz
µxzy
µyzx


 . (3.7)

The corresponding strain gradient components are written in the form

k1 =




βx,xx
βy,xy

βx,yy + βy,xy


 , k2 =




βy,yy
βx,xy

βx,xy + βy,xx


 , (3.8)

k3 =




−βx,x
w,xx − βx,x

−βy,y
w,yy − βy,y


 , k4 =



−(βx,y + βy,x)
w,xy − βx,y
w,xy − βy,x


 . (3.9)

The higher-order temperature strains are redefined as

η1
θ =




(θαxx),x
(θαyy),x

0


 , η2

θ =




(θαyy),y
(θαxx),y

0


 , η3

θ =




(θαxx),x
0

(θαyy),z
0


 . (3.10)

The submatrices of the higher-order elastic moduli take the form

Ai =



ai11 ai12 ai13

ai22 ai23

ai33


 , A3 =




a3
11 a3

12 a3
13 a3

14

a3
22 a3

23 a3
24

a3
33 a3

34

a3
44


 , (3.11)

where i = 1, 2, 4. It should be noted that A1, A2 and A3 now correspond to
the plane stress state, whereas A3 and A4 include the so-called shear correc-
tion factor by an analogy to the classical model. For details, see Appendix B.

It is worth noting that in the Reissner–Mindlin model of plates made of
orthotropic materials which originally are described by fifty one (51) higher-
order moduli the number of active higher-order elastic constants is decreased
to twenty eight (28).
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3.2. Variational formulation

The variational, or weak, form based on PVW can be formulated as
follows:
Find (w,β) ∈ W × V such that

a(w,β; ŵ, β̂) = l(ŵ, β̂) ∀(ŵ, β̂) ∈ Ŵ × V̂ , (3.12)

where the bilinear form a: (W × V) × (Ŵ × V̂) → R, with a(w,β; ŵ, β̂) =
ac(w,β; ŵ, β̂) + ag(w,β; ŵ, β̂), and the load functional l: Ŵ × V̂ → R,
respectively, are defined as

ac(w,β; ŵ, β̂) =

∫

Ω

(
kTD1k̂ + γTD2γ̂

)
dΩ, (3.13)

ag(w,β; ŵ, β̂) =
4∑

i=1

∫

Ω

(ki)TRik̂
i
dΩ, (3.14)

l(ŵ, β̂) =

∫

Ω

(
fŵ +mT β̂

)
dΩ +

∫

ΓN1

Q1ŵdS

+

∫

ΓN2

Q2ŵ,ndS +

∫

ΓN3

MT
1 β̂dS +

∫

ΓN4

MT
2 β̂,ndS

+

∫

Ω

σTθ k̂dΩ +
3∑

i=1

∫

Ω

(µiθ)
T k̂

i
dΩ, (3.15)

where ∂ΩN = ΓN1 ∪ ΓN2 ∪ ΓN3 ∪ ΓN4 denotes the Neumann part of the
boundary of the problem domain. The trial function spaces are defined as

W = {v ∈ H2(Ω) | v|ΓD1
= w1, v,n|ΓD2

= w2}, (3.16)

V = {η ∈ [H2(Ω)]2 | η|ΓD3
= η1, η,n|ΓD4

= η2}, (3.17)

with given Dirichlet data w1, w2, η1, η2 and with ∂ΩD = ΓD1∪ΓD2∪ΓD3∪ΓD4

denoting the Dirichlet part of the boundary, whereas test function spaces Ŵ
and V̂ consist of H2 functions satisfying the corresponding homogeneous
Dirichlet boundary conditions. It should be noted that all possible wedge
forces are omitted (cf. [37, 57]) assuming smooth boundaries.
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The bending rigidity matrices introduced in the bilinear forms (3.13)
and (3.14) are defined as

{D1,R1,R2} =

t/2∫

−t/2

z2{C1,A1,A2}dz,

{D2,R3,R4} =

t/2∫

−t/2

{C2,A3,A4}dz. (3.18)

The temperature stress resultants involved in load functional (3.15) are de-
fined as follows (i = 1, 2):

µiθ = −
t/2∫

−t/2

zAiηiθdz, µ3
θ =

t/2∫

−t/2

A3η3
θdz, σθ = −

t/2∫

−t/2

zC1εθdz. (3.19)

It is worth noting that load functional (3.15), being practically the vari-
ation of the work done by the external forces (δWext) in PVW, is composed
in a suitable form for fulfilling the PVW equality. In this way, f acts as
a distributed bending force, m stands for a vector of distributed bending
moments, Q1 and M 1 are, respectively, the ordinary external transverse
bending force and the vector of bending moments, Q2 and M 2 denote the
higher-order external loads.

3.3. Conforming isogeometric Galerkin method

A discrete counterpart of problem (3.12) for finding approximate numer-
ical solutions reads as follows:
Find (wh,βh) ∈ Wh × Vh ⊂ W × V such that

a(wh,βh; ŵ, β̂) = l(ŵ, β̂) ∀(ŵ, β̂) ∈ Ŵh × V̂h ⊂ Ŵ × V̂ . (3.20)

In isogeometric analysis (IGA), for an isogeometric tensor product dis-
cretization of a 2D solution domain, first, a geometrical mapping between the
2D parameter space [0, 1]2 and the plane domain Ω is defined by x : [0, 1]2 →
Ω as

x(ξ, η) =

nξ∑

i=1

mη∑

j=1

Rp,q
i,j (ξ, η)X i,j. (3.21)
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Above, X i,j, i = 1, ..., nξ, j = 1, ...,mη, denote the control point (CP) coor-
dinates, while the NURBS basis functions are defined as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)ωi,j∑n
î=1

∑m
ĵ=1 Nî,p(ξ)Mĵ,q(η)ωî,ĵ

, (3.22)

with ξ and η denoting the coordinates of the parameter space. The B-spline
basis functions Ni,p and Mj,q of order p and q, respectively, associated to
the open knot vectors Ξ = {0 = ξ1, ξ2, ..., ξnξ+p+1 = 1} and H = {0 =
η1, η2, ..., ηmη+q+1 = 1}, respectively, are defined as follows [78]:

Ni,0(ξ) =

{
1, ξi ≤ ξ < ξi+1,
0, otherwise

(3.23)

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (3.24)

The corresponding isoparametric discrete space for the approximation of,
respectively, the deflection and rotation vector fields

wh(ξ, η) =

nξ∑

i=1

mη∑

j=1

Rp,q
i,j (ξ, η)Wi,j, βh(ξ, η) =

nξ∑

i=1

mη∑

j=1

Rp,q
i,j (ξ, η)Bi,j (3.25)

is defined such that wh ∈ Sh and βh ∈ [Sh]
2 with unknown control variables

Wi,j and Bi,j, where Sh = {Rp,q
i,j ◦ x−1}.

The tensor product mesh of the isogeometric NURBS discretization of
the plane surface is defined as (see [63, 64, 58])

Th = {K = x([ξ̂i, ξ̂i+1]× [η̂j, η̂j+1]) | 1 ≤ i ≤ np − 1, 1 ≤ j ≤ nq − 1},

where Ξ̂ = {0 = ξ̂1, ..., ξ̂np = 1} and Ĥ = {0 = η̂1, ..., η̂nq = 1} are the
modified knot vectors containing the non-repeated knot values of Ξ and H,
respectively, with np and nq denoting the number of knots without repetition
in the respective directions. The mesh size h = maxK∈ThhK serves as the
mesh index, as usual, with hK = diam(K).

By assuming global regularity Cr−1 (r = min(p, q)) over Th, with r ≥ 2,
it holds that Sh ⊂ H2(Ω), which provides the conformity and consistency of
the discrete formulation of (3.20) with Wh = Sh ∩ W , Ŵh = Sh ∩ Ŵ , and
Vh = [Sh]

2 ∩ V , V̂h = [Sh]
2 ∩ V̂ .
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It is worth noting that the Galerkin methods for the Reissner–Mindlin
plate problem formulated in (3.12) suffer from the numerical shear locking
effect for small values of thickness (see details in [79, 60]). Nevertheless, in
the current work, the numerical shear locking effect is suppressed by adopting
higher-order NURBS functions.

3.4. Constitutively reduced thermoelastic Reissner–Mindlin plate model

In practical applications, at least in static regimes, we assume that in-
plane gradients of strains can be neglected, i.e., k1 = k2 = 0 and γxz,x =
γxz,y = γyz,x = γyz,y = 0. In particular, dropping these terms reduces the
differential order of the problem and the higher-order boundary conditions,
accordingly. The validity of such assumptions has been approved in [25, 29]
and will be demonstrated in the present work as well. It has been shown as
well (see [63, 64, 58, 31, 60, 62]) that the higher-order terms are responsible
for boundary layer effects arising in case of non-classical boundary conditions
which are not in the scope of this work. Thus, the reduced constitutive law
for the double stresses takes the form

µR = AR(kR − ηRθ ), (3.26)

µR =



µxxz
µyyz
µxyz


 , AR =



a3

11 a3
13 0
a3

33 0
a4

11


 , ηRθ =




(θαxx),z
(θαyy),z

0


 , kR = −k.

(3.27)

It is important to emphasize that the reduced stiffness matrix AR is composed
of four independent higher-order elastic moduli, coming from submatrices A3

and A4, which are responsible for size dependency arising in plate bending.
The variational, or weak, formulation of the reduced Reissner–Mindlin

plate problem reads as follows: find (w,β) ∈ W × V such that

a(w,β; ŵ, β̂) = l(ŵ, β̂) ∀(ŵ, β̂) ∈ Ŵ × V̂ , (3.28)

where the bilinear form a: (W×V)× (Ŵ × V̂)→ R and the load functional
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l: Ŵ × V̂ → R, respectively, are defined as

a(w,β; ŵ, β̂) =

∫

Ω

(
kT (D1 +R)k̂ + γTD2γ̂

)
dΩ, (3.29)

l(ŵ, β̂) =

∫

Ω

(
fŵ +mT β̂

)
dΩ +

∫

ΓN1

Q1ŵdS +

∫

ΓN2

MT
1 β̂dS

+

∫

Ω

σTθ k̂dΩ−
∫

Ω

(µRθ )T k̂dΩ, (3.30)

where

R =

t/2∫

−t/2

ARdz, µRθ =

t/2∫

−t/2

ARηRθ dz. (3.31)

The Neumann part of the boundary is defined as ∂ΩN = ΓN1 ∪ ΓN2 .
The trial function spaces are defined as

W = {v ∈ H1(Ω) | v|ΓD1
= w1}, (3.32)

V = {η ∈ [H1(Ω)]2 | η|ΓD2
= η1}, (3.33)

with given Dirichlet data w1, η1 and with ∂ΩD = ΓD1 ∪ ΓD2 denoting the
Dirichlet part of the boundary, whereas test function spaces Ŵ and V̂ consist
of H1 functions satisfying the corresponding homogeneous Dirichlet bound-
ary conditions.

A conforming Galerkin formulation of the reduced Reissner–Mindlin plate
problem (3.34) reads as follows: find (wh,βh) ∈ Wh × Vh ⊂ W × V such
that

a(wh,βh; ŵ, β̂) = l(ŵ, β̂) ∀(ŵ, β̂) ∈ Ŵh × V̂h ⊂ Ŵ × V̂ . (3.34)

By assuming global regularity Cr−1 (r = min(p, q)) over Th, with r ≥ 1, it
holds that Sh ⊂ H1(Ω), which provides the conformity and consistency of
the discrete formulation of (3.34).

It should be noted that the mechanical terms of the loading functional
in formulation (3.28) for the constitutively reduced thermoelastic Reissner–
Mindlin plate model are the same as within the classical plate model. This
leads to a strong formulation which is formally identical to its classical coun-
terpart (see Appendix C for a simple example).

15



4. Thermoelastic strain gradient Kirchhoff plate model

This section starts with a derivation for a dimensionally reduced Kirchhoff
plate model within the theory of Section 2, followed by the corresponding
variational formulation and its discretization. Finally, the plate model is
further reduced by proposing a set of constitutive assumptions.

4.1. Dimension reduction

By adopting the classical kinematical assumptions of the Kirchhoff plate
model, the components of the displacement field take the form

ux = −zw,x(x, y), uy = −zw,y(x, y), uz = w(x, y), (4.1)

where w : Ω → R representing the transverse deflection of the midsurface
serves as the only independent unknown of the problem, as in the classical
elasticity theory for Kirchhoff plates.

By applying plane stress assumptions σzz = σxz = σyz = 0 and by utiliz-
ing the kinematical relations (2.2) and (4.1), the constitutive equations (2.7)
take the standard form of the Kirchhoff plate model:

σ1 = C1(−zk − εθ), (4.2)

where

σ1 =



σxx
σyy
σxy


 , C1 =



C11 C12 0
C12 C22 0
0 0 C66


 , k =



w,xx
w,yy
2w,xy


 , εθ = θ



αxx
αyy
0


 . (4.3)

As for the Reissner–Mindlin plate model in Section 3, C1 corresponds to the
plane stress state.

For double stresses, by utilizing the kinematical relations (2.2) and (4.1)
and by adopting the same assumptions as in Section 3, i.e., µzzx = µzzy =
µzzz = µxzz = µyzz = 0, the constitutive relations (2.10) acting in the energy
take the form




µ1

µ2

µ3

µ4


 =




A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4







−zk1 − η1
θ

−zk2 − η2
θ

−k3 − η3
θ

−k4 − 0


 , (4.4)
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where

µ1 =



µxxx
µyyx
µxyy


 , µ2 =



µyyy
µxxy
µxyx


 , µ3 =

[
µxxz
µyyz

]
, µ4 =

[
µxyz

]
, (4.5)

k1 =



w,xxx
w,xyy
2w,xyy


 , k2 =



w,yyy
w,xxy
2w,xxy


 , k3 =

[
w,xx
w,yy

]
, k4 =

[
2w,xy

]
, (4.6)

η1
θ =




(θαxx),x
(θαyy),x

0


 , η2

θ =




(θαyy),y
(θαxx),y

0


 , η3

θ =

[
(θαxx),z
(θαyy),z

]
. (4.7)

The submatrices of higher-order elastic moduli appear for i = 1, 2 in the form

Ai =



ai11 ai12 ai13

ai22 ai23

ai33


 , A3 =

[
a3

11 a3
13

a3
33

]
, A4 =

[
a4

11

]
. (4.8)

It should be noted that in the Kirchhoff model for plates made of or-
thotropic materials, described in the three-dimensional framework by fifty
one (51) higher-order moduli, the number of active higher-order elastic con-
stants decreases to sixteen (16).

4.2. Variational formulation

The variational, or weak, formulation reads as follows:
Find w ∈ W ⊂ H3(Ω) such that

a(w, ŵ) = l(ŵ) ∀ŵ ∈ Ŵ ⊂ H3(Ω), (4.9)
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where the bilinear form a: W ×Ŵ → R, a(w, ŵ) = ac(w, ŵ) + ag(w, ŵ), and
the load functional l: Ŵ → R, respectively, are defined as

ac(w, ŵ) =

∫

Ω

kTD1k̂dΩ, (4.10)

ag(w, ŵ) =
4∑

i=1

∫

Ω

(ki)TRik̂
i
dΩ, (4.11)

l(ŵ) =

∫

Ω

fŵdΩ +

∫

ΓN1

QŵdS +

∫

ΓN2

M1ŵ,ndS +

∫

ΓN3

M2ŵ,nndS

+

∫

Ω

σTθ k̂dΩ +
3∑

i=1

∫

Ω

(µiθ)
T k̂

i
dΩ, (4.12)

where ∂ΩN = ΓN1 ∪ ΓN2 ∪ ΓN3 denotes the Neumann part of the boundary.
The trial function space is defined as

W = {v ∈ H3(Ω) | v|ΓD1
= w1, v,n|ΓD2

= w2, v,nn|ΓD3
= w3}, (4.13)

with given Dirichlet data w1, w2, w3 and with ∂ΩD = ΓD1 ∪ ΓD2 ∪ ΓD3

denoting the Dirichlet part of the boundary, whereas test function space Ŵ
consists of H3 functions satisfying the corresponding homogeneous Dirichlet
boundary conditions. For the sake of simplicity, wedge forces are excluded
(cf. [37, 57]) by assuming smooth boundaries.

The bending rigidity matrices introduced in the bilinear forms (4.10)
and (4.11) are defined as follows:

{D1,R1,R2} =

t/2∫

−t/2

z2{C1,A1,A2}dz,

{R3,R4} =

t/2∫

−t/2

{A3,A4}dz. (4.14)
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Temperature stress resultants are defined in the form (i = 1, 2)

µiθ = −
t/2∫

−t/2

zAiηiθdz, µ3
θ = −

t/2∫

−t/2

A3η3
θdz, σθ = −

t/2∫

−t/2

zC1εθdz.

(4.15)

As in Section 3, load functional (4.12) is composed in a suitable form
for fulfilling the PVW equality. Thus, f acts as a distributed bending force,
Q1 and M1 stand, respectively, for the ordinary external transverse bending
force and moment, whereas M2 denotes the higher-order external load.

4.3. Conforming isogeometric Galerkin method

A discrete counterpart of problem (4.9) for finding approximate numerical
solutions reads as follows: find wh ∈ Wh ⊂ W such that

a(wh, ŵ) = l(ŵ) ∀ŵ ∈ Ŵh ⊂ Ŵ . (4.16)

By assuming global regularity Cr−1 (see Subsection 3.3, for details) over
Th, with r = min(p, q) ≥ 3, it holds that Sh ⊂ H3(Ω), which provides
the conformity and consistency of the discrete formulation of (4.16) with
Wh = Sh ∩W and Ŵh = Sh ∩ Ŵ .

4.4. Constitutively reduced thermoelastic Kirchhoff plate model

As in Subsection 3.4, we assume that in-plane gradients of strains can be
neglected, i.e., k1 = k2 = 0. The reduced constitutive law for the double
stresses appears in the same form as for the reduced Reissner–Mindlin plate
model of Subsection 3.4, i.e.,

µR = AR(−k − ηRθ ), (4.17)

µR =



µxxz
µyyz
µxyz


 , AR =



a3

11 a3
13 0
a3

33 0
a4

11


 , ηRθ =




(θαxx),z
(θαyy),z

0


 , (4.18)

where matrix AR is practically a combination of matrices A3 and A4 of (4.8).
The variational, or weak, formulation reads as follows: find w ∈ W ⊂

H2(Ω) such that

a(w, ŵ) = l(ŵ) ∀ŵ ∈ Ŵ ⊂ H2(Ω), (4.19)
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where the bilinear form a: W × Ŵ → R and load functional l: Ŵ → R,
respectively, are defined as

a(w, ŵ) =

∫

Ω

kT (D1 +R)k̂dΩ, (4.20)

l(ŵ) =

∫

Ω

fŵdΩ +

∫

ΓN1

QŵdS +

∫

ΓN2

M1ŵ,ndS

+

∫

Ω

σTθ k̂dΩ−
∫

Ω

(µRθ )T k̂dΩ, (4.21)

where

R =

t/2∫

−t/2

ARdz, µRθ =

t/2∫

−t/2

ARηRθ dz. (4.22)

The Neumann part of the boundary is defined as ∂ΩN = ΓN1 ∪ ΓN2 . The
trial function space is defined as

W = {v ∈ H2(Ω) | v|ΓD1
= w1, v,n|ΓD2

= w2}, (4.23)

with given Dirichlet data w1, w2 and with ∂ΩD = ΓD1 ∪ ΓD2 denoting the
Dirichlet part of the boundary, whereas test function space Ŵ consists of
H2 functions satisfying the corresponding homogeneous Dirichlet boundary
conditions.

A conforming Galerkin formulation of the reduced Kirchhoff plate prob-
lem (4.19) reads as follows: find wh ∈ Wh ⊂ W such that

a(wh, ŵ) = l(ŵ) ∀ŵ ∈ Ŵh ⊂ Ŵ . (4.24)

By assuming global regularity Cr−1 (r = min(p, q)) over Th, with r ≥ 2, it
holds that Sh ⊂ H2(Ω), which provides the conformity and consistency of
the discrete formulation of (4.24).

As for the Reissner-Mindlin plate model of Section 3.4, the constitutively
reduced thermoelastic Kirchhoff plate model leads to a strong formulation
formally identical to its classical counterpart (see Appendix D for an exam-
ple).
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5. Computational homogenization towards classical continuum

In this section, we consider a 3D metamaterial with a cellular microar-
chitecture obtained from a 2D triangular lattice (lying in the x1x3-plane,
see Fig. 5.1c) by an extrusion in the out-of-plane direction along the (third)
x2-axis (see Fig. 5.1a and 5.1b). The base (parent) material is assumed to
be isotropic with Young’s modulus E, Poisson’s ratio ν and a linear thermal
expansion coefficient α given in Table 1 for three different materials: steel,
aluminium and concrete.

Table 1: Base material properties.

Base material E, [GPa] ν α, [10−6 K−1]

Steel 200 0.25 12
Aluminium 69 0.32 22
Concrete 30 0.2 14

The effective classical thermomechanical properties are determined ac-
cording to [75] (see [80, 81] as well). Since the metamaterial of interest pos-
sesses a hexagonal symmetry, it is expected to get five independent elastic
moduli and two independent coefficients of linear thermal expansion corre-
sponding to transversally isotropic materials. For the effective homogenized
continuum, we further utilize the Duhamel–Neumann constitutive law for
a bit more general case of orthotropic thermoelastic materials having nine
independent elastic moduli and three thermal expansion coefficients.

The representative volume element (RVE) used in the homogenization
procedure is depicted in Fig. 5.1. The geometrical characteristics are collected
in Table 2.

Table 2: Dimensions of the RVE.

h1, [mm] h2, [mm] h3, [mm] h4, [mm] ϕ, [°]

5 5 8.66 0.5 60
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(a) (b) (c)

Figure 5.1: Metamaterial of a triangular cellular web (triangular honeycomb) (a), the
corresponding 3D RVE (b) and RVE’s section in the x1x3-plane (c).

For defining the effective elastic moduli, we first solve three problems by
stretching the RVE in the directions of axes x1, x2 and x3 (see Fig. 5.1)
by setting the following boundary conditions: u1 = ±u◦1/2 at x1 = ±h1/2,
u2 = 0 at x2 = ±h2/2, u3 = 0 at x3 = ±h3/2, for problem (1); u2 = ±u◦2/2
at x2 = ±h2/2, u1 = 0 at x1 = ±h1/2, u3 = 0 at x3 = ±h3/2, for problem
(2); and u3 = ±u◦2/2 at x3 = ±h3/2, u1 = 0 at x1 = ±h1/2, u2 = 0 at
x2 = ±h2/2, for problem (3). Next, for determining shear moduli, we solve
three problems by shearing the RVE in the directions of axes x1, x2 and
x3 (see Fig. 5.1) by setting the following boundary conditions: u1 = 0 at
x1 = ±h1/2, u3 = ±u◦4/2, u1 = 0 at x2 = ±h2/2, u1 = u2 = 0 at x3 = ±h3/2,
for problem (4); u3 = u2 = 0 at x1 = ±h1/2, u2 = 0 at x2 = ±h2/2,
u1 = ±u◦5/2, u2 = 0 at x3 = ±h3/2, for problem (5); and u2 = ±u◦6/2, u3 = 0
at x1 = ±h1/2, u3 = u1 = 0 at x2 = ±h2/2, u3 = 0 at x3 = ±h3/2, for
problem (6).

The effective elastic properties are defined by resolving the equations
of the generalized Hooke’s law with respect to three Young’s moduli, six
Poisson’s ratios and three shear moduli:





E1ε
◦
11δ1i = 〈σ(i)

11 〉 − ν12〈σ(i)
22 〉 − ν13〈σ(i)

33 〉
E2ε

◦
22δ2i = 〈σ(i)

22 〉 − ν21〈σ(i)
11 〉 − ν23〈σ(i)

33 〉
E3ε

◦
33δ3i = 〈σ(i)

33 〉 − ν31〈σ(i)
11 〉 − ν32〈σ(i)

22 〉
, i = 1, 2, 3 (5.1)

G23γ
◦
23 = 〈σ(4)

23 〉, G13γ
◦
13 = 〈σ(5)

13 〉, G12γ
◦
12 = 〈σ(6)

12 〉, (5.2)
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where δij denotes the Kronecker delta, ε◦jj = u◦j/hj (no summation), j =
1, 2, 3, and γ◦23 = u◦4/h2, γ◦13 = u◦5/h3, γ◦12 = u◦6/h1. The Young’s moduli and
Poisson’s ratios are coupled by the following equalities

E1ν21 = E2ν12, E2ν32 = E3ν23, E3ν13 = E1ν31. (5.3)

The superscripts (i) indicate that the corresponding strains and stresses are
defined upon solving problems (i), i = 1, ..., 6, respectively. The averaging
procedure is defined as

〈σ〉 =
1

V

∫

V

σdV, (5.4)

where V = h1h2h3 denotes the RVE volume.
The values of the effective elastic constants are listed in Tables 3 and 4.

It should be noted that requirements (5.3) are fulfilled.

Table 3: Classical effective moduli (Ei, i = 1, 2, 3, in [GPa]).

Base material E1 E2 E3 ν12 ν21 ν13 ν31 ν23 ν32

Steel 25.60 63.28 25.60 0.101 0.25 0.312 0.312 0.25 0.101
Aluminium 9.06 21.83 9.06 0.133 0.32 0.305 0.305 0.32 0.133
Concrete 3.79 9.49 3.79 0.08 0.2 0.314 0.314 0.2 0.08

Table 4: Classical effective shear moduli [GPa].

Base material G23 G13 G12

Steel 14.43 9.76 14.43
Aluminium 4.70 3.47 4.70
Concrete 2.24 1.44 2.24

As can be seen, the following equalities hold true

ν12 = ν32, ν13 = ν31, ν21 = ν23, (5.5)

E3 = E1, G23 = G12, G13 = E1/2/(1 + ν13), (5.6)

which in combination with requirements (5.3) leaves five independent elastic
moduli, as is expected for transversal isotropy.
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In terms of the components of stiffness matrices Ĉ1 and Ĉ2 of (2.7), the
elastic properties are given in Table 5, where equalities Ĉ33 = Ĉ11, Ĉ23 = Ĉ12,
Ĉ13 = Ĉ11 − 2Ĉ55 and Ĉ44 = Ĉ66 valid for transversally isotropic materials
are fulfilled.

Table 5: Classical effective moduli [GPa].

Base material Ĉ11 Ĉ12 Ĉ13 Ĉ22 Ĉ23 Ĉ33 Ĉ44 Ĉ55 Ĉ66

Steel 29.86 10.05 10.35 68.34 10.05 29.86 14.43 9.76 14.43
Aluminium 10.90 4.75 3.96 24.88 4.75 10.90 4.70 3.47 4.70
Concrete 4.34 1.16 1.46 9.96 1.16 4.34 2.24 1.44 2.24

For defining the effective coefficients of linear thermal expansion, we fi-
nally solve a coupled temperature-displacement problem by applying a ho-
mogeneous temperature field ∆θ to the RVE domain. Boundary conditions
prescribed in this case are u1 = 0 at x1 = ±h1/2, u2 = 0 at x2 = ±h2/2,
u3 = 0 at x3 = ±h3/2, for problem (7). The effective thermal expansion
coefficients (collected in Table 6) are defined by resolving the equations of
the Duhamel–Neumann law with respect to three moduli α1, α2 and α3:

α1 = − 1

∆θE1

(
〈σ(7)

11 〉 − ν12〈σ(7)
22 〉 − ν13〈σ(7)

33 〉
)
, (5.7)

α2 = − 1

∆θE2

(
〈σ(7)

22 〉 − ν21〈σ(7)
11 〉 − ν23〈σ(7)

33 〉
)
, (5.8)

α3 = − 1

∆θE3

(
〈σ(7)

33 〉 − ν31〈σ(7)
11 〉 − ν32〈σ(7)

22 〉
)
, (5.9)

where the values of Young’s moduli and Poisson’s ratios are taken from Ta-
ble 3.

Table 6: Classical effective coefficients of linear thermal expansion [10−6 K−1].

Base material α1 α2 α3

Steel 12 12 12
Aluminium 22 22 22
Concrete 14 14 14

24



It should be noted that the values of the effective thermal expansion
moduli coincide with each other and with the corresponding value of the
base material, i.e., α1 = α2 = α3 = α for each base material.

6. Identification procedure for higher-order moduli

In this section, we propose an identification procedure aiming at deter-
mining the higher-order elastic moduli for a cellular plate structure described
by an equivalent, anisotropic, higher-order continuum plate model. We in-
vestigate plate structures made of the triangular cellular metamaterial of
Section 5, with the plate midsurface parallel to the x1x2-plane of the RVE.
In essence, the identification procedure consists of four different loading cases
exiting four different deformation modes for a series of plate structures, and
particularly, modeling these deformations with both (i) a full-field (reference)
model relying on classical three-dimensional elasticity and (ii) a higher-order
plate model based on strain gradient elasticity. Matching the results of these
two models identifies the parameters of the higher-order plate model.

In what follows, we alternately define four independent higher-order mod-
uli – a3

11, a3
13, a3

33 and a4
11 – of the constitutive matrix AR of (3.27). The

full-field reference solutions for all the loading cases are obtained via the
classical finite element method (the FEM software Abaqus), whereas for the
results of the reduced strain gradient plate models we use analytical solu-
tions for the first two loading cases of cylindical bending, whereas numerical
solutions based on isogeometric analysis (user elements within Abaqus) are
used for the last two loading cases of twisting and double curvature bending.
It should be emphasized that the series of plate structures for the first two
loading cases consist of five plates with different number of microstructural
layers, whereas the series for the third load case includes four plates and
the fourth load case series includes three plates. In practice, however, when
knowing that the model is correct, a pair of plates or even one plate would be
enough for matching the higher-order plate model with the reference model
and finding the parameter values accordingly.

6.1. Higher-order elastic modulus a3
11 – via cylindrical bending

Let us consider rectangular plate structures of length L, thickness t
(t < L) and width b (b � L) schematically presented in Fig. 6.1a. The
boundary conditions corresponding to clamped and simply supported plates,
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respectively, are presented in the top and bottom of Fig. 6.1b. Bending is
considered to occur in the xz-plane.

(a) Plate structure.
(b) Boundary conditions.

Figure 6.1: Plate structure representation.

Plates are made of the triangular cellular metamaterial of Section 5 such
that the local coordinate axes x1 and x2 of the microarchitecture (Fig. 5.1b)
coincide, respectively, with the global coordinate axes x and y of the plate.
Depending on the number of the triangular layers N in the thickness direc-
tion, a series of five plates with N = 1, 2, 3, 4 and 8 is constructed such that
the L-to-t ratio remains constant: for each plate, L/t = N(2h1)/(Nh3/2) =
2.31 (see Fig. 6.2 for the samples and Table 2 for the dimensions).

In the simply supported case, the microarchitected plates are pinned along
the coordinate lines x = 0 and x = L such that the corresponding lateral
edges can freely rotate around the y-axis under an applied bending moment
M0 distributed along the boundary. Bending rigidity D in this case is calcu-
lated as D = M0/(t

2ϕL), where ϕL denotes the rotation angle at x = L. The
corresponding analytical expressions (which coincide for simply supported
boundary conditions) derived for the reduced Reissner–Mindlin and Kirch-
hoff strain gradient plate models of Sections 3.4 and 4.4, respectively, are
given as (see Appendix C)

Dgr =
t

6L
(C11 +

12

t2
a3

11). (6.1)

It is worth noting that from among the four higher-order moduli only a3
11

remains active when bending happens in the xz-plane.
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Figure 6.2: Cross-sections of the microarchitected plates schematically represented as the
red frame in Fig. 6.1a. The length-to-thickness ratio is kept as L/t = 2.31.

The full-field simulation results are shown in Fig. 6.3a and Figs. F.1a
and F.2a of Appendix E, as the dependence of bending rigidity on the plate
thickness, respectively, for steel, aluminium and concrete as base material.
The blue dots relate to the microarchitected plates with N = 1, 2, 3, 4 and 8,
or t = 4.33 mm, 8.66 mm, 12.99 mm, 17.32 mm and 34.64 mm, respectively.
The red line corresponds to expression (6.1). The classical C11-modulus
through expression (A.2) involves the known values from Table 5 calculated
via the computational homogenization presented in Section 5. The higher-
order a3

11-modulus is calibrated such that the red line fits to the blue dots.
The corresponding values of the modulus are collected in Table 7 for each
base material. The black line represents the bending rigidity which remains
constant within classical plate theories. The corresponding expression is
obtained from (6.1) by dropping the a3

11-modulus. It can be seen that for
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thin microarchitected plates the classical elasticity model fails to describe
the significant size effect, whereas for more than eight layers (N ≥ 8) the
influence of the microarchitecture is negligible and bending predictions based
on both classical and gradient elasticity theories almost coincide.

(a) Simply supported case (b) Clamped case

Figure 6.3: Bending rigidity versus plate thickness for steel as base material.

As a double check for the value of modulus a3
11 and in order to demonstrate

the difference between the Kirchhoff and Reissner–Mindlin plate models, we
study a series of cantilever plates: the microarchitected plates are clamped
at x = 0, while at x = L the corresponding lateral edges can freely move
under an applied transversal force F distributed along the boundary. Bend-
ing rigidity D in this case is defined as D = F/wL, where wL denotes the
deflection at x = L. The corresponding analytical expression derived for the
reduced Reissner–Mindlin strain gradient plate model of Section 3.4 reads as

Dgr =
t

L

(C11 + 12a3
11/t

2)C55

4C55L2/t2 + C11 + 12a3
11/t

2
. (6.2)

For the reduced Kirchhoff strain gradient plate model of Section 4.4, the
analytical expression is derived in the form

Dgr =
t3

4L3
(C11 +

12

t2
a3

11). (6.3)

See Appendices C and D for the derivations.
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The full-field simulation results are shown in Fig. 6.3b and Figs. F.1b
and F.2b of Appendix E, respectively, for steel, aluminium and concrete as
base material. The blue dots relate to the microarchitected plates. The
red line corresponds to expression (6.2), while the green one follows expres-
sion (6.3). The classical moduli C11 and C55, through expressions (A.2)
and (A.3), respectively, involve the known values from Table 5 calculated via
the computational homogenization of Section 5. The value of a3

11, calibrated
previously for the simply supported case, is utilized in expressions (6.2)
and (6.3). By analysing these two expressions, it can be seen that equa-
tion (6.2) corresponding to the Reissner–Mindlin plate model includes the
shear modulus and, hence, adequately captures the full-field simulation re-
sults for thick plates. The green line governed by expression (6.3) significantly
overestimates the results. Finally, it should be emphasized that in practical
cases one prefers to keep the computational costs of reference solutions as
low as possible and hence prefers choosing thick (or short) plates; we have
shown that the Reissner–Mindlin model is suitable even for very thick plates:
now t/L > 2/5.

Table 7: Values for modulus a311.

Base material Steel Aluminium Concrete

a3
11, [kN] 63.96 23.08 9.36

6.2. Higher-order elastic modulus a3
33 – via cylindrical bending

In order to determine the higher-order modulus a3
33, the microarchitecture

is oriented such that the local coordinate axes x1 and x2 of the microarchitec-
ture (Fig. 5.1b) coincide, respectively, with the global coordinate axes y and
x of the plate (Fig. 6.1a). As in the previous section, five types of plates with
N = 1, 2, 3, 4 and 8 are constructed such that the L-to-t ratio is constant and
equal to L/t = 4, see Fig. 6.4.

For simply supported plates, bending rigidity D is calculated as D =
M0/(t

2ϕL), where ϕL denotes the rotation angle at x = L. The corresponding
analytical expression is given in the form (see Appendix C)

Dgr =
t

6L
(C22 +

12

t2
a3

33). (6.4)
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Figure 6.4: Cross-sections of the microarchitected plates schematically represented as the
red frame in Fig. 6.1a. Length to thickness ratio is kept as L/t = 4.

The full-field simulation results are presented in Fig. 6.5a and Figs. F.3a
and F.4a of Appendix F, as the dependence of bending rigidity on the plate
thickness, respectively, for steel, aluminium and concrete as base material.
The blue dots relate to the microarchitected plates with N = 1, 2, 3, 4 and 8,
or t = 4.33 mm, 8.66 mm, 12.99 mm, 17.32 mm and 34.64 mm, respectively.
The red line corresponds to expression (6.4). The classical C22-modulus
through expression (A.2) involves the known values from Table 5. The higher-
order a3

33-modulus is calibrated such that the red line follows the blue dots.
The corresponding values of the modulus are collected in Table 8 for each
base material. The black line represents the bending rigidity which remains
constant within classical plate theories. The corresponding expression is
obtained from (6.4) by setting a3

33 = 0.
As a double check for the value of modulus a3

33 and in order to demonstrate
the difference of the Kirchhoff and Reissner–Mindlin plate models, we still
study a series of cantilever plates: bending rigidity D is defined as D = F/wL,
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where wL denotes the deflection at x = L. The corresponding analytical
expression derived within the reduced Reissner–Mindlin strain gradient plate
model of Section 3.4 reads as (see Appendix C)

Dgr =
t

L

(C22 + 12a3
33/t

2)C44

4C44L2/t2 + C22 + 12a3
33/t

2
. (6.5)

For the reduced Kirchhoff strain gradient plate model of Section 4.4, the
analytical expression is defined as (see Appendix D)

Dgr =
t3

4L3
(C22 +

12

t2
a3

33). (6.6)

(a) Simply supported case (b) Clamped case

Figure 6.5: Bending rigidity versus plate thickness for steel as base material.

Table 8: Values for modulus a333.

Base material Steel Aluminium Concrete

a3
33, [kN] 50.30 18.27 7.22

The full-field simulation results are shown in Fig. 6.5b and Figs. F.3b
and F.4b of Appendix F, respectively, for steel, aluminium and concrete as
base material. The blue dots relate to the microarchitected plates. The
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red line corresponds to expression (6.5), whereas the green one corresponds
to expression (6.6). The classical moduli C22 and C44 of expressions (A.2)
and (A.3), respectively, involve the known values from Table 5. The value
of a3

33, calibrated previously for the simply supported case, is utilized in
expressions (6.5) and (6.6).

6.3. Higher-order elastic modulus a4
11 – via twisting

For estimating the a4
11-modulus, we consider twisting of the microarchi-

tected square plates. The global Cartesian coordinate system is placed such
that the plate midsurface has z = 0 and coordinate axes x and y lie, re-
spectively, along the plate sides AB and BC. The microarchitecture is ori-
ented such that the local coordinate axes x1 and x2 of the microarchitecture
(Fig. 5.1b) coincide, respectively, with the global coordinate axes x and y of
the plate. Four types of microarchitected plates with N = 1, 2, 3 and 4, or
t = 4.33 mm, 8.66 mm, 12.99 mm and 17.32 mm, are constructed such that
the ratio of the plate side length L to the plate thickness t is constant and
equal to L/t = 4.62, see Fig. 6.6. The corner edges of the microarchitected
plates are affected by transversal loads with magnitude F leading to plate
twisting: upward loadings act at two opposite corners in the ends of one
diagonal (A and C in Figure 6.6); downward loadings act at the other two
corners (B and D) of the other diagonal. Plate edges parallel to the y-axis
are constrained to be rigid.

The microarchitected plates are then modelled by the strain gradient
plates of the equivalent homogenized continuum. The twisting problem of
the corresponding strain gradient Reissner–Mindlin and Kirchhoff plates is
simulated by isogeometric methods implemented in a user element frame-
work of Abaqus [64]. A square domain is discretized by 8× 8 finite elements
(see Fig. 6.6) with NURBS basis functions of the fifth order resulting in
C4-continuity. The plate corners are subjected to transversal loads with
magnitude F . The classical flexural rigidities D1 and D2 of plate problems
are defined according to Table 5 via expressions (3.18), (A.2) and (A.3). In
the twisting problem, only three of the four higher-order material constants
are involved, i.e., the a3

13-modulus remains inactive. The values of the two
elastic moduli a3

11 and a3
33 have been determined in the previous subsections.

The a4
11-modulus is now calibrated by the fitting procedure described be-

low. The higher-order flexural rigidity matrix R is calculated by expression
from (4.22).
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Figure 6.6: Distribution of the normalized (with respect to the deflection of corner C)
displacement field on the deformed configuration in the xz-plane for the twisting problem
of the microarchitected square plates. The full-field simulation results are presented for
N = 1 (or t = 4.33 mm) in the top left, for N = 2 (or t = 8.66 mm) in the top right and
for N = 3 (or t = 12.99 mm) in the bottom left positions. The IGA simulation results of
the corresponding strain gradient Reissner–Mindlin plate of an equivalent continuum are
shown in the bottom right position for N = 3. The length-to-thickness ratio is L/t = 4.62.

The full-field simulation results for the microarchitected plates as well as
the IGA simulations of the corresponding strain gradient plate problems are
shown in Fig. 6.7a and Figs. G.1a and G.2a of Appendix G, respectively,
for steel, aluminium and concrete as base materials. Bending rigidity in this
case is defined as D = FL/(2t2wC), where wC stands for the transversal
deflection of the plate corner. The blue dots relate to the microarchitected
plates with N = 1, 2, 3 and 4, or t = 4.33 mm, 8.66 mm, 12.99 mm and
17.32 mm, respectively. The red line corresponds to the strain gradient
Reissner–Mindlin plate model, while the green one relates to the strain gra-
dient Kirchhoff plate model. The simulation results corresponding to the
classical plate models are plotted with the straight black lines (solid for the
Reissner–Mindlin and dashed for the Kirchhoff models) reflecting the size-
independent nature of the classical continuum theories. By varying the plate
thickness t and by keeping the ratio of the plate side length to the thickness
constant, several hundreds of IGA simulations for both the Reissner–Mindlin
and Kirchhoff plate problems have been performed for representing the cor-
responding bending rigidities by practically continuous curves (looking like
plots of analytical curves). The a4

11-modulus is chosen such that the red line
fits to the blue dots. Table 9 collects the corresponding parameter values.
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(a) Comparison of plate models. (b) Influence of modulus a4
11.

Figure 6.7: Bending rigidity versus plate thickness for steel as base material.

Fig. 6.7b (see Figs. G.1b and G.2b of Appendix G as well) compares the
bending rigidities of the Reissner–Mindlin plate models with the full-field
simulation results for the case in which the a4

11-modulus is equal to zero. It
can be seen that by neglecting this modulus the plate model significantly
underestimates the results, which demonstrates the relevance of this specific
modulus.

Table 9: Values for modulus a411.

Base material Steel Aluminium Concrete

a4
11, [kN] 17.78 5.57 2.86

6.4. Higher-order elastic modulus a3
13 – via double curvature bending

For determining the a3
13-modulus, we consider a right-angled trapezoidal

plate under uniformly distributed transversal loading f . The global Cartesian
coordinate system is placed such that the plate midsurface has z = 0, coordi-
nate axis y lies along the trapezoid bases (sides AD and BC in Fig. 6.8) and
axis x is perpendicular to the bases. The microarchitecture is oriented such
that the local coordinate axes x1 and x2 of the microarchitecture (Fig. 5.1b)
coincide, respectively, with the global coordinate axes x and y of the plate.
Side AD is simply supported, whereas sides AB and BC are constrained in
accordance to symmetry boundary conditions.
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Three types of microarchitected plates with N = 1, 2 and 3, or t = 4.33
mm, 8.66 mm and 12.99 mm, are constructed such that side AD has length
|AD| = L/2, side AB is of length |AB| = NL and side BC has length
|BC| = (N + 1/2)L. Length L is set to L = 20 mm. It is worth noting that
the geometry as well as the loading are selected such that the deformed plate
has a saddle shape with double curvature (see Fig. 6.8), i.e., the principal
curvatures at point B have opposite signs, which is crucial in order to activate
the a3

13-modulus of the equivalent continuum.
The microarchitected plates are modelled by the strain gradient plate

models of the equivalent homogenized continuum. For numerical simulations
of the corresponding strain gradient Reissner–Mindlin and Kirchhoff plate
problems, the trapezoidal domain is discretized by 8× 8 finite elements (see
Fig. 6.8) with NURBS basis functions of the fifth order with C4-continuity.
In the considered bending problem, all four higher-order material constants
are involved. The values of the three elastic moduli a3

11, a3
33 and a4

11 have
been determined in the previous sections. The a3

13-modulus is calibrated by
the fitting procedure described below.

Figure 6.8: The distribution of the normalized (with respect to the deflection of corner
C) displacement field in the bending problem of the microarchitected trapezoidal plates.
The full-field simulation results are presented for N = 1 (or t = 4.33 mm) in the top left,
for N = 2 (or t = 8.66 mm) in the top right and for N = 3 (or t = 12.99 mm) in the
bottom left positions. The IGA simulation results of the corresponding strain gradient
Reissner–Mindlin plate of an equivalent continuum are shown in the bottom right position
for N = 3.

The full-field simulation results for the microarchitected plates as well as
the IGA simulations of the corresponding strain gradient plate problems are
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shown in Fig. 6.9a and Figs. H.1a and H.2a of Appendix H, respectively, for
steel, aluminium and concrete as base materials. Bending rigidity in this
case is defined as a ratio of the distributed load resultant F = fAp to the
transversal deflection of the corner (point C) wC and the length of side AB,
i.e., D = F/wC/|AB|, where Ap denotes the area of the plate domain. The
blue dots relate to the microarchitected plates with N = 1, 2 and 3 (t = 4.33
mm, 8.66 mm and 12.99 mm). The red line corresponds to the strain gradi-
ent Reissner–Mindlin plate model, while the green one relates to the strain
gradient Kirchhoff plate model. The simulation results corresponding to the
classical plate models are plotted as black lines (solid for Reissner–Mindlin
and dashed for Kirchhoff). By varying the plate thickness t and keeping
the ratio of the plate thickness to the length of side AB constant, several
hundreds of IGA simulations for both the Reissner–Mindlin and Kirchhoff
plate problems were performed for representing the corresponding bending
rigidities by practically continuous curves. The a3

13-modulus is chosen such
that the red line fits to the blue dots. The corresponding parameter values
are collected in Table 10.

(a) Comparison of plate models. (b) Influence of modulus a3
13.

Figure 6.9: Bending rigidity versus plate thickness for steel as base material.

Fig. 6.9b (see Figs. H.1b and H.2b of Appendix H as well) compares the
bending rigidities of the Reissner–Mindlin plate models with the full-field
simulation results for the case in which the a3

13-modulus is omitted. It can be
seen that by neglecting this modulus the plate model definitely overestimates
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the results, which demonstrates the relevance of this specific modulus.

Table 10: Values for modulus a313.

Base material Steel Aluminium Concrete

a3
13, [kN] 17.59 7.80 2.06

6.5. Explicit representation of length scale parameters

The non-classical elastic moduli identified (or calibrated) in Sections 6.1,
6.2, 6.3 and 6.4 are collected below in Table 11. In the table, we use the
components of matrix AR of the plate model defined as AR11 = a3

11, AR22 = a3
33,

AR33 = a4
11, AR12 = a3

13.

Table 11: Higher-order moduli AR
ij [kN].

Base material AR11 AR22 AR33 AR12

Steel 63.96 50.30 17.78 17.59
Aluminium 23.08 18.27 5.57 7.80
Concrete 9.36 7.22 2.86 2.06

In order to further study the character of these values, we write down
the following relation (inspired by and to be compared to the so-called weak
nonlocality assumption Aijklmn = LknCijlm [69, 71]) between the higher-order
material parameters (3.27) and the classical elastic moduli (3.4) of the plate
model:

ARij = g2
ijC

1
ij. (6.7)

This relation (no summation on indices i, j) introduces four independent
length scale parameters gij listed in Table 12.

Table 12: Length scale parameters gij [mm].

Base material g11 g22 g33 g12

Steel 1.56 0.880 1.11 1.64
Aluminium 1.56 0.895 1.09 1.61
Concrete 1.56 0.865 1.13 1.64
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First, as can be seen in the table the values of the length scale parameters
are comparable to the characteristic length scale of the microarchitecture,
i.e., width h1 or half height h3/2 of the RVE (see Fig. 5.1 and Table 2). It
is worth noting that for different base materials, the values of the length
scale constants of the cellular metamaterial almost coincide approving the
fact that the length scale parameters depend mainly on the geometry of
the microarchitecture. Since the classical material moduli of the equivalent
continuum are nonlinearly dependent on Poisson’s ratio of the base material,
the values of the particular length scale parameter are not identical.

Second, we note that although equation (6.7) formally resembles the as-
sumption of the so-called weak nonlocality [69, 71] it is quite clear that as-
sumption cannot be used as a starting point for our analysis: for transversal
isotropy, weak nonlocality implies only two independent length scale param-
eters, whereas by starting from the general form of strain gradient elasticity
we have arrived at four parameters – even after some constitutive model re-
ductions concerning the gradient terms (see Sections 3.4 and 4.4). And each
of these parameters has shown to have a crucial role in modeling the different
deformations modes of plate bending.

7. Examples

This section briefly lists some examples demonstrating that after the ho-
mogenization has been accomplished for the chosen microarchitecture, the
plate model can be used for modelling microarchitectural plates of any geom-
etry or number of layers (with classical transversally isotropic (meta)material
parameters in matrices Ci and the reduced set of strain gradient (meta)material
parameters in matrices Ai).

We have chosen here the following examples: a square plate, a circular
plate, an annular plate. For each example, results for the plate model are
presented beside the corresponding references solution, a fine-scale model
discretized with three-dimensional solid elements. For the square plate, we
consider the case of simultaneously applied mechanical and thermal loads
and compare the full-field simulation results with the predictions of the re-
duced strain gradient and the corresponding classical thermoelastic Reissner–
Mindlin plate models. For the circular and annular plates, we separate the
mechanically and thermally induced bending cases and demonstrate a fiasco
of thermomechanically incomplete plate models (with respect to higher-order
constitutive laws) in capturing the bending response.
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7.1. Square plate
As the first example, we consider a square plate with rotated microarchi-

tecture (Fig. 7.1 left column) made of isotropic steel with material properties
listed in Table 1. The global Cartesian coordinate system is placed such that
the plate midsurface has z = 0 and coordinate axes x and y lie along the
plate sides AB and AD, respectively (see Fig. 7.1). The microarchitecture is
oriented such that the local coordinate axis x3 is parallel to the z-axis (i.e.,
the x1x2-plane and the xy-plane are parallel, see Fig. 5.1b) and the x1-axis
is rotated by an angle of 45◦ around the z-axis such that the local coordinate
axis x2 is parallel to the plate diagonal BD. Two types of microarchitected
plates with N = 1 and 2 or t = 4.33 mm and 8.66 mm are constructed such
that the plate side length L is kept constant (L = 60 mm giving moderately
thick plates with t/L ∼ 1/10).

In this example, we consider a plate deformation caused by simultane-
ously applied mechanical and thermal loads. A uniformly distributed load f
with f/t = 1.24c̄ N/mm3 affects a middle patch of the plate in the transversal
direction as shown in Fig. 7.1 (bottom right). (A nondimensional scalar c̄ en-
sures that deformations remain small enough for staying in the linear regime;
neither yielding for metals nor fracture for concrete should be present.) The
patch has dimensions 30 mm × 30 mm. Constant temperatures +c̄T0 and
−c̄T0 (with T0 = 100 ◦C) are prescribed, respectively, at the upper (z = −t/2)
and lower (z = t/2) plate surfaces. Sides AB and AD are fully clamped. The
rest of the boundaries are free of loading implying zero natural boundary
conditions.

The full-field finite element models are described by three classical ma-
terial constants (two elastic moduli and one thermal expansion coefficient)
and discretized by the second order tetrahedral elements C3D10MT with
full integration, see the details in Table 13. The microarchitected plates are
then modelled by the strain gradient Reissner–Mindlin plates of the equiv-
alent homogenized continuum and discretized by 64 (8 × 8) finite elements
with NURBS basis functions of the fifth order with C4-continuity and de-
scribed by constitutive matrices C1 and C2 (see Section 3.1) and AR (see
Section 3.4). The model contains nine elastic constants in total (five classical
and four higher-order ones) as well as one coefficient of thermal expansion.
Stress and strain vectors as well as constitutive matrices undergo the corre-
sponding transformations as detailed in [82]. The specific heat capacity and
thermal conductivity are not affecting the temperature distributions in this
case and, hence, are not specified.
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Table 13: FE plate model characteristics. NFE stands for the number of finite elements
and NDF for the number of (translational) degrees of freedom. Numbers are rounded
except for the IGA model.

Square Circular Annular IGA
N = 1 N = 2 N = 1 N = 2 N = 1 N = 2 model

NFE 0.2 · 106 0.4 · 106 0.2 · 106 0.4 · 106 0.2 · 106 0.3 · 106 64
NDF 1.1 · 106 2.1 · 106 1.2 · 106 2.3 · 106 0.9 · 106 1.8 · 106 169

The results of numerical simulations are compared in Fig. 7.1. For vi-
sualisation, in Fig. 7.1 (left column) a cut along the plate diagonal AC is
shown and part ABC is presented in a transparent view. The region with
the applied distributed load is depicted in Fig. 7.1 (bottom right) by grey
colour.

Figure 7.1: Distribution of the normalized displacement field in the mechanically induced
bending problem of square plate with a rotated microarchitecture (normalization with
respect to the deflection of corner C). Top row: plate thickness t = 4.33 mm (N = 1).
Bottom row: plate thickness t = 8.66 mm (N = 2). Left column: full-field simulation
results. Right column: IGA simulations of the corresponding strain gradient Reissner–
Mindlin plate of equivalent continuum. Plate side length is constant (L = 60 mm).
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Fig. 7.2 shows the distribution of the transversal displacements along the
plate diagonal AC where the blue dots correspond to the full-field simulation
results, the red curve represents the reduced strain gradient thermoelastic
Reissner–Mindlin plate model results and the black line stands for the re-
sults of the corresponding classical plate model. As can be seen, the mi-
croarchitected plate bending response is captured both qualitatively and,
most importantly, quantitatively by the strain gradient plate model (with
the equivalent continuum) with a high precision. The classical plate model,
or actually the classical thermoelasticity theory, fails to properly describe the
bending response by significantly overestimating the displacement field.

Figure 7.2: Normalized deflection (with respect to the deflection of corner C) versus nor-
malized distance (with respect to the diagonal length) along plate diagonal AC in the
thermomechanical bending problem of a clamped square plate. Left: plate thickness
t = 4.33 mm (N = 1). Right: plate thickness t = 8.66 mm (N = 2). Full-field simulation
results (blue dots) are compared with the reduced strain gradient (red curve) and classical
(black line) Reissner–Mindlin plate models.

7.2. Circular plate

As the next example, we consider a circular plate (Fig. 7.3) made of
isotropic steel with material properties listed in Table 1. The global Cartesian
coordinate system is placed such that the plate midsurface has z = 0 and
coordinate axes x and y lie in the midsurface plane. The microarchitecture is
oriented such that the local coordinate axes x1 and x2 coincide, respectively,
with coordinate axes x and y (see Fig. 5.1b). Two types of microarchitected
plates with N = 1 and 2, or t = 4.33 mm and 8.66 mm, are constructed such
that the plate radius R is kept constant (R = 50 mm).
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For the mechanically induced bending, the plate circuit is clamped, whereas
uniformly distributed load is applied in the transversal direction. The full-
field finite element models are discretized by the second order tetrahedral el-
ements C3D10 with full integration. The corresponding strain gradient plate
is discretized by only 64 (8× 8) finite elements with NURBS basis functions
of the fifth order with C4-continuity. The results of numerical simulations
are shown and compared in Fig. 7.3.

Figure 7.3: Distribution of the normalized (with respect to the deflection of the middle
point) displacement field in the mechanically induced bending problem of a clamped cir-
cular plate. Top row: plate thickness t = 4.33 mm (N = 1). Bottom row: plate thickness
t = 8.66 mm (N = 2). Left column: full-field simulation results. Right column: IGA
simulations of the corresponding strain gradient Reissner–Mindlin plate of equivalent con-
tinuum. Plate radius is kept constant (R = 50 mm). For visualisation purposes, view cut
along the plate diameter is presented.

Fig. 7.4 shows the distribution of the transversal displacements along
the plate diameter perpendicular to the microarchitecture direction x2 (cf.
Fig. 5.1). The blue dots correspond to the full-field simulation results, the red
curve represents the reduced strain gradient Reissner–Mindlin plate model
results and the black line stands for the results of the corresponding classical
plate model. As can be seen, the classical elasticity theory fails to capture
the bending response as it significantly overestimates the displacement field.

For the thermally induced bending, the plate circuit is simply supported,
whereas constant temperatures +T0 and −T0 are prescribed, respectively, at
the upper (z = −t/2) and lower (z = t/2) surfaces. The results of numerical
simulations are presented and compared in Fig. 7.5.
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Figure 7.4: Normalized deflection (with respect to the deflection of the middle point)
versus normalized distance along diameter of the plate in the mechanically induced bending
problem of a clamped circular plate. Left: plate thickness t = 4.33 mm (N = 1). Right:
plate thickness t = 8.66 mm (N = 2). Full-field simulation results (blue dots) are compared
with the reduced strain gradient (red curve) and classical (black line) Reissner–Mindlin
plate models.

Figure 7.5: Distribution of the normalized (with respect to the deflection of the middle
point) displacement field in the thermally induced bending problem of a simply supported
circular plate. Top row: plate thickness t = 4.33 mm (N = 1). Bottom row: plate
thickness t = 8.66 mm (N = 2). Left column: full-field simulation results. Right column:
IGA simulations of the corresponding strain gradient Reissner–Mindlin plate of equivalent
continuum. Plate radius is kept constant (R = 50 mm). For visualisation purposes, view
cut along the plate diameter is presented.
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Fig. 7.6 presents the distribution of the transversal displacements along
the plate diameter perpendicular to the microarchitecture direction x2 (cf.
Fig. 5.1). The red curve relates to the plate model of Section 3.4 devel-
oped in the framework of the complete, or consistent, thermoelastic material
model [29]. The black line now corresponds to the reduced strain gradient
Reissner–Mindlin plate model within the incomplete, or inconsistent, ther-
moelastic material model. This means that the temperature gradient is not
introduced in the Helmholtz free energy and, hence, is not included in the con-
stitutive law for double stresses. As a result, the corresponding plate model
significantly underestimates the bending response of the microarchitectural
plate (as has been discovered by the authors in [29] for microarchitectural
beams).

Figure 7.6: Normalized deflection (with respect to the middle point deflection) versus nor-
malized distance along diameter of the plate in the thermally induced bending problem of a
simply supported circular plate. Left: plate thickness t = 4.33 mm (N = 1). Right: plate
thickness t = 8.66 mm (N = 2). Full-field simulation results (blue dots) are compared with
the reduced strain gradient Reissner–Mindlin plate model in the framework of complete
(red curve) and incomplete (black line) thermoelastic gradient problem formulation.

7.3. Annular plate

As the last example, we consider a quadrant of an annular plate (Fig. 7.7)
made of isotropic steel with material properties listed in Table 1. The global
Cartesian coordinate system is placed such that the plate midsurface has
z = 0, coordinate axes x and y lie along the plate sides AB and CD, respec-
tively (see Fig. 7.7). The microarchitecture is oriented such that the local
coordinate axes x1 and x2 (see Fig. 5.1b) are parallel, respectively, to coordi-
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nate axes x and y. Two types of microarchitected plates with N = 1 and 2,
or t = 4.33 mm and 8.66 mm, are constructed such that the plate radii are
kept constant (inner radius Ri = 50 mm and outer radius Ro = 100 mm).

For the mechanically induced bending, sides AB and CD are clamped,
whereas a uniformly distributed load is applied in the transversal direction.
The full-field finite element models are discretized by the second order tetra-
hedral elements C3D10 with full integration. The corresponding strain gra-
dient plate is discretized by 64 finite elements with NURBS basis functions
of the fifth order with C4-continuity. The results of numerical simulations
are shown in Fig. 7.7 in which the normalization is performed with respect
to the maximum deflection located at point K. A plot of the transversal dis-
placements along the annular plate side BC is shown in Fig. 7.8 for the plates
of the first type with N = 1 (left) and second type with N = 2 (right).

Figure 7.7: Distribution of the normalized (with respect to the maximum deflection located
at point K) displacement field in the mechanically induced bending problem of a clamped
annular plate. Top row: plate thickness t = 4.33 mm (N = 1). Bottom row: plate
thickness t = 8.66 mm (N = 2). Left column: full-field simulation results. Right column:
IGA simulations of the corresponding strain gradient Reissner–Mindlin plate of equivalent
continuum. Plate radii are kept constant (Ri = 50 mm and Ro = 100 mm).

For thermally induced bending, side CD is clamped, whereas constant
temperatures +T0 and −T0 are prescribed, respectively, at the upper (z =
−t/2) and lower (z = t/2) surfaces. The results of numerical simulations are
presented and compared in Fig. 7.9 in which the normalization is performed
with respect to the deflections at the plate corner B. A plot of the transversal
displacements along the annular plate side CB is depicted in Fig. 7.10 for the
plates of the first type with N = 1 (left) and second type with N = 2 (right).
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Figure 7.8: Normalized deflection of plate edge BC versus normalized arc length (starting
from corner B) of the corresponding circular segment in the mechanically induced bending
problem of a clamped annular plate. Left: plate thickness t = 4.33 mm (N = 1). Right:
plate thickness t = 8.66 mm (N = 2). Full-field simulation results (blue dots) are compared
with the reduced strain gradient (red curve) and classical (black line) Reissner–Mindlin
plate models.

Figure 7.9: Distribution of the normalized (with respect to the maximum deflections at
the plate corner B) displacement field in the thermally induced bending problem of a
clamped annular plate. Top row: plate thickness t = 4.33 mm (N = 1). Bottom row:
plate thickness t = 8.66 mm (N = 2). Left column: full-field simulation results. Right
column: IGA simulations of the corresponding strain gradient Reissner–Mindlin plate of
equivalent continuum. Plate radii are kept constant (Ri = 50 mm and Ro = 100 mm).
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Figure 7.10: Normalized deflection of edge BC versus normalized arc length (starting from
corner C) of the corresponding circular segment in the thermally induced bending problem
of a clamped annular plate. Left: plate thickness t = 4.33 mm (N = 1). Right: plate
thickness t = 8.66 mm (N = 2). Full-field simulation results (blue dots) are compared with
the reduced strain gradient Reissner–Mindlin plate model in the framework of complete
(red curve) and incomplete (black line) thermoelastic strain gradient problem formulation.

8. Conclusions and discussion

This work is a part of the development and investigation of the applica-
bility of generalized continuum theories in the context of thermomechanics of
solids, structures, materials and meta-materials. In this respect, the content
of the work can be summarized as follows – listing at the same time the main
novelties of this contribution:
1. An orthotropic version of the Mindlin type three-dimensional strain gra-
dient thermoelasticity theory has been formulated.
2. A pair of two-dimensional plate models – the Kirchhoff and Reissner–
Mindlin types – relying on the orthotropic strain gradient thermoelasticity
has been derived for the modeling of thin and thick microarchitectural plate-
like structures. In addition to dimension reduction, the plate models have
been constitutively reduced in order to minimize the number of the general-
ized constitutive parameters. Having conforming Galerkin discretizations in
mind, the plate models have been formulated as variational problems.
3. A computational homogenization method has been proposed for deter-
mining the constitutive parameters of the related higher-order constitutive
tensors. Classical constitutive parameters have been obtained via a compu-
tational homogenization method as well.
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4. The bending size effects induced by the microarchitecture of cellular plate-
like structures are shown to be captured by the generalized plate models in
a computationally realiable and efficient way.

Regarding items 1 and 4, we emphasize that this work confirms and il-
lustrates the necessity of including temperature gradients in the Helmholtz
free energy within strain gradient elasticity according to [83, 29].

Regarding item 2, we note that as in the case of classical plate models the
constitutively reduced strain gradient plate models have been designed to be
consistent in the sense that the Kirchhoff model can be seen as the thickness
limit of the corresponding Reissner–Mindlin model.

As an outlook, we conclude that locking-free numerical formulations, vi-
bration problems and experimental validation are the next relevant research
directions for the present topic. Generalized shell models and nonlinearities
of plate- and shell-like microarchitectural structures – having applications in
various fields of science and industry – are considered as the most natural
extensions for the results of this work. It is evident that nonlinearities (see
the framework for the geometrical ones in [84]), whether they are geometrical
or material, have both local and global effects on the structure and its mi-
croarchitecture during nonlinear deformations such as large displacements or
rotations, buckling, yielding and damage, in particular. Therefore, it is most
likely impossible to govern the consequences of all possible local deformation
mechanisms by one general constitutive framework. Regarding item 3 above,
this implies challenges for the parameter identification within the nonlinear
regime. Brittle damage is probably the most straightforward topic of non-
linearities as long as it can be handled via a scalar deterioration parameter
(cf. [85]).
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Appendices
A. On plane assumptions for Cauchy stresses

For brevity, we set θ = 0, which does not affect the following derivations.
By adopting the plane stress assumption expressed as σzz = 0, one can
eliminate εzz rewritten as

εzz = −Ĉ13

Ĉ33

εxx −
Ĉ23

Ĉ33

εyy (A.1)

from the constitutive law (2.7) resulting in relation (3.3) corresponding to the
Reissner–Mindlin plate model. For this case, the classical elasticity constants
are defined as follows:

C11 =
Ĉ11Ĉ33 − Ĉ2

13

Ĉ33

, C22 =
Ĉ22Ĉ33 − Ĉ2

23

Ĉ33

,

C12 =
Ĉ12Ĉ33 − Ĉ13Ĉ23

Ĉ33

, C66 = Ĉ66. (A.2)

Concerning the C2-stiffness matrix in expression (3.3), its components
are multiplied by the classical shear correction factor κ (κ = 0.85 [86]):

C44 = κĈ44, C55 = κĈ55. (A.3)

B. On plane assumptions for double stresses

As in Appendix A, we set θ = 0. By adopting the plane assumption
proposed in Section 3.1 with respect to double stresses, i.e., µzzx = µzzy =
µzzz = µxzz = µyzz = 0, one can eliminate εzz,x, εzz,y, εzz,z, εxz,z and εyz,z
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from the constitutive law (2.10) and write

εzz,x =
â1

15â
1
45 − â1

14â
1
55

â1
44â

1
55 − (â1

45)2
εxx,x +

â1
25â

1
45 − â1

24â
1
55

â1
44â

1
55 − (â1

45)2
εyy,x +

â1
35â

1
45 − â1

34â
1
55

â1
44â

1
55 − (â1

45)2
εxy,y

εxz,z =
â1

14â
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45 − â1
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44

â1
44â
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55 − (â1
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44â
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34â
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35â
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44
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44â
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â2

15â
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14â
2
55

â2
44â
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â2
25â
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45 − â2

24â
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55
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44â
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55 − (â2
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35â
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44â
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2
44

â2
44â
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44â
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12

â3
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εxx,z −
â3

13
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εxz,x −
â3

14

â3
11

εyy,z −
â3

15

â3
11

εyz,y (B.1)

resulting in relation (3.6) corresponding to the Reissner–Mindlin plate model.
The higher-order plane elasticity moduli corresponding to matrices A1 and
A2 are defined in the form (i = 1, 2)

ai11 = âi11 −
âi14 (âi14 â

i
55 − âi15 â

i
45)

âi44 â
i
55 − (âi45)2

+
âi15 (âi14 â

i
45 − âi15 â

i
44)

âi44 â
i
55 − (âi45)2

,

ai12 = âi12 −
âi14 (âi24 â

i
55 − âi25 â

i
45)

âi44 â
i
55 − (âi45)2

+
âi15 (âi24 â

i
45 − âi25 â

i
44)

âi44 â
i
55 − (âi45)2

,

ai13 = âi13 −
âi14 (âi34 â

i
55 − âi35 â

i
45)

âi44 â
i
55 − (âi45)2

+
âi15 (âi34 â

i
45 − âi35 â

i
44)

âi44 â
i
55 − (âi45)2

,

ai22 = âi22 −
âi24 (âi24 â

i
55 − âi25 â

i
45)

âi44 â
i
55 − (âi45)2

+
âi25 (âi24 â

i
45 − âi25 â
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44)

âi44 â
i
55 − (âi45)2

,

ai23 = âi23 −
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55 − âi35 â

i
45)

âi44 â
i
55 − (âi45)2

+
âi25 (âi34 â

i
45 − âi35 â

i
44)

âi44 â
i
55 − (âi45)2
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ai33 = âi33 −
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i
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i
45)
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i
55 − (âi45)2

+
âi35 (âi34 â

i
45 − âi35 â
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44)

âi44 â
i
55 − (âi45)2

. (B.2)

The A4-stiffness matrix remains unchanged, i.e., A4 = Â4. It should
be noted that the shear correction factors corresponding to double stresses
are not addressed. Details are omitted here since the higher-order moduli
affected by the shear correction factor do not appear in the reduced plate
models.
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Concerning the A3-stiffness matrix, the components are derived as

a3
11 = â3

22 −
(â3
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14 â
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15)2
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11

. (B.3)

C. Analytical solutions for Reissner–Mindlin plates

For a plate of infinite width in the y-direction (see Fig. 6.1a), bended
along the x-direction, the kinematical variables can be assumed as follows:

w = w(x), βx = βx(x), βy = 0. (C.1)

For the considered problem, the variational formulation of Section 3.4
reduces to a one-dimensional form with the load functional and bilinear form
written as

a(w, βx; ŵ, β̂x) = b

L∫

0

((D11 +R11)βx,xβ̂x,x

+D55(w,x − βx)(ŵ,x − β̂x))dx, (C.2)

l(ŵ, β̂x) = bQ1ŵ|L0 + bMxβ̂x|L0 , (C.3)

where b stands for the plate width in the y-direction, L denotes the plate
length in the x-direction, the classical bending rigidities D11 = C11t

3/12
and D55 = tC55 are defined by (3.18) and the higher-order bending rigidity
R11 = ta3

11 is calculated via (3.31) considering constant elastic moduli.
The corresponding strong form is given by the differential equations

{
0 = (D11 +R11)βx,xx +D55(w,x − βx)
0 = D55(w,xx − βx,x)

, ∀x ∈ (0, L) (C.4)
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and boundary conditions at x = 0, L as

w = w̄ or Q1 = D55(w,x − βx), (C.5)

βx = β̄x or Mx = (D11 +R11)βx,x, (C.6)

where w̄ and β̄x denote the given data on the boundaries. The analytical
solution of system (C.4) takes a general form

{
w(x) = A4x

3 + A3x
2 + A2x+ A1

βx(x) = 3A4x
2 + 6A4(D11 +R11)/D55 + 2A3x+ A2

. (C.7)

For a simply supported plate loaded by bending moments at x = 0, L,
boundary conditions are written as w(0) = w(L) = 0 and Mx(0) = Mx(L) =
−M0, leading to the following expressions for integration constants Ai:

A3 = − M0

2(D11 +R11)
, A2 = −A3L, A1 = 0, A4 = 0. (C.8)

Bending rigidity is calculated by

Dgr = − M0

t2ϕL
, where ϕL = βx(L). (C.9)

By substituting the analytical solution (C.7) with (C.8) in expression (C.9),
bending rigidity can be written in terms of plate model rigidities as

Dgr =
2

t2L
(D11 +R11), (C.10)

or equivalently in terms of material moduli as

Dgr =
t

6L
(C11 +

12

t2
a3

11). (C.11)

It should be noted that for plates bended along the y-direction the corre-
sponding analytical expression for bending rigidity includes elastic moduli
C22 and a3

33 instead of C11 and a3
11, respectively:

Dgr =
t

6L
(C22 +

12

t2
a3

33). (C.12)
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For a cantilever plate loaded by bending forces at the free edge, boundary
conditions are written as w(0) = 0, βx(0) = 0, Q1(L) = F and Mx(L) = 0,
leading to the following expressions for integration constants Ai:

A4 = − F

6(D11 +R11)
, A3 = −3A4L, A2 =

F

D55

, A1 = 0. (C.13)

Bending rigidity is calculated by expression

Dgr =
F

wL
, where wL = w(L). (C.14)

By substituting the analytical solution (C.7) with (C.13) in expression (C.14),
bending rigidity can be written in terms of plate model rigidities as

Dgr =
3(D11 +R11)D55

L(L2D55 + 3D11 + 3R11)
, (C.15)

or equivalently in terms of material moduli as

Dgr =
t

L

(C11 + 12
t2
a3

11)C55

4C55
L2

t2
+ C11 + 12

t2
a3

11

. (C.16)

For plates bended along the y-direction, the corresponding analytical expres-
sion for bending rigidity includes elastic moduli C22, C44 and a3

33 instead of
C11, C55 and a3

11, respectively:

Dgr =
t

L

(C22 + 12
t2
a3

33)C44

4C44
L2

t2
+ C22 + 12

t2
a3

33

. (C.17)

D. Analytical solutions for Kirchhoff plates

For a plate of infinite width in the y-direction (see Fig. 6.1a), bended
along the x-direction, the kinematical variables can be assumed as simply as

w = w(x). (D.1)

For the considered problem, the variational formulation of Section 4.4
reduces to a one-dimensional form with the load functional and bilinear form
written as

a(w, ŵ) = b

L∫

0

(D11 +R11)w,xxŵ,xxdx, (D.2)

l(ŵ) = bQ1ŵ|L0 + bMxŵ,x|L0 . (D.3)
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The corresponding strong form is given by the differential equation

0 = (D11 +R11)w,xxxx, ∀x ∈ (0, L) (D.4)

and boundary conditions at x = 0, L as

w = w̄ or Q1 = −(D11 +R11)w,xxx, (D.5)

w,x = β̄ or Mx = (D11 +R11)w,xx, (D.6)

where w̄ and β̄ denote the given data on boundaries. The analytical solution
of equation (D.4) takes a general form

w(x) = A4x
3 + A3x

2 + A2x+ A1. (D.7)

For a simply supported plate loaded by bending moments at x = 0, L
with boundary conditions w(0) = w(L) = 0 and Mx(0) = Mx(L) = −M0,
integration constants Ai coincide with the ones of the Reissner–Mindlin plate
model in Appendix C giving the same expressions for bending rigidity as
in (C.10) and (C.11).

For a cantilever plate loaded by bending forces at the free edge, boundary
conditions are written as w(0) = 0, w,x(0) = 0, Q1(L) = F and Mx(L) = 0,
leading to the following expressions for integration constants Ai:

A4 = − F

6(D11 +R11)
, A3 = −3A4L, A2 = 0, A1 = 0. (D.8)

Bending rigidity is calculated by expression

Dgr =
F

wL
, where wL = w(L). (D.9)

By substituting the analytical solution (D.7) with (D.8) in expression (D.9),
bending rigidity can be written in terms of plate model rigidities as

Dgr =
3

L3
(D11 +R11), (D.10)

or equivalently in terms of material moduli as

Dgr =
t3

4L3
(C11 +

12

t2
a3

11). (D.11)

For plates bended along the y-direction, the corresponding analytical expres-
sion for bending rigidity includes elasticity moduli C22 and a3

33 instead of C11

and a3
11, respectively:

Dgr =
t3

4L3
(C22 +

12

t2
a3

33). (D.12)
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E. a3
11-calibration and bending rigidity plots related to aluminium

and concrete as base materials

Bending rigidity plots corresponding to aluminium as the base material
are shown in Fig. F.1, whereas Fig. F.2 relates to concrete. The blue dots
denote the full-field simulation results with N = 1, 2, 3, 4 and 8, or t =
4.33 mm, 8.66 mm, 12.99 mm, 17.32 mm and 34.64 mm, respectively. The
red line corresponds to expression (6.1) or (6.2) depending on the boundary
condition type. The green line relates to expression (6.3). The higher-order
a3

11-modulus is calibrated such that the red line fits to the blue dots. The
corresponding values of the modulus are given in Table 7.

F. a3
33-calibration and bending rigidity plots related to aluminium

and concrete as base materials

Bending rigidity plots corresponding to aluminium as the base material
are shown in Fig. F.3, whereas Fig. F.4 relates to concrete. The blue dots
denote the full-field simulation results with N = 1, 2, 3, 4 and 8, or t =
4.33 mm, 8.66 mm, 12.99 mm, 17.32 mm and 34.64 mm, respectively. The
red line corresponds to expression (6.4) or (6.5) depending on the boundary
condition type. The green line relates to expression (6.6). The higher-order
a3

33-modulus is calibrated such that the red line fits to the blue dots. The
corresponding values of the modulus are given in Table 8.

(a) Simply supported case (b) Clamped case

Figure F.1: Bending rigidity versus plate thickness for aluminium.
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(a) Simply supported case (b) Clamped case

Figure F.2: Bending rigidity versus plate thickness for concrete.

(a) Simply supported case (b) Clamped case

Figure F.3: Bending rigidity versus plate thickness for aluminium.
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(a) Simply supported case (b) Clamped case

Figure F.4: Bending rigidity versus plate thickness for concrete.

G. a4
11-calibration and bending rigidity plots related to aluminium

and concrete as base materials

Bending rigidity plots corresponding to aluminium as the base material
are shown in Fig. G.1, whereas Fig. G.2 relates to concrete. The blue dots
denote the full-field simulation results with N = 1, 2, 3 and 4, or t = 4.33
mm, 8.66 mm, 12.99 mm and 17.32 mm, respectively.

(a) Comparison of plate models. (b) Influence of modulus a4
11.

Figure G.1: Bending rigidity versus plate thickness for aluminium.
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(a) Comparison of plate models. (b) Influence of modulus a4
11.

Figure G.2: Bending rigidity versus plate thickness for concrete.

The red line corresponds to the strain gradient Reissner–Mindlin plate
model, while the green curve relates to the strain gradient Kirchhoff plate
model. The higher-order a4

11-modulus is calibrated such that the red line
fits to the blue dots. The corresponding values of the modulus are given in
Table 9.

H. a3
13-calibration and bending rigidity plots related to aluminium

and concrete as base materials

Bending rigidity plots corresponding to aluminium as the base material
are shown in Fig. H.1, whereas Fig. H.2 relates to concrete. The blue dots
denote the full-field simulation results with N = 1, 2 and 3, or t = 4.33
mm, 8.66 mm and 12.99 mm, respectively. The red line corresponds to the
strain gradient Reissner–Mindlin plate model, while the green curve relates
to the strain gradient Kirchhoff plate model. The higher-order a3

13-modulus
is calibrated such that the red line fits to the blue dots. The corresponding
values of the modulus are given in Table 10.
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(a) Comparison of plate models. (b) Influence of modulus a3
13.

Figure H.1: Bending rigidity versus plate thickness for aluminium.

(a) Comparison of plate models. (b) Influence of modulus a3
13.

Figure H.2: Bending rigidity versus plate thickness for concrete.
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