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We propose a scheme for controlling the movement of dimers, trimers, and other multimers in optical lattices
by modulating the lattice potential. In deep optical lattices the propagation of deeply bound atomic clusters
is slowed by the high energy cost of virtual intermediate states. Adapting the well-known method of lattice
modulation spectroscopy, the movement of the clusters can be made resonant by utilizing sequences of bound-
bound transitions. Using the scheme, the mobility of each specific cluster can be selectively controlled by tuning
the modulation frequency. We formulate a simple and intuitive model and confirm the validity of the model by
numerical simulations of dimers and trimers in a one-dimensional optical lattice.
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I. INTRODUCTION

Deep optical lattices allow exceptional control of the
movement and interactions of individual atoms. The lattice
depth determines the wave function overlap, directly influ-
encing the on-site and nearest-neighbor interaction strengths
and the hopping amplitude between individual lattice sites.
Furthermore, deep optical lattices provide exceptionally long
lifetimes by limiting two- and three-body effects, opening
interesting opportunities for studying many-body physics but
also applications in ultracold chemistry [1–3].

In ultracold chemistry, the formation of molecules is con-
trolled at the quantum level. This requires careful control
of both spatial and internal degrees of freedom of atoms
and molecules [4–12]. One of the outstanding problems is
obtaining sufficiently high overlap between the ensemble of
individual atoms and the corresponding molecular state. This
overlap cannot be increased by using a higher density of the
atomic gases without severely limiting the lifetime of the
system. Deep optical lattices provide a way to do both as
deeper lattices increase the overlap of atoms in the same lattice
site, while at the same time it has the potential of increasing
the system lifetime [13–17].

Here we propose a scheme for controlling the movement
of dimers, trimers, and other multimers in a deep optical
lattice, depicted in Fig. 1. Lattice modulation spectroscopy
is a well-known method [18–20] for studying the spectrum
of bound states in an optical lattice. In the method, the
amplitude of the lasers that form the lattice is modulated.
The generated low-frequency side bands of these optical fields
can form or break pairs of atoms, and the number of doubly
occupied sites has generally been the probed signal. Periodical
shaking or modulation of the lattice has also been proposed
and used for engineering interesting lattice models [21–26], a
concept generally known as Floquet engineering (for review,
see Refs. [27,28]). In our scheme, the method is adapted for
controlling the movement of multimers by driving transitions
between specific bound states. By choosing a proper protocol
of bound-bound transitions, the multimer can propagate in

the lattice resonantly. The method can be used, for example,
for filtering desired multimer configurations or even creat-
ing more complex multimers by merging smaller ones. This
would allow preparation of, for example, a purified dimer or
trimer gas with rich interaction properties and internal degrees
of freedom that can also be controlled by lattice modulation.
Such gases would allow, for example, simulation of resonating
valence-bond ground states [29].

We formulate an effective multimer propagation model
that allows us to estimate the propagation speeds of multi-
mers when driven by resonant lattice modulation. The model
is compared with essentially exact numerical simulation of
the one-dimensional extended Hubbard model incorporating
nearest-neighbor interactions between the atoms. While the
focus of the present work is on the control of the propagation
of dimers and trimers, the method also provides new possi-
bilities of realizing interesting few- and many-body systems
through interactions between the dimers and trimers. By
controlling the lattice modulation frequency and amplitude,
the properties of the multimer excitation spectra can be tuned.
For example, lattice modulation-driven dimers and trimers are
shown to exhibit a flat band in the excitation spectrum.

The structure of the paper is the following: in Sec. II we
describe the underlying model of an extended Hubbard model
in a one-dimensional lattice. The lattice modulation-driven
propagation scheme is described in Sec. III, and in Sec. IV
we provide a simple model of the multimer propagation.
We use numerical matrix product state simulation to solve
the dynamics according to the extended Hubbard model.
Section V outlines our numerical simulation, and in Sec. VI
we show comparisons between the numerical simulation and
the multimer propagation model. Section VII discusses briefly
the feasibility of realizing this scheme in experiments. Finally,
we summarize our key results in Sec. VIII.

II. MODEL

Our theory is based on the one-dimensional extended Hub-
bard model with nearest-neighbor interactions. This model is
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FIG. 1. Scheme of the lattice modulation-driven multimer prop-
agation. Here a trimer propagates resonantly through various bound
trimer configurations. The red arrow shows the total process of the
trimer moving to the adjacent unit cell, corresponding to the hopping
of the trimer to the right by one lattice site. This process involves
three different internal states |↓↑↓〉, |�↓〉, and |↓�〉. (The first one
corresponds to the state in which one ↑ atom is located in a lattice
site with two ↓ atoms in the adjacent sites left and right. The latter
two refer to states in which the ↑ atom is in the same site with
one ↓ atom, and the other ↓ atom is in the adjacent site, right in
the first one, left in the second one.) The final state has the same
trimer configuration |↓↑↓〉 as the initial state, but now the trimer has
moved to the right by one lattice site. The different transitions take
place either due to the lattice modulation (solid and dashed lines) or
through the usual (nonmodulated) hopping (double line). The dashed
line transition to the so-called “dead-end” states is also provided by
the lattice modulation, but it will be blocked if there is a mismatch
between the intra- and interspecies nearest-neighbor interactions, V↓↓
and V↓↑.

well suited for describing low-temperature atoms in optical
lattices. The (semi-)long-range interactions can be realized
through dipole-dipole interactions or with polar molecules,
and all interaction and hopping parameters can be tuned by
utilizing interatomic Feshbach resonances and varying the
intensity of the lasers creating the optical lattice.

The many-body Hamiltonian describing the system has the
form

H =
∑
〈i j〉,σ

t0ĉ†
iσ ĉ jσ + U

∑
i

ĉ†
i↑ĉ†

i↓ĉi↓ĉi↑

+
∑

〈i j〉,σσ ′
Vσσ ′ ĉ†

iσ ĉ†
jσ ′ ĉ jσ ′ ĉiσ , (1)

where U is the on-site interaction strength, Vσσ ′ is the nearest-
neighbor interaction strength for two atoms in spin states σ

and σ ′, and the operator ĉ(†)
iσ removes (creates) a fermionic

atom of spin σ in lattice site i. The movement of the atoms in
the lattice is described by the hopping term with magnitude t0,
which is here assumed to be the same for both spin states. The
summation over 〈i j〉 refers to summation over adjacent sites
for which j = i + 1 or j = i − 1. Here we assume only two
spin states ↓ and ↑, but the model can be extended to more
complicated systems as well, and the different spin states may
also refer to atoms of different species. The model neglects
direct multiparticle hopping, and the movement of multi-

mers thus takes place through sequences of single-particle
hoppings.

In all of the calculations in this paper, we consider only
few-particle systems with either one ↑ atom and one ↓ atom
(forming a dimer) or one ↑ atom and two ↓ atoms (forming
a trimer). Notice that for these calculations, the possible
↑-↑ interaction is irrelevant. The interaction parameters that
we use throughout the paper are U = −40 t0, V↓↑ = V↓↓ =
−15 t0. Ignoring the small effect of hopping, for these pa-
rameters the trimer state has bound state energies of −70 t0
(for trimer configurations |�↓〉 and |↓�〉, that is, two ↓ atoms
are in adjacent sites and the ↑ atom is in the same site with
either forming a doublon �) and −30 t0 (for configuration
|↓↑↓〉, |↑↓↓〉, and |↓↓↑〉). Bound dimer states have energies
−40 t0 (for on-site dimer |�〉) and −15 t0 (for nearest-neighbor
dimers |↓↑〉 and |↑↓〉). This chosen set of parameters is
not special, but it allows us to utilize various bound-bound
transitions without interfering with other transitions. For ex-
ample, a bound trimer transition can be driven resonantly
with lattice modulation of frequency ω = 40 t0 and the bound
dimer transition with frequency ω = 25 t0. Neither of these
frequencies is resonant with any of the multimer-breaking
processes (for example, trimers in different configurations can
be broken at frequencies 10 t0, 15 t0, 30 t0, 55 t0, and 70 t0).
Experimentally these bound state energies can be tuned by
varying interaction strengths using, for example, Feshbach
resonances and changing the lattice depth.

The lattice modulation is described by the operator

Vm =
∑
〈i j〉,σ

tm sin (ωt )ĉ†
iσ ĉ jσ , (2)

where tm is the lattice modulation amplitude and ω the fre-
quency of the modulation. This operator can be understood
to provide an additional way for the atoms to hop between
adjacent sites by absorbing or emitting photons of frequency
ω into the modulating field. By properly choosing the mod-
ulation frequency ω, single-particle hopping transitions that
would otherwise be blocked due to different binding energies
can be allowed.

The lattice modulation operator is the same as used in
lattice modulation spectroscopy. However, the difference here
is that the modulation is not used primarily for probing prop-
erties of the underlying system but for providing it with new
properties. Indeed, the modulation is assumed to be present for
an arbitrarily long time, during which the system may evolve
far from the initial state.

The form of the lattice modulation operator is strictly valid
only in the limit of weak modulation amplitude tm, because
the amplitude modulation is realized through modulation of
the lattice potential, but the hopping parameter t and the
interaction parameters U and V have nonlinear dependence
on the lattice depth V (x) [30,31]. Still, most of the calcu-
lations below are done assuming the simple sinusoidal form
of the lattice modulation even for relatively large modulation
amplitudes. This is required in order to reduce the numerical
complexity as lower modulation amplitudes are reflected as
slower propagation speeds, which in turn would require longer
simulation times. In an experiment, the modulation amplitude
can be lower as slower propagation speeds are not a problem
assuming lifetimes are sufficiently long.
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III. LATTICE MODULATION-DRIVEN PROPAGATION

Attractive nearest-neighbor interactions provide several
bound states for dimers and trimers. The goal of the lattice
modulation-driven propagation is to utilize these bound states
and realize the multimer propagation through bound-bound
transitions. A sample process is shown for the trimer propa-
gation in Fig. 1. In the strongly interacting limit |U |, |V | � t0
there are five bound trimer configurations (only three in the
absence of intraspecies nearest-neighbor interactions): |↓↓↑〉,
|↓�〉, |↓↑↓〉, |�↓〉, and |↑↓↓〉. The movement of the trimer
to the right by a single lattice site (shown as the red arrow)
takes place by a sequence of bound-bound transitions. Two
of the transitions |↓�〉 → |↓↑↓〉 and |↓↑↓〉 → |�↓〉 involve
the lattice modulation term of the Hamiltonian, whereas the
last transition |�↓〉 → |↓�〉 involves simple hopping of the ↑
atom.

As seen in the model, the frequency of the lattice mod-
ulation should match the energy separation between the
trimer configurations |↓↑↓〉 and |�↓〉. These have the binding
energies of 2V↓↑ and U + 2V↓↑, respectively, yielding the
energy separation equal to U . Notice that this frequency
is far from any trimer-breaking transitions, and hence the
trimer propagation can be realized using only bound trimer
configurations.

A few illuminating observations can be already seen from
the model of Fig. 1. First, in the case that intra- and inter-
species nearest-neighbor interactions have a sufficient mis-
match and the two “dead-end” states |↑↓↓〉 and |↓↓↑〉 can
be neglected, the trimer propagation model yields a simple
linear chain. In the case of the lattice modulation amplitude
being equal to the hopping amplitude tm = t0, the propagation
of the trimer by a single lattice site would correspond to a
single particle propagating in a linear chain by three sites;
that is, the trimer propagation speed becomes one-third of
the single-particle propagation speed. In practice, though, this
cannot be achieved as the sinusoidal modulation amplitude tm
is always less than the bare hopping amplitude t0.

Another interesting observation is that, in the case of equal
intra- and interspecies nearest-neighbor interactions V↓↓ =
V↓↑, the trimer spectrum should have a flat band. This comes
from the possibility of having a superposition of states |↓↑↓〉,
|↑↓↓〉, and |↓↓↑〉. With equal probabilities of all these con-
figurations and opposite sign for the |↓↑↓〉 configuration, the
hopping to the states |�↓〉 and |↓�〉 is blocked by complete
destructive interference. This effect does not depend on the
magnitude of the hopping modulation amplitude tm or even
the bare hopping amplitude t0.

The flat-band dispersion is even easier to notice in the case
of the nearest-neighbor dimer propagation model. Figure 2
shows the diamond chain lattice of the dimer propagation.
This (effective) lattice is known to have a flat band [32,33].
The unit cell has three sites, and hence the nearest-neighbor
dimer has three excitation bands and one of them is flat while
the other two are dispersive.

IV. EFFECTIVE MULTIMER PROPAGATION MODEL

The simple model of the lattice modulation-driven prop-
agation allows us to write an effective multimer hopping

FIG. 2. Model of the nearest-neighbor dimer propagation
through various bound dimer configurations. The red arrow shows
the total process of the dimer hopping to the right by one site. This
process involves two alternative paths involving internal states |↓↑〉
or |↑↓〉.

Hamiltonian and solve the dispersion relations of dimers and
trimers (and in principle also larger multimers). The effective
multimer hopping Hamiltonian has the generic form

H =
∑
i,σ,σ ′

K0
σ,σ ′m̂†

iσ m̂iσ ′ +
∑
i,σ,σ ′

K1
σ,σ ′m̂†

i+1,σ m̂iσ ′ + H.c., (3)

in which the operator m̂(†)
iσ annihilates (creates) the multimer

in site i and bound-state configuration σ . The summation
over σ is over all multimer configurations that have the same
binding energy or are connected resonantly through the lattice
modulation. The first term in Eq. (3) describes transitions
between various internal states of the multimer within the
unit cell caused by hoppings of the individual atoms. Also
the second term comes from a hopping of an individual atom,
but here the transition is to a multimer state that belongs to the
adjacent unit cell, thus describing the hopping of the multimer
to the adjacent lattice site.

Diagonal elements of the matrix K0 correspond to the
binding energies of the multimer configurations. However, in
the rotating-wave approximation of the lattice modulation, the
modulation frequency ω can be incorporated as a constant
energy shift of the coupled energy levels. Assuming that the
modulation frequency is chosen to match the energy separa-
tion of the bound states, the diagonal elements of the matrix
K0 become equal and can be removed by simple energy shift.
This makes the lattice modulation operator time-independent,
leading into time-independent coupling terms in matrices K0

and K1 [34].

A. Nearest-neighbor dimer model

As an example, for the nearest-neighbor dimer model
shown in Fig. 2, the relevant internal states are the two nearest-
neighbor dimers |↑↓〉 and |↓↑〉 and one state for the on-site
dimer |�〉. The corresponding on-site matrix is

K0 =
⎛
⎝ 0 tm 0

tm 0 tm
0 tm 0

⎞
⎠, (4)

where the middle row corresponds to the on-site dimer and
the upper and lower rows to the nearest-neighbor dimer con-
figurations. While the on-site term of the model Hamiltonian
does not provide actual hopping of the multimer but merely
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rotations in the internal state space, the nearest-neighbor
hopping term allows the actual propagation. For the nearest-
neighbor dimer this is given by the matrix

K1 =
⎛
⎝ 0 0 0

tm 0 tm
0 0 0

⎞
⎠, (5)

which describes the process in which the dimer in either
of the the nearest-neighbor dimer configuration is coupled
to the on-site dimer configuration on the adjacent site. For
trimers, the number of internal states is larger and the corre-
sponding hopping matrices more complicated, but the model
Hamiltonian still satisfies the generic form of Eq. (3); see
Appendix A.

B. Multimer dispersion

The dispersion of the multimer configuration in this reso-
nant model can be calculated by taking the Fourier transform
of the effective Hamiltonian, yielding

H =
∑

k,σ,σ ′

[
K0

σ,σ ′ + e−ikK1
σ,σ ′ + eikK1†

σ,σ ′
]
m̂†

kσ
m̂kσ ′ , (6)

where k are dimensionless momenta k ∈ [−π, π ]. The dis-
persion relations are thus obtained from the eigenvalues of the
matrix

M = K0 + e−ikK1 + eikK1†. (7)

The dimensionality of the matrix M determines the number
of bands. In the case of the nearest-neighbor dimer model
described above, the matrix is

M =
⎛
⎝ 0 tm(1 + e−ik ) 0

tm(1 + eik ) 0 tm(1 + eik )
0 tm(1 + e−ik ) 0

⎞
⎠. (8)

Eigenvalues of this matrix are λ = 0 and λ =
±2

√
2tm cos (k/2). The dimer dispersion is plotted in Fig. 3

showing one flat and two dispersive bands.
Figure 4 shows the excitation spectrum of a trimer for two

cases: the three-state trimer corresponds to the model in which
the intra- and interspecies nearest-neighbor interactions have a
large offset, effectively blocking the dead-end states in Fig. 1.
In contrast, the five-state trimer corresponds to symmetric
interaction V↓↓ = V↓↑, also making the lattice modulation
transitions to dead-end states resonant. The figure shows the
band structures of the two cases, and the flat band in the
five-state model is clearly seen as the middle band at zero
energy.

C. Multimer propagation speed

The speed of the multimer propagation is determined by
the dispersion relation εk through the relation

v = ∂εk

∂k
. (9)

As different excitation bands have clearly different dispersion
relations, the propagation speed will depend on both the band
index σ and the momentum k. If the initial state of the
multimer wave function is localized, the momentum k is not
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FIG. 3. Nearest-neighbor dimer dispersion with resonant lattice
modulation. The excitation spectrum shows three bands, with two
dispersive bands (shown in black) and one flat band (in red). Notice
that the y axis is scaled by the modulation amplitude tm instead of
bare hopping t0. The bare hopping t0 does not enter the dimer model,
and hence the amplitude tm is the only energy scale in the model.

well defined, and the observed propagation speed is expected
to be an average of Eq. (9) calculated over the Brillouin zone.
This yields as the average propagation speed for multimer in
band σ

vσ
avg = 1

π

∣∣εσ
π − εσ

0

∣∣ = �σ

π
, (10)

where �σ is the width of the excitation band σ .
For the nearest-neighbor dimer, the dispersion relation was

solved above, and the width of the two dispersive bands is
2
√

2tm, which scales linearly with modulation amplitude tm.
The linear scaling might be surprising, considering that the
hopping of the dimer by one site involves two processes with
amplitude tm each. However, the process does not involve
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FIG. 4. Trimer excitation spectrum for hopping modulation am-
plitude tm = 0.5 t0. Shown are the three bands of the three-state
model (in black) and five bands of the five-state model (in dotted red),
which includes the coupling to dead-end states. The third (middle)
band in the five-state model is flat.
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FIG. 5. Widths of the trimer excitation bands. For a three-state
trimer (left), two of the bands (red crosses) have equal widths, and
the third band (dotted) has a width equal to twice the width of the
other two. For the five-state trimer (right), four of the bands have
equal widths (solid line), while one band is flat with zero width (red
crosses).

virtual intermediate states as the lattice modulation makes the
transitions resonant. Indeed, one can view the lattice modu-
lation as causing Rabi oscillations between the bound dimer
states. However, now the Rabi oscillations are associated with
the hopping process, and hence the propagation speed scales
in the same way as the resonant Rabi frequency, which has
linear dependence on the coupling constant.

Figure 5 shows how widths of the various trimer bands
increase rapidly with the modulation amplitude. The three-
state model incorporates two narrow bands (top and bottom
bands in Fig. 4) and one band with double the width. These
widths can be calculated analytically. The two narrower bands
have widths

� = 2t0

√
2r2 + 1

3

[
cos

φ

3
− cos

(
π

3
− φ

3

)]
, (11)

where φ = arctan
√

( 2r2+1
3 )

3 1
r4 − 1, and r = tm/t0. The third

band has a width exactly twice the width of the other two. In
the limit of weak lattice modulation, r → 0, Eq. (11) yields
2t2

m/t0.
The five-state trimer model, which includes dead-end

states, has four bands with equal widths and one flat band of
zero width. The nonflat bands yield slightly lower propagation
speeds than the three-state model. This is a combinatorial
effect since additional states will reduce the probability that
the trimer will eventually complete the whole cycle of tran-
sitions required for the hopping process. For the five-state
trimer the reduction in speed is roughly 50% compared to that
of the three-state trimer. However, the combinatorial slowing
may turn out to be much more important in the case of
larger multimers if the number of dead-end states increases
significantly with the larger number of bound states. On the
other hand, as seen in the case of the three-state model, it may
be possible to eliminate these states by breaking symmetries
in interaction channels.

V. NUMERICAL SIMULATIONS

We have performed numerical simulations of the lattice
modulation-driven propagation of dimers and trimers in a
one-dimensional lattice using the highly accurate method of

matrix product states (MPS) [35]. MPS has proved to be a
very successful numerical technique in describing both static
and dynamic properties of one-dimensional systems [36].

The system is initialized by solving the interacting ground
state in a small box of two sites at the center of a larger
lattice of 100 sites for both dimers and trimers. At time t = 0
the lattice modulation is switched on, the box is opened, and
the atoms expand into the larger lattice. The time evolution
is evaluated using the time-dependent variational principle
(TDVP) [37] to calculate the time evolution of the density
distribution of both ↑ and ↓ atoms. The time step in the
dynamics was fixed to 0.01 1

t0
. However we have performed

convergence checks for lower time step values. The ground
state calculations have been performed with a bond dimension
of 1000, whereas for the time evolution, up to 500 states have
been kept, leading to an error of less than 10−8.

The numerical results below show the ↓-atom density.
Since the lattice modulation frequency is far from any dimer-
or trimer-breaking transitions, considering only the single-
particle density is sufficient for determining the propagation
of the multimer. For a short analysis of dimer- and trimer-
breaking transitions, see Appendix B.

VI. COMPARISON WITH SIMULATIONS

Figure 6 shows the simulated propagation of the nearest-
neighbor dimer for two different modulation amplitudes. The
frequency of the modulation, ω = V↓↑ − U = 25 t0, is at the
resonance of the bound-bound transition between a deeply
bound on-site dimer (with binding energy U = −40 t0) and
nearest-neighbor dimer (with binding energy V↓↑ = −15 t0).
The simulation thus satisfies the assumptions of the dimer
model in Fig. 2. Figure 6 shows also the expected density
wavefronts based on the propagation speed calculated from
the model. The numerical and analytical results agree very
well, confirming the predicted linear scaling of the propaga-
tion speed.

Figure 7 shows the simulated propagation of a trimer with
equal intra- and interspecies nearest-neighbor interactions,
V↓↓ = V↓↑. The lattice modulation is driven at frequency
ω = |U | = 40 t0. This corresponds to the transition between
deeply bound trimer states and thus satisfies the assumptions
of the five-state trimer model in Fig. 1. The figure shows the
wavefront-like spreading of the initially localized trimer wave
packet. Overlaid in the figures are the expected maximum
propagation speed determined as the maximum of Eq. (9) for
the calculated dispersion and the average of the propagation
speed from Eq. (10). The model fits the results from the
simulation very well. Furthermore, we also show the expected
propagation speed in the absence of the lattice modulation.
This describes the flat band contribution, as the hopping of the
↑ and ↓ atoms involving virtual broken-trimer states yields
a finite propagation speed even for the flat band states. In
the limit of a very deep optical lattice, this contribution also
vanishes.

Figure 8 shows the similar simulated trimer propagation
as in Fig. 7. However, here the intraspecies nearest-neighbor
interaction V↓↓ is set to zero. This means that two of the trimer
configurations |↓↓↑〉 and |↑↓↓〉 become far off-resonant
from the lattice modulation, and the system thus realizes the
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FIG. 6. Numerical simulation of the nearest-neighbor dimer
propagation with lattice modulation (modulation amplitude tm =
0.3 t0 in the top and tm = 0.6 t0 in the lower figure). Solid black
lines show the expected propagation speeds 2

√
2tm
π

. Numerical data
show the logarithmic ↓-atom density 〈ni,↓〉 as a function of time and
position.

three-state trimer model of Fig. 1. Predicted propagation
speeds can again be seen to describe well the observed time
evolution.

VII. EXPERIMENTAL CONSIDERATIONS

The lattice modulation scheme proposed here is applicable
to present experiments done with dipolar and polar gases in
optical lattices. A deep optical lattice yields long lifetimes and
also opens wide band gaps to higher lattice bands suppressing
interband transitions. Low temperatures are not required, and
the modulation itself is a well-known method. A closely
related experiment in 2011 used lattice modulation together
with a tilted lattice to control propagation of bosonic atoms in
a strongly interacting Mott-insulator state [38].

FIG. 7. Numerical simulation of the trimer propagation with
lattice modulation. Modulation amplitudes are tm = 0.5 t0 (top) and
tm = 0.7 t0 (bottom). The solid black line shows the maximum ve-
locity in the dispersion spectrum according to Eq. (9). The dashed
line shows the average speed from Eq. (10), and the dash-dotted line
shows the expected propagation in the absence of lattice modulation.
Numerical data show the logarithmic ↓-atom density 〈ni,↓〉 as a
function of time and position.

The method requires having large separations between
various bound-bound transitions. However, otherwise it works
over a large combination of on-site and nearest-neighbor
interactions. Indeed, part of the bound states may be even
repulsively bound [39]. For example, an attractive nearest-
neighbor interaction V↓↑ = V↓↓ and repulsive on-site inter-
action U would give trimer states with energies 2V (for
configurations |↓↑↓〉, |↑↓↓〉, and |↓↓↑〉) and 2V − U (for
configurations |�↓〉 and |↓�〉). For most values of U and V ,
the bound-bound trimer transition at frequency ω = |U | is far
from any trimer-breaking transitions. This is true even in the
case of U > |2V |, which corresponds to a transition between
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FIG. 8. Numerical simulation of the three-state trimer propaga-
tion with lattice modulation. Modulation amplitude is tm = 0.5 t0.
The solid black line shows the maximum velocity from Eq. (9), while
the two dashed black lines show the average propagation speeds
of the two bands. Numerical data show the logarithmic ↓-atom
density as a function of time and position. Compared to Fig. 7,
here the intraspecies nearest-neighbor interaction V↓↓ is set to zero,
eliminating the dead-end states of the five-state model.

the ground state trimer and a repulsively bound trimer state
with energy larger than zero.

In an experimental realization, the interaction parameters
U and V should be even larger relative to the hopping t0
than used in this work. For example, the bare propagation
speed of dimers in the absence of lattice modulation scales
as 4t2

0 /(U − V ), which for the parameters used here is close
to half of the propagation speed seen in Fig. 6. Even deeply
bound trimers propagate in the absence of lattice modulation,
albeit generally at a much slower speed [40]. In order to
have significant increase of speed from the lattice modulation,
the bare propagation speed needs to be lower. Fortunately,
increasing the lattice depth will strongly suppress hopping t0,
thus increasing ratios U/t0 and V/t0. However, care must be
taken to avoid various molecular states that may arise from
confinement-induced resonances. For that purpose having an
repulsive on-site interaction U may be advantageous.

If the nearest-neighbor interaction is large, then the next-
nearest-neighbor interactions may also be significant. While
this makes the bound state structure of the system more com-
plicated, additional bound states may improve the scheme,
as more options will be available for realizing the hopping
protocol.

An experimental setup realizing the scheme could involve
an expansion in a lattice and filtering out all singlons and
trimers in order to obtain a system consisting of dimers only.
By modulating the lattice to enhance the mobility of trimers,
with singlons always moving relatively rapidly, only dimers
will be left in the initial position. Similarly a purified trimer
gas could be generated by lattice modulation at the bound-
bound dimer transitions. Resulting multimer gases can then

be detected using quantum gas microscopes [41–46] or with
lattice modulation spectroscopy.

A purified dimer or trimer gas would be useful also
for ultracold chemistry experiments. In these experiments,
producing a large overlap between the constituent atoms
and the corresponding molecular state remains a formidable
challenge. In a typical ultracold gas experiment, the average
interatomic distance is of the order of 104 a0, whereas the
typical size of a molecule is orders of magnitude smaller.
This overlap has been shown to increase dramatically in
deep optical lattices [13–17], and the scheme proposed here
allows controlling the low-energy dynamics of the atomic
ensemble. The actual molecule formation is then driven by the
two-photon stimulated Raman adiabatic passage (STIRAP)
process [4].

VIII. CONCLUSION

We have studied lattice modulation-driven propagation
of dimers and trimers in a simple one-dimensional lattice.
Nearest-neighbor interactions provide multiple bound states
for the multimers. Resonantly driving bound-bound transi-
tions, the propagation of multimers in a deep optical lattice
can be controlled. A simple effective model was formulated
and shown to provide an accurate description of the scheme
in the case of dimers and trimers. For larger multimers, the
bound state structure will be richer, but the propagation speed
will be slower due to the larger number of single-particle
hoppings required for the movement of a large multimer.
However, in principle the simple scheme presented here
should apply to larger systems as well.

Resonant lattice modulation was shown also to provide
interesting dispersion relations, with flat bands appearing in
nearest-neighbor dimer and trimer excitation spectra. The
dispersion relations can further be varied by detuning the
modulation frequency, using multiple frequencies (multicolor
modulation), and by having different modulations for different
atomic species.

The propagation of multimers can further be controlled by
tilting the lattice. Combining lattice modulation with the tilt,
even the propagation direction can be chosen.

Finally, this work considered only a one-dimensional op-
tical lattice. However, the scheme itself is applicable to two-
and three-dimensional lattices as well, as well as lattices with
more complicated geometry, as long as suitable bound-bound
transition protocols can be found for enhanced propagation.
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APPENDIX A: EFFECTIVE TRIMER HOPPING
HAMILTONIAN

For the trimer the effective hopping Hamiltonian is

H =
∑
i,σ,σ ′

K0
σ,σ ′m̂†

iσ m̂iσ ′ +
∑
i,σ,σ ′

K1
σ,σ ′m̂†

i+1,σ m̂iσ ′ + H.c., (A1)
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where the corresponding matrices for the five-state trimer
propagation are

K0 =

⎛
⎜⎜⎜⎝

0 tm 0 0 0
tm 0 tm t0 0
0 tm 0 0 0
0 t0 0 0 tm
0 0 0 tm 0

⎞
⎟⎟⎟⎠ (A2)

and

K1 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 tm 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠, (A3)

where the basis states correspond to configurations |↑↓↓〉,
|�↓〉, |↓↑↓〉, |↓�〉, and |↓↓↑〉.

For the three-state trimer, the matrices are

K0 =
⎛
⎝ 0 tm t0

tm 0 0
t0 0 0

⎞
⎠ (A4)

and

K1 =
⎛
⎝0 0 0

0 0 tm
0 0 0

⎞
⎠, (A5)

where the basis states correspond to configurations |�↓〉,
|↓↑↓〉, and |↓�〉. The three-state trimer eigenstates are solu-
tions of the characteristic equation

λ3 − λ
[
2t2

m + t2
0

] + 2t2
mt0 cos k = 0. (A6)

APPENDIX B: TWO-PARTICLE CORRELATORS AND
TRIMER-BREAKING TRANSITIONS

The figures in the main text show only the single-particle
densities at the resonant frequency for the bound-bound
transitions. Since any bound-unbound transitions are far off-
detuned, the dimers and trimers remain very stable. However,
it is instructive to consider a sweep of the lattice modulation
frequency. Figure 9 shows the time evolution of the ↓-atom
density as function of time for six different modulation fre-
quencies. The figure shows that, except for an exponentially
small background of initially unbound particles, for most
frequencies the transport is strongly suppressed. The resonant
bound-bound transition, which was considered in the main
text, is at the frequency ω = 40 t0. The corresponding figures
shows a notable speed increase in the propagation. Another
key frequency is ω = 30 t0, which corresponds to the trimer-
breaking transition, in which the trimer is broken into an on-
site dimer and one ↓ singlon. The singlon is seen to propagate
very rapidly. Figure 10 shows the ↑-atom density as function
of time for the same sets of data as in Fig. 9. As long as
the trimer is stable (i.e., at all frequencies except ω = 30 t0),
both ↑- and ↓-densities show the same propagation. However,
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FIG. 9. The single-particle density of the ↓ atoms as a function of
time at various lattice modulation frequencies. For most frequencies,
the propagation is slow. However, a speed increase is seen at the
bound-bound transition of ω = 40 t0. In addition, at the trimer-
breaking transition ω = 30 t0 a rapidly propagating singlon wave
front is seen.

when the trimer is broken at ω = 30 t0, the ↑ density shows
only a slowly propagating density, corresponding to the slowly
propagating on-site dimer. This dimer propagation cone is also
visible in the ↓ density.

Comparing these two sets of single-particle density profiles
shows quite well that the trimer is stable over a wide range of
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FIG. 10. The single-particle density of the ↑ atom as a function
of time at various lattice modulation frequencies. Unlike for ↓
atoms, the propagation speed is slow for all frequencies. At the
trimer-breaking transition ω = 30 t0, the propagation of the ↑ atom
is slowed by the residual binding to one ↓ atom as an on-site dimer.

033602-8



MANIPULATING MULTIMER PROPAGATION USING … PHYSICAL REVIEW A 100, 033602 (2019)

1.00

1.01

1.02

1.03

1.04

ω = 20

0.500
0.505
0.510
0.515
0.520
0.525

0
8

16
24
32
40

r ↓
↓

ω = 30

0

5

10

15

20

r ↑
↓

0 5 10 15 20 25 30 35 40

time [units of 1/t0]

1.02
1.04
1.06
1.08
1.10
1.12
1.14

ω = 40

0 5 10 15 20 25 30 35 40

time [units of 1/t0]

0.52

0.56

0.60

0.64

0.68

FIG. 11. The average distances between the two ↓ atoms (r↓↓)
and the ↑ atom and the ↓ atoms (r↑↓) as a function of time. For most
lattice modulation frequencies ω, the distances remain small cor-
responding to a stable trimer configuration. However, at frequency
ω = 30 t0 the distances increase rapidly with time as the trimer is
broken into an on-site dimer and a rapidly propagating singlon.

frequencies. In particular, the trimer is stable at the bound-
bound transition where the propagation speed increase of the
trimer occurs.

Besides single-particle densities, one can also study two-
particle correlators. Figure 11 shows the average distance
between the two ↓ atoms (r↓↓) and the distance between the
↑ atom and the ↓ atoms (r↑↓). These correlators are defined
as

rσσ ′ =
∑

i j |i − j|〈ni,σ n j,σ ′ 〉∑
i j〈ni,σ n j,σ ′ 〉 , (B1)

where ni,σ = c†
iσ ciσ . The figure shows how the average dis-

tance between the two ↓ atoms remains very close to one
and the distance between ↑ and ↓ atoms close to one half.
This combination corresponds to the |�↓〉- and |↓�〉-trimer
configurations. However, at the trimer-breaking frequency
ω = 30 t0 both average distances increase very rapidly. The
distance between the ↑ and ↓ atoms is one half of the distance
r↓↓, because one of the ↓ atoms is at the same site as the ↑
atom in the on-site dimer configuration.
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