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ABSTRACT
Automatic tennis stroke recognition can help tennis players im-
prove their training experience. Previous work has used sensors
positions on both wrist and tennis racket, of which different physi-
ological aspects bring different sensing capabilities. However, no
comparison of the performance of both positions has been done yet.
In this paper we comparatively assess wrist and racket sensor posi-
tions for tennis stroke detection and classification. We investigate
detection and classification rates with 8 well-known stroke types
and visualize their differences in 3D acceleration and angular veloc-
ity. Our stroke detection utilizes a peak detection with thresholding
and windowing on the derivative of sensed acceleration, while for
our stroke recognition we evaluate different feature sets and classi-
fication models. Despite the different physiological aspects of wrist
and racket as sensor position, for a controlled environment results
indicate similar performance in both stroke detection (98.5%-99.5%)
and user-dependent and independent classification (89%-99%).

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; Visualization; • Computing methodologies→ Machine
learning; • Applied computing→ Life and medical sciences.
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1 INTRODUCTION
Wearable sensors can help tennis players analyze their tennis stroke
technique, improve training effectiveness, and prevent injuries [2–
4, 12, 14, 19, 27, 30]. Wearable technology is on the rise across
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sports in general, and in tennis its use is already allowed even
during competitions [8], which in turn allows for reviewing critical
information in a game during set breaks [33]. Quantifying the
external workload, which is the amount of work performed by
an athlete, is fundamental for the training process in sports. In
tennis, the external hitting load (also called shot count, whichmeans
counting the shots and potentially also the type of shots) is an
important part of the external workload. The current standard in
tennis to measure the external hitting load is manual counting –
which is time intensive, prone to human error and bias, and in some
cases might not be possible at all [11, 29]. There are commercial
products which provide counting and various other statistics for
tennis. However, studies have indicated (cf. [16]) that the counting
and classification performance of such systems might still be rather
weak.

From a technical perspective, tennis strokes are mainly sensed
with computer vision or wearable motion sensors [31]. The former
can be expensive, complex, and their access can be limited [13].
Extracting relevant information about tennis from video sources
is furthermore computationally expensive [15]. Wearable sensor
however are already widely used in several sports [13] in general,
still get integrated into more sport applications [33], have a great
potential to detect sport movements [9], and have already been
proven to be effective for biomechanic sports analysis [13]. Wear-
able sensor for tennis are thereby either placed in the racket handle,
on the strings, on the grip, or on the player’s wrist [18].

While previous work used sensors either on racket or wrist,
those positions have not yet been directly compared to each other.
This paper closes this gap: we compare wrist and racket as sen-
sor positions for stroke detection and classification. To understand
differences in data from wrist and racket we visualize and com-
pare acceleration and angular velocity of 8+3 well-known types of
tennis strokes. For stroke detection we employ a peak detection,
thresholding, and windowing on the acceleration derivative [18].
For stroke recognition we evaluate 4 machine learning models with
3 feature sets, of which we use the results to assess the applicability
of wrist and racket as tennis sensor position.

In our evaluation we utilize video data of a semi-professional
tennis player to allow for error-free alignment and marking of the
phases of the considered strokes (e.g. backswing, forward swing,
the impact point of the ball, follow through, and the start and end
of the execution [17, 31]) in the sensed acceleration and angular
velocity data. Based on this synchronization, we use inertial mea-
surement unit (IMU) sensor data of multiple players to quantify
detection and segmentation performance, in which players vary
the execution speed and the target location of their tennis strokes.
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The corresponding dataset consists of 5 tennis players performing
8 different stroke types multiple times, resulting in a total of about
2000 stroke samples. For stroke classification, to compare wrist and
racket as sensor position, each is assessed with multiple models and
feature sets. Model training thereby relies on cross validation for pa-
rameter tuning and selection. Evaluation results are then presented
in a comparative manner for both positions in a user dependent
and independent settings. Summarizing, the contribution of this
paper are:

• We record and utilize data of semi-professional tennis players
for our evaluation: of one player for combined video and
IMU data, and of 5 players for extended IMU data.

• We visualize acceleration and angular velocity for 8+3 well-
known tennis stroke types for both wrist and racket as basis
for investigating their distinct stroke characteristics.

• We compare the performance of tennis stroke detection and
segmentation for data sensed on wrist and racket.

• We extract 3 different feature sets and employ 4 different
machine learning models to classify the extracted tennis
strokes. We then use the best suited model to compare the
stroke classification performance of wrist and racket.

2 RELATEDWORK
In this section we review previous work on assisting tennis with
wearable sensors, including tennis stroke detection and recognition
with IMU sensors andmachine learning, as well as other approaches
utilizing concepts useful for our goal.

Video-based approaches were the first to be used in sport appli-
cations [13]. Video footage thereby serves feature extraction and
classification of different stroke types [10, 24, 26, 32]. With IMU
sensors becoming more popular, Ó Conaire et al. [22] used 6 on-
body worn WIMUS sensors and various video cameras to detect
and classify strokes, and to compare accelerometer and video as
data for tennis. As video processing for tennis can be expensive,
has a limited access, and as the size and costs of IMUs have reduced
substantially, since then IMU sensors have become more widely
used for sport applications [13].

Several previous work has utilized IMUs for detection and clas-
sification of tennis strokes. Also related domains have addressed
similar problems with wearable sensors. For example, in table ten-
nis, Blank et al. [5] detect and classify 8 different stroke types with
a miPod sensor, which is mounted on the front-end of the handle
of the table-tennis racket. In the tennis domain itself, there is dif-
ferent related work that classifies various tennis stroke types using
IMU data and different sensor positions for the data collection. The
majority of approaches use a sensor strapped on the wrist of the
dominant arm [4, 6, 18, 20, 28, 29]. Connaghan et al. [10] use a sim-
ilar position instead: on the middle of the forearm. Besides wrist,
data sensed from the racket was used as well. Zhao et al. [31] place
a sensor above the handle, and Pei et al. [23] embedded it into the
handle. [21] place a sensor on the upper back region of the handle.
Three sensors are used by Büthe et al. [7] for stroke classification by
placing a sensor on the racket and one on each foot, to additionally
detect steps of the player. Ó Conaire et al. [22] use multiple sensors
and place six sensors on both lower legs, both forearms, the chest,
and the back.

As sensors, both self-built prototypes [18, 20, 22, 23] and com-
mercial sensing systems [4, 6, 7, 21, 28, 29] have been used. Most
frequently, the IMUs used process acceleration within ±16д, and the
gyroscopes used a range of±2000 degs [18, 23, 29, 31]. Anand et al. [4]
and Srivastava et al. [28] use a smartwatch sensor with an accelera-
tion range of ±8д, Brzostowski and Szwach [6] one with ±4д. Büthe
et al. [7] record the gyroscope data with a range of ±500 degs instead
of ±2000 degs . The utilized sampling rates range from 25Hz [28] over
100Hz [4, 6, 18, 21, 23, 31], 120Hz [22], 200Hz [7], to 500Hz [29].

For distinguishing strokes, different stroke types have been con-
sidered in literature. The most common are serve (also called smash
in many publications), forehand, and backhand [6, 10, 18, 21, 22].
Further types include topspin and backspin, or topspin and slice [4,
7, 28]. Pei et al. [23] further distinguish serve and smash as two
different strokes. Zhao et al. [31] divide their strokes into serve,
groundstrokes, and volley. Whiteside et al. [29] distinguish 8 well-
known strokes: serve, forehand, forehand slice, forehand volley,
backhand, backhand slice, backhand volley, and smash. Additional
to those, true negative samples (non-strokes) are recorded and
trained as an additional stroke type.

There are different approaches to detect strokes in an IMU data
stream. One is peak detection on acceleration data with a predefined
threshold. Zhao et al. [31] use x-axis data, which is aligned with
the handle of the racket, and consider spikes over 9g as a stroke.
Connaghan et al. [10] and Ó Conaire et al. [22] set a threshold for
the calculated acceleration magnitude of 3g and 8g. In addition to
such thresholding, Whiteside et al. [29] add rules to eliminate false
negative detections. Those include a minimum distance to adjacent
maxima of 1.25 s, or alternatively gyroscope resultant values within
0.06 s on both sides of the acceleration maxima exceeding ±400 degs .
Pei et al. [23] use a sliding window approach, where calculated
feature values that defined the volatility of the selected data repre-
sented a stroke only if a defined threshold is reached. Where the
previous approaches mainly use the lobe of the accelerometer data,
Anand et al. [4] additionally consider the calculated energy of the
gyroscope data for their threshold shot detection approach. The
authors find that the shape of the acceleration on the x-axis and the
g-energy data of the shots in tennis and squash have a particular
form. This leads to Dynamic Time Warping (DTW) on a reference
template being effective in detecting their strokes. Büthe et al. [7]
use only the gyroscope data and discretize them with k-means. Kos
and Kramberger [18] calculate the sum of the two-point derivative
of every axes on acceleration data. After averaging, thresholding is
used, in which each peak in the signal represented a stroke.

For segmenting strokes, most approaches use a simple time win-
dow around the detection point [4, 10, 22, 23, 29, 31]. To extract
features from a detected stroke for subsequent classification, Zhao
et al. [31] extract the mean, standard deviation (std), skewness,
kurtosis, minimum, and maximum of each axis of the acceleration
and gyroscope data, and additionally use the amplitude of both,
which results in a total of 38 features. Whiteside et al. [29] extract
40 features including min, max, median, integral, and discrete value
at the time of impact of every axis from the acceleration and gyro-
scope data, as well as their resultant. Bigger sets of features with
subsequent feature selection are considered by Brzostowski and
Szwach [6] and Anand et al. [4]. The former include Mel-Frequency
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Cepstrum Coefficients (MFCC) of the acceleration data and a princi-
pal component analysis (PCA) for dimension reduction. The latter
uses the data of the accelerometer and gyroscope to derive about
2000 features, including statistical features, pairwise correlation
coefficients, and shape-based features for predefined stages in de-
tected stroke. The authors apply a correlation-based feature selec-
tion which reduces their feature set to 300-500 distinct features.

Most stroke classification uses machine learning. However, other
approaches exist as well. Kos and Kramberger [18] and Pei et al. [23]
both use rule based methods. The former utilize minimum andmaxi-
mum values of gyroscope data at the bi-point for their classification
decision, the latter instead combine accelerometer, gyroscope, and
the converted gravity data in Euler angles. Büthe et al. [7] and
Büthe et al. [7] vote for a specific class with the longest common
subsequence (LCSS) algorithm, while Srivastava et al. [28] at the
first stage classify with DTW between forehand, backhand, and
serve, and then use quaternion DTW (QDTW) to distinguish slice,
flat, and topspin. Frequently used machine learning models for
stroke classification include Naive Bayes (NB) [10, 31], support
vector machine (SVM) [22, 29, 31], decision and classification tree
(CT) [29, 31], random forest (RF) [21, 29, 31], k-nearest neighbor
(KNN) [6, 22, 29], neural network (NN) [4, 29] and logistic regression
(LG) [4, 6]. Further models include AdaBoost [31] and discriminant
analysis [29].

In all previous work, no comparative visualization or interpreta-
tion of IMU-sensed data of different tennis strokes – with wrist and
racket as sensor position – has been done yet. Visualizing those
strokes would aid future research that explores further ways of
recognizing them, for example by illustrating distinct characteris-
tics in acceleration and angular velocity that define stroke types.
Furthermore, no comparison between wrist and racket as sensor
position for IMU sensors in tennis has been done yet. Since those
two positions bring different sensing capabilities, it would be in-
teresting to quantify their applicability for tennis stroke detection
and classification.

3 APPROACH
Our method for detecting and classifying tennis strokes with IMU
sensors comprises of data acquisition with acceleration and gyro-
scope sensing, stroke visualization, stroke detection and segmenta-
tion, and stroke classification. The corresponding details of each
are stated in this section.

3.1 Data Acquisition
To record tennis strokes we use two XSens MTw-38A70G20 sensors.
Their housing dimension are 34.5 x 57.8 x 14.5mm (W x L x H), their
weight is 27 g, and they are connected to one XSens Avinda Station
for data transfer. We mount one sensor on the throat of the racket,
and attach one to the wrist of the hand holding the racket (Fig. 1).
For the wrist we use the sensor strap holder provided by XSens. For
the racket, we use a self-built 3D printed sensor holder. The target
of this holder was to bring the sensor as near as possible to the
rackets balance point. To avoid distortion, the holder is constructed
sturdily and strapped as tight as possible using four 4.6mm laces.
In contrast, the sensor on the wrist is strapped less tight to not

Figure 1: Sensor setup on wrist and racket.

constrict the arm of the player. For all our recording we use a
Babolat Pure Strike 16/19 racket.

For data validation and synchronization, we further record in-
dividual sequences of strokes with a 1080p 240Hz video camera
and a 720p 30Hz video camera. The first serves as primary data
source for precise synchronization of stroke parts with data sensed
from the IMU sensors with one selected player. The second serves
validating the sensor input data over the whole recording phase
with all players to account for sensor hardware problems, players
performing different than the planned strokes, and alike. To syn-
chronize IMU sensor data with video data we use a synchronization
gesture. In it, the player hits a tennis ball two times with the racket
while facing the camera. This procedure is used at the start and the
end of the recording.

Besides video, we record 13 data-streams, including the acceler-
ation, angular velocity sensed by the gyroscope, free-acceleration,
magnetic field, all in 3 axis, as well as the pressure. However, in
preliminary experiments we found acceleration and angular ve-
locity to best suited for our approach, which agrees with findings
from literature, which is why we utilize only those two data sources
in our evaluation. The gyroscope value range is ±1200 degs , the ac-
celerometer value range is ±160ms2 , and their sampling rates are
100Hz.

In our approach we collect four different types of data sets
(Tab. 1). The stroke visualization data set (DS1) represents different
stroke types, the ball impact data set (DS2) variations of ball speed
and stroke speed of one specific stroke type, the varied strokes data
set (DS3) the varying stroke execution and target ball direction of
different stroke types, and the stroke classification data set (DS4) the
data for the subsequent machine learning.

We consider two different sets of strokes in our approach. The
big stroke type set (ST1) contains 11 different stroke types: forehand
(fh), backhand one- (bh1h) and two-handed (bh2h), forehand vol-
ley (volleyFh) and slice (sliceFh), backhand volley (volleyBh) and
slice (sliceBh), serve straight (serveStr), slice (serveSli), and kick
(serveK), and smash (smash). In the small stroke type set (ST2), the
one- and two-handed backhand strokes are grouped into one class
(backhand), as well as the three serve types are group to one class
(serve). Therefore, ST2 contains only 8 instead of 11 different stroke
classes.
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Table 1: Data sets used in our evaluation.

DS1 DS2 DS3 DS4
Nr. of stroke types 11 1 (fh) 8 8
Repetitions 5 5 20 50

Stroke movement constant slow,
fast variation variation

Ball impact constant no, slow,
fast variation constant

Video recording 240Hz,
30Hz

240Hz,
30Hz

240Hz,
30Hz 30Hz

Different players 1 1 1 5

3.1.1 Stroke visualization data set (DS1). DS1 contains the acceler-
ation and angular velocity data of five tennis strokes recordings, for
each stroke type considered in ST1 performed 5 times, which results
in a total of 55 samples. Data is recorded with a semi-professional
tennis player. Each recording includes the synchronisation gesture
and the corresponding stroke five times, and is also recorded in
video (240Hz). The ball is thrown to the player with constant speed
by hand, and the player performs a representative stroke for the
specific type to answer the ball.

3.1.2 Ball impact data set (DS2). DS2 differs from DS1 in that only
one stroke type (forehand) is performed by the player. The different
recordings vary in the movement of the stroke itself, which can
either be light or strong, and the impact speed of the incoming ball,
which can either be slow, fast, or no ball. This results in 6 different
possible settings of ball impact.

3.1.3 Varied strokes data set (DS3). For DS3 the 8 stroke types
of ST2 are recorded with a synchronization gesture by the same
player as DS1 and DS2. For each recording the player performs
20 repetitions of the corresponding stroke while varying stroke
movement and target direction of the ball.

3.1.4 Classification data set (DS4). DS4 contains data of 5 experi-
enced players, which each perform each stroke type in ST2 around
50 times. 4 of the players are male and one is female. The mean
age of the participants is 23 years (std 4 years) and their height
is 179.2 cm (std 4.0 cm). All players play two-handed backhands
and the tennis grips vary between participants and stroke type
(from continental grip to western grip). Their ITN-Austria rating,
which indicates the skill level of tournament player from 1 (high)
to 10 (low), ranges from 2.1 to 8.7 (mean 5.6, std 2.4). DS4 contains
around 400 stroke samples per player, and a total of about 2000
stroke samples. All players did vary their stroke movements, and
for serve class of strokes, they used all three stroke subtypes. The
balls were tossed to the player with a ball machine, which results in
minimal variation in ball speed and direction. Due to the amount of
samples in DS4, errors in data recording, such as players perform-
ing a different stroke type, performing a non-relevant movement
with the arm, or twirling the racket in the hand, are present in DS4.
For data cleaning we manually synchronize and compare video
and IMU data and remove errors. Errors not removed include if a
player rotates the racket in the hand during the recording. This
leads to having IMU data of one sensor having a rotated orientation,
resulting in a rotated coordinate system of sensed data. To revert
this rotation we invert the y- and z- axis of the accelerometer and
gyroscope streams for rotated samples.

Figure 2: Images of the video footage at the detected stroke
phase times.

3.2 Stroke Visualization
The goal of our data visualization of tennis strokes for wrist and
racket is to better understand distinguishing key characteristics in
their acceleration and angular velocity. We deem this to be impor-
tant for achieving good subsequent preprocessing, in both our own
work as well as future work in tennis stroke recognition. For our
visualizations we use DS1 and choose one representative stroke
of every stroke type. For each of those stroke samples we extract
the exact start and end time of stroke phases and label them in the
corresponding 240Hz video footage of the stroke (Fig. 2). Those
include stroke start, backswing end, ball impact, follow through
end, and stroke end. Since the utilized sensors are only specified
to work up to 16g, acceleration outside that area – which possibly
delivers unreliable values – is marked with a yellow background.

3.3 Stroke Segmentation
Our stroke detection and segments automatically finds and extracts
strokes from only the continuous stream of IMU sensor data, with-
out requiring video data. In our recordings we found acceleration
to reliably show a significant value change in a short period of time
when the ball hits the racket. We therefore apply peak detection on
the derivative averaged accelerometer data. At first we calculate the
derivative of all three accelerometer axes individually, then average
the axes. On the resulting one-dimensional stream we use a max
value detection algorithm to extract all ball impact points. Peaks
thereby need to be apart from each other by a predefined window
to avoid the same peak being detected multiple times. Peaks further
need to have a minimum height, which we solve with a threshold a
peak needs to surpass. To obtain a robust threshold, we derive our
threshold on empirical basis from DS3, in which stroke samples
are performed with varying style, speed, and ball direction. The
determined threshold value is ±15m

s3
(Fig 3, threshold depicted as

horizontal red line), which in DS3 leads to 100% correctly detected
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Figure 3: Stroke detection with a backhand slice sample
sensed on the racket. Upper figure: derivative of averaged
acceleration (blue) and peak threshold (red). Lower figure:
acceleration (blue) and the detected peaks (dashed black) de-
picting the ball impact points.

DS4 segmentation

model 
selection and 

evaluation

feature extraction

FS1

FS2
model 

selection and 
evaluation

feature 
selection

FS3 
(raw data)

model 
selection and 

evaluation
PCA

Figure 4: Stroke classification processing chain.

ball impact points for both sensor positions, which furthermore
have been assessed to also agree 100% with the video recordings
of DS3. While the upper part of Fig. 3 depicts the acceleration de-
rivative, the lower parts depicts the actual acceleration of strokes
detected with our peak detection and thresholding. After detecting
stroke peaks we segment the IMU data around the peak to obtain
stroke samples. For this segmentation we use a 1 s window which
results in samples containing 0.5 s of data both before and after
detected peaks.

3.4 Stroke Classification
Based on our stroke detection we employ a classification to recog-
nize the stroke type. In our classification evaluation we evaluate
a total of 4 different models with 3 different feature sets for both
wrist and racket as sensor position (Fig. 4).

For this we at first detect strokes in DS4 and extract both ac-
celerometer and gyroscope data for our samples. We then extract

model selection and evaluation

k-fold CV 
parameter 
grid search

k-fold CV 
result 
report

manual 
model 

selection

user 
dependent 

model 
evaluation

user 
dependent 
train/test 

split

test split

train 
split

retrain 
model 

with whole 
train-set

user 
independent 

CV report
best model 
parameter

best 
model

Figure 5: Model selection and evaluation processing chain.

Table 2: Hyparparameter ranges used during grid search.

Model Hyperparameter range
SVM linear C=[3-20 , 32]

SVM rbf C=[3-7 , 36], γ =[3-10 , 3-1]
KNN neighbors=floor([1.50 , 1.59])
CART max_depth=[2, 15]

3 feature sets (FS1-FS3) for each sample, which we subsequently
individually evaluate and compare results of. For FS1 we extract
the same features as Whiteside et al. [29], which include min, max,
median, integral, and the discrete sensor value at ball impact time.
FS2 is an extended version of FS1 that also includes standard de-
viation (std), skewness, kurtosis, innerquartile range, frequency
bands, as well as the zero and mean crossing rate. In contrast to FS1
and FS2, FS3 consists of only the raw accelerometer and gyroscope
sensor values. Applying this feature extraction on all 6 considered
axes of tennis stroke sample together with the two corresponding
magnitudes, this leads to samples with FS1 containing a total of
40 features, 480 features with FS2, and 800 features with FS3. We
subsequently perform feature selection on FS2 and FS3. With FS2
we employ a mutual info classifier [25] which reduces the features
to 100. With FS3 we employ principal component analysis (PCA) for
dimension reduction. We thereby use a threshold of 99% of variance
preserved in the data, which results in 75 principal components
remaining as the features in FS3.

We use multi-stage data partitioning in our model training and
evaluation (Fig. 5). We at first do a 80/20 train/test split for a user-
dependent model evaluation due to the limited amount of partici-
pants in our data. Within the training partition we employ a 10-fold
cross validation (10CV) with a hyperparameter grid search for each
model type (Tab. 2) to determine the best suited hyperparameter
set per model for our classification. This is done for both wrist and
racket as sensor position.

The hyperparameter sets that yield the highest stroke classifi-
cation accuracy in the 10CV are selected separately for wrist and
racket. They then are re-verified with a double-CV using a second
10CV on the same data with different partitions to compensate for
selection bias. Subsequently, the two models are trained with the
whole training set for user-dependent evaluation, which is then
done with the whole test set. For the user-independent evaluation
we use a leave-one-subject-out CV on all data and average the
results over the corresponding left-out participants.
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4 EVALUATION, RESULTS, AND DISCUSSION
4.1 Stroke Visualization
We use the stroke data visualization example (see appendix, Fig. 9
and 10) with the data of one player as both basis to investigate
if different strokes might be hard to detect or to classify in our
work, as well as basis for future work to investigate further stroke
characteristics. The player who originated the data uses the western
grip [1] for forehand strokes and a standard one- and two-handed
grip otherwise.

The accelerometer values of the x-axis in general are higher than
the other two axes, independent of the stroke type. We assume
this is caused by the centrifugal force of the arm rotation over the
whole stroke phase. The strongest accelerometer and gyroscope
changes furthermore seem to occur in the forward swing and follow
through phase of a stroke. Those phases vary from 0.5 s-1.08 s (mean
0.78 s, std 0.17 s), with only the time of the smash exceeding 1 s. As
expected, major peaks in acceleration data are visible when the ball
hits the racket (marked with dotted red lines in the figures).

Because of the major value change at the ball impact point all
strokes seem easily detectable. A time window of 1 s second (0.5 s
before and after the ball impact point) further seems to cover all
major data changes corresponding to the stroke.

4.1.1 wrist vs. racket. Acceleration sensed on the racket seems to
in general be stronger than on the wrist. At the visualizations of
the overhead stroke types, which include the three different serves
and the smash, the acceleration peaks of the wrist are higher than
the one of the racket. Nevertheless, because the maximal recording
value of the sensors is 16g and the curve of the forward swing and
follow through is broader, we assume that the data of the racket
also exceeds the wrist values.

4.1.2 fh vs. bh1h. We recognize, that the racket acceleration data of
the z-axis from the forehand is characteristically similar to the cor-
responding backhand data, but horizontally mirrored. This might
be, due to the ball hitting the racket on the other side of the hit-
ting surface to which the z-axis of the sensor is normal to. The
gyroscope racket data show similar characteristics between the
two strokes for the z-axis and the same mirrored occurrence as
mentioned before for the y-axis. The gyroscope data from the wrist
shows the same characteristics as the racket data.

Whereas the characteristics of specific axes are mirrored as well
in the acceleration as in the gyroscope data, the forehand seems be
be well distinguishable from the one-handed backhand.

4.1.3 bh1h vs. bh2h. These two stroke types have very similar
characteristics in all data streams. The acceleration data of the z-
and y-axis from the two-handed backhand have in this case higher
values. This can be spotted in both sensor data, racket and wrist.

Because of the similarities of these two stroke types, we assume
to be able to group them to one stroke type backhand (bh).

4.1.4 serveStr, serveSl, serveK, and smash. Also, these four stroke
types look very similar, based on their characteristics. The types
also have high acceleration values on the x-axis which exceeds the
16g sensor range.

In order to create the two stroke types serve and smash for the
classification process, the different serves in our assessment can be

0 0.2 0.4 0.6 0.8
Time in seconds

150

100

50

0

50

100

A
cc

el
er

at
io

n 
in

 m
/s

^
2

(a) z-axis accelerometer

0 0.2 0.4 0.6 0.8
Time in seconds

30

20

10

0

10

A
ng

ul
ar

 V
el

oc
it

y 
in

 r
ad

/s

(b) y-axis gyroscope

Figure 6: Segments backhand strokes from all participants.

grouped to one stroke type, but the distinction between serve and
smash could be a problem.

4.1.5 volley vs. normal. In general, in the volley stroke types we
see lower sensor values than in the normal forehand and backhand
graphs. The acceleration z-axis values of the volley strokes have
the same characteristics as the values of the normal strokes. It
seems that the volley strokes have more similar max values over
all three axes, whereas for the normal stroke types the x-axis of
the acceleration data shows more dominance. For the gyroscope
data we observed, that for the forehand the x- and z-axis have other
characteristics than the normal strokes whereas for the backhand
strokes only the data of the racket z-axis show differences.

For these two types we expect to be able to distinguish between
them, regarding the max acceleration values in relation to all three
axes and because of the different characteristics of the gyroscope
data.

4.1.6 slice vs. volley. Compared to the volley strokes, the stoke
type slice shows very similar characteristics over all data streams.

Because of the similarities we assume problems to differentiate
between these two stroke types.

4.2 Stroke Segmentation
For the evaluation of the stroke detection and segmentation we use
DS4. We visualize the detected ball-impact points together with
the acceleration data of the recordings. From those we derive true
positives (TP) as the correct detections of strokes, false positives (FP)
as erroneous detections of non-strokes, as well as false negatives
(FN) as erroneous non-detection of strokes. The resulting accuracies
are then calculated on the corresponding TP, FP and FN rates for
both wrist and racket as sensor position.

With our approach we therefore are able to obtain 98.47% detec-
tion accuracy for wrist and 99.44% racket as sensor position over
all stroke types (Tab. 3). When distinguishing stroke types two
groups become visible: the first includes forehand volley, backhand
volley, and the slice backhand with wrist data. Those show a higher
FN-rate (FNR) caused by the threshold being too high to detect
certain strokes. The second contains serve and smash with racket
data, which show higher FP-rate (FPR). This is caused by the racket
hitting the floor or the body of the player after the follow through.
The corresponding impact is wrongly detected as a ball impact.

After the stroke detection, a fixed sized window around the ball
impact point is segmented from the used data streams. The resulting
strokes over all players and samples are visualized in an example
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Stroke type wrist racket wrist & racket
fh 100% 99.7% 99.9%
bh 100% 100% 100%

serve 100% 97.8% 98.9%
volleyFh 95.8% 100% 97.9%
volleyBh 94.9% 99.7% 97.3%
sliceFh 99.3% 100% 99.6%
sliceBh 98.3% 99.7% 99.0%
smash 99.5% 98.7% 99.1%

average 98.28% 99.44% 98.86%
Table 3: Stroke detection accuracies for different stroke
types (rows) and sensor positions (columns).

(a) Models for wrist data

(b) Models for racket data

Figure 7: Cross-validation results for model selection.

for backhand strokes in Fig. 6(a), which shows the z-axis of the
accelerometer, and Fig. 6(b), which shown the y-axis of the gyro-
scope. All samples show clear alignment and key characteristics
when centered at the ball impact point (the clearly visible peak).
The same is applies to all other stroke types, which allows us to
generalize from Fig. 9 and 10 to other players.

4.3 Stroke Classification
For our classification evaluation we use strokes extracted from DS4.

Fig. 7(a) and 7(b) depict the best accuracy per model type from
the 10CV evaluation from which the best model is chosen for wrist
and racket as sensor position. A linear SVM model performs best
for both positions with C = 3−8, using FS3. The average accuracies
of FS1 and FS2 are nearly equal, with 91.3% and 91.0%. However,
using FS3 outperforms both with with 96.6%, effectively reducing
the error to less than half. The mean accuracy over all wrist models
is 93.4%, while racket achieves a comparable value with 92.5%.

We then evaluate the linear SVM models in a user-dependent
manner on the test set (Fig. 8(a) and 8(b)), and in a user-independent

mannerwith leave-subject-out-cross-validation over all data (Fig. 8(c)
and 8(d)). The user dependent test set yields an accuracy of 99.55%
for the wrist. 2% of the volley forehands and the slice forehands
are wrongly confused with each other. In comparison, racket test
data yields an accuracy of 98.23%, with some confusion between
backhand volleys and slices as well as between serves and smashes.

In contrast, the user-independent set yields worse results. This
is expected due to the classification being applied to users unseen
during training, which indicates the ability to generalize to new
players. Wrist results indicate an accuracy of 89.30% and confusion
is mostly between serve and smash: with wrist data, 40% of serves
are wrongly classified as smashes. Further confusion is between
forehand slice and smash, as well as forehand slice and volley. In
comparison to wrist, racket as sensor position seems to be slightly
more robust: especially less serves are confused (15% as smashes,
5% as forehands). However, more smashes are confused as serves
(13%) and forehands (15%).

4.4 Summary
Our visualization of well-known tennis strokes indicates a clear
rapid acceleration change at the time of the ball impact to the racket.
This applies to all stroke types and for both wrist and racket as
sensor position. A 1 s window around the ball impact (0.5 s before
to 0.5 s after) covers the characteristic value changes of acceleration
and angular velocity data corresponding to the stroke. The agree-
ment of multiple samples of the same stroke type, over different
players, is largest at the ball impact point. When comparing wrist
and racket, acceleration and angular velocity values are in general
lower for wrist than racket. When comparing strokes, forehand
and one-handed backhand are well distinguishable. However, one
and two-handed backhands are more difficult to distinguish. This
also applies to distinguishing serves from smashes and slices from
volleys.

With our peak detection based stroke detection and segmenta-
tion, all 8 considered stroke types can be detected well for both the
wrist and racket sensor position, with a mean accuracy of 98.9% (std
0.9%). False positives are mostly caused after serves and smashes,
when the racket hits the body or the floor after the follow through.
False negatives are caused by a too high threshold, which mostly
affects volleys or light slices.

For stroke type classificationwe found a SVMwith a linear kernel
to be most effective, together with raw acceleration and angular
velocity features and PCA for dimension reduction to 75 features
per stroke sample. This setup outperformed other, hand crafted
feature sets by around 6% accuracy. A subsequent validation with
user-dependent test data yields around 98% accuracy for both sensor
positions. This indicates that both wrist and racket are comparable
when models are trained for the individual user. A further user-
independent evaluation yields accuracies around 90%, where the
racket seems to perform slightly better than the wrist. This indicates
that if models are not trained for individual users but are meant to
generalize to new users, then a higher error of around 10% should
be expected for both wrist and racket. The most frequent confusion
thereby occurs between serve and smash, smash and volley, and
slice and volley.
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(a) User-dependent wrist (b) User-dependent racket (c) User-independent wrist (d) User-independent racket

Figure 8: Confusion matrices for wrist and racket, assessed in a user-dependent and user-independent way.

5 CONCLUSION
In this paper we visualized acceleration and angular velocity data
of 8+3 well-known tennis stroke types, and compared wrist and
racket as sensor position for stroke classification. We recorded 11
different stroke types for both sensor positions. For stroke detection,
we use a peak detection on the averaged derivatives of the data of
the three acceleration axes. Those peaks occur at the ball impact
time and are clearly visible and detectable. We then segment a 1 s
window around the peak, which in our data yields around 2000
stroke samples over all types. Our stroke classification compares 4
machine learning models types (SVM linear and radial, KNN, and
CART) and 3 feature sets (2 hand-crafted and one with raw sensor
values and subsequent PCA).

Our results indicate that tennis strokes in general can be detected
well for both wrist and racket (nearly 99% detection accuracy). In
our setup we used a single threshold for both positions, which
lead to a small amount of false positives. With two independent
thresholds those could likely be avoided in future work. In stroke
classification, our user-dependent results indicate that strokes can
be distinguished well (around 98% for both wrist and racket). This
indicates a) that if models are trained for individual users recog-
nition can be expected to be good, and b) that neither wrist nor
racket did bring significant advantages over each other for stroke
classification with our evaluation setup. Our user-independent test
indicates a lower accuracy of around 90% for both wrist an racket,
where racket slightly outperforms wrist. This indicates that the
generalization of models beyond the users they are trained for (e.g.
new tennis players using the system without training) should be
expected to cause significantly higher error rates, likely due to
differences in execution of tennis strokes. Future work could ex-
tend this investigation with a dataset of more players and different
skill levels, as well as different play styles. We expect such data
to contribute to the generalization ability of the resulting models.
It could also investigate if there are stroke types beyond the ones
considered in our work for which either racket or wrist do bring
significant advantages in stroke type recognition, which seem to
not be the case for the ones considered in our work.
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(a) straight serve (serveStr)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time in s

300

200

100

0

100

200

300

Ac
ce

le
ra

tio
n 

in
 m

/s
^2

Acceleration - serveSli - racket
Acc_X
Acc_Y
Acc_Z
Acc_R

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time in s

300

200

100

0

100

200

300

Ac
ce

le
ra

tio
n 

in
 m

/s
^2

Acceleration - serveSli - wrist
Acc_X
Acc_Y
Acc_Z
Acc_R

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time in s

40

20

0

20

40

An
gu

la
r V

el
oc

ity
 in

 ra
d/

s

Angular Velocity - serveSli - racket
Gyr_X
Gyr_Y
Gyr_Z
Gyr_R

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time in s

40

20

0

20

40

An
gu

la
r V

el
oc

ity
 in

 ra
d/

s

Angular Velocity - serveSli - wrist
Gyr_X
Gyr_Y
Gyr_Z
Gyr_R

(b) slice serve (serveSli)
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(c) kick serve (serveK)

Figure 9: Visualization of the three serve types.
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(a) forehand (fh)
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(b) forehand slice (sliceFh)
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(c) one-handed backhand (bh1h)
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(d) backhand slice (sliceBh)
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(e) two-handed backhand (bh2h)
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(f) forehand volley (volleyFh)
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(g) smash (smash)
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(h) backhand volley (volleyBh)

Figure 10: Visualization of all 11 stroke types excluding serve.


