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Abstract: Nanostructures with complex geometry have gathered interest recently due to some
unusual and exotic properties associated with both their shape and material. 3D multi-branched SnO2

one-dimensional nanostructrures, characterized by a “node”—i.e., the location where two or more
branches originate, are the ideal platform to distribute signals of different natures. In this work, we
study how this particular geometrical configuration affects light propagation when a light source (i.e.,
laser) is focused onto it. Combining scanning electron microscopy (SEM) and optical analysis along
with Raman and Rayleigh scattering upon illumination, we were able to understand, in more detail,
the mechanism behind the light-coupling occurring at the node. Our experimental findings show that
multi-branched semiconductor 1D structures have great potential as optically active nanostructures
with waveguiding properties, thus paving the way for their application as novel building blocks for
optical communication networks.

Keywords: nano-optics; light scattering; nanowires; 3D multi-branched nanostructures; waveguiding
effect in nanostructures; tin oxide nanostructure; SnO2

1. Introduction

Mesoscale and nanoscale systems with a topology characterized by bends or crossings, such as V-,
T- or Y-shaped crosswise or multi-armed structures, provide a fascinating playground for the study of
transport and interference phenomena. In recent years, multi-terminal electronic devices based on
semiconductors or 2D materials allowed the study of phase-coherent quantum transport, [1–3] as well
as tunneling [4] and broken symmetry effects [5]. More recently, the formation of nanostructures with
controlled size and morphology has been the focus of intensive and multidisciplinary research [6–8].
Such nanostructures are important in the development of nanoscale devices, and in the exploitation
of the properties of nanomaterials [9]. In particular, quasi-1D metal-oxides represent a novel class
of nanomaterials with increasing interest due to their functional properties and their corresponding
applications in different fields, spanning from energy conversion and harvesting (thermoelectrics,
photovoltaic and solar cells) [10], to gas sensing and light emission [11]. In this scenario, branched
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nanostructures represent unique, 3D building blocks for the “bottom-up” approach to nanoscale science
and technology [12–15], regarded as very promising for several applications such as photocatalysis [16],
batteries [17], gas sensing [11] and more. Recent studies have also shown that modifying the shape of
the waveguide [18,19] or its surface [20] can lead to both uni- and bi-directional coupling as a result
of spin-orbit interaction. More recently, tin oxide (SnO2) nanowires (NWs) are emerging for their
versatility and potentialities: (i) organized in microarray or aligned in membranes, they can act as
innovative percolating sensing elements [21], or provide the active materials for electronic channels
implementing logic devices on deformable non planar substrates [22] and (ii) individual SnO2 NWs
have been proposed as building blocks for several innovative applications such as in situ observation
of electrochemical processes [23] or development of high-sensitivity humidity sensors [24].

In this work, we have developed multi-branched SnO2 one-dimensional nanostructures,
characterized by a “node”— i.e., the location where two or more branches originate—and we have
studied how this particular morphological configuration affects light propagation when a light source
(i.e., laser) is focused onto the nanostructure.

Combining scanning electron microscopy (SEM), optical analysis along with Raman and Rayleigh
scattering, we were able to further understand some of the mechanisms behind the light-coupling
occurring at the node. Our experimental findings demonstrate that multi-branched semiconductor 1D
structures have great potential as optically active nanostructures with waveguiding properties, thus
paving the way for their application as novel building blocks for optical communication networks.

2. Materials and Methods

The fabrication of SnO2 NWs has been presented elsewhere [25,26]. SnO2 NWs were dispersed
in isopropanol solution and then deposited onto SiO2/Si substrates by spin coating, reaching an
approximate density lower than 0.01 tube/µm2.

Light scattering measurements were carried out in backscattering geometry, with the incident
laser polarized parallel to the axis of the NWs, and with unpolarized collected light. We used a
micro-Raman set-up (Horiba Jobin-Yvon Labram HR) with ~1 cm−1 spectral resolution, equipped with
an X100 objective (laser spot < 1 µm) and an excitation laser at 632.8 nm wavelength.

3. Results and Discussion

Figure 1 shows scanning electron microscopy (SEM) images of SnO2 NWs. NWs are dispersed from
an IPA-based solution onto SiO2/Si substrates by the spin-coating technique; we observed numerous
multi-branched nanostructures, characterized by several different geometries, lengths (several microns)
and diameters (100 nm–1 µm). The details on the synthesis of these nanostructures are given
elsewhere [25,26]. We focus our attention on the site where the branches originate (or equivalently
merge), hereafter called the “node”. Our interest on this special location arises from the fundamental
and broad significance of the concept of the “node”: dealing with networks or devices, a node is the
site through which a signal can propagate and be redistributed, independently of its physical nature
(e.g., electromagnetic wave, electron/spin/heat current, information, etc.). We believe, however, that
this concept is multi-faceted. From a different perspective, a node can also be regarded as the site for
the injection of a signal (e.g., light, current, heat, sound, etc.) which might be transferred and/or shared
with the surrounding network.
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Figure 1. (a,b) Scanning electron microscopy (SEM) images of multi-branched SnO2 NWs. Insets 
provide detailed view of the “node”, where the two or more branches originate. 

In this work, we want to demonstrate how light propagates and can be manipulated through a 
3D multi-branched semiconductor nanostructure. Figure 2 shows how, using a micro-Raman 
objective, it is possible to focus the laser beam (He-Ne, λ ≈ 632 nm) directly on the nanostructure, in 
particular close to (a) the center of straight NW and (b) to a primary node (dashed square in Figure 
2b). In a straight NW, we do not observe any light propagation along the nanostructure, 
independently of the incident light intensity (top and bottom panels of Figure 2a refer to different 
incident light power, as indicated). However, in the case of multi-branched nanostructure (Figure 
2b), we detect light spots at the termination of each branch or in correspondence to the secondary 
nodes (dashed circles in main optical image). This effect is enhanced if we increase (by an order of 
magnitude) the power of the incident laser beam from 0.1 μW (top panels) to 1 μW (bottom panels), 
which leads to a clear brightness increase. We note here that, for both incident powers at the node 
location, output signal at the termination of each branch shows variations in intensity. Although we 
are currently not able to measure each individual output signal, we believe this is mainly due to the 
different shape, diameter, length and tip configuration of each branch [27,28]. Furthermore, if we 
illuminate the same nanostructure, at a location along the straight segment of one NW arm, this effect 
disappears (not shown). This is consistent with the observation of Figure 2a: light injection is 
completely absent in the straight NW of Figure 2a, even if we increase the incident light power to 10 
μW. These findings clearly suggest that the node, and its illumination, play a key role as a “coupler” 
of the impinging laser to the different branches; that all act as nanoscale waveguides. In fact, we have 
observed that light is confined and propagates through each and every branch, whereas at each end 
the confinement vanishes and the light is emitted with a solid angle, which depends on the 
morphology of the branch termination. We highlight here that in our experimental configuration, the 
laser is focused perpendicularly to the sample, and we observe that the nodes are the only locations 
where the coupling of the laser into the branches is effective. This waveguiding effect is very 
promising for applications in nano-optics; it is relatively simple and it does not require special 
conditions for coupling. Due to the principle of optical reversibility [29], we expect that SnO2 
nanostructures also behave as classical waveguides; when laser light is injected into the termination 
of any branch (or into the one of a straight NW), it should propagate onto the node (or the other end 
of the straight NW). Optimal coupling conditions would require the light to enter coaxially into an 
arm and be focused exactly at the tip. In this sense, the optical coupling in such conditions is quite 

Figure 1. (a,b) Scanning electron microscopy (SEM) images of multi-branched SnO2 NWs. Insets
provide detailed view of the “node”, where the two or more branches originate.

In this work, we want to demonstrate how light propagates and can be manipulated through
a 3D multi-branched semiconductor nanostructure. Figure 2 shows how, using a micro-Raman
objective, it is possible to focus the laser beam (He-Ne, λ ≈ 632 nm) directly on the nanostructure, in
particular close to (a) the center of straight NW and (b) to a primary node (dashed square in Figure 2b).
In a straight NW, we do not observe any light propagation along the nanostructure, independently
of the incident light intensity (top and bottom panels of Figure 2a refer to different incident light
power, as indicated). However, in the case of multi-branched nanostructure (Figure 2b), we detect
light spots at the termination of each branch or in correspondence to the secondary nodes (dashed
circles in main optical image). This effect is enhanced if we increase (by an order of magnitude) the
power of the incident laser beam from 0.1 µW (top panels) to 1 µW (bottom panels), which leads to
a clear brightness increase. We note here that, for both incident powers at the node location, output
signal at the termination of each branch shows variations in intensity. Although we are currently
not able to measure each individual output signal, we believe this is mainly due to the different
shape, diameter, length and tip configuration of each branch [27,28]. Furthermore, if we illuminate the
same nanostructure, at a location along the straight segment of one NW arm, this effect disappears
(not shown). This is consistent with the observation of Figure 2a: light injection is completely absent in
the straight NW of Figure 2a, even if we increase the incident light power to 10 µW. These findings
clearly suggest that the node, and its illumination, play a key role as a “coupler” of the impinging laser
to the different branches; that all act as nanoscale waveguides. In fact, we have observed that light is
confined and propagates through each and every branch, whereas at each end the confinement vanishes
and the light is emitted with a solid angle, which depends on the morphology of the branch termination.
We highlight here that in our experimental configuration, the laser is focused perpendicularly to the
sample, and we observe that the nodes are the only locations where the coupling of the laser into the
branches is effective. This waveguiding effect is very promising for applications in nano-optics; it
is relatively simple and it does not require special conditions for coupling. Due to the principle of
optical reversibility [29], we expect that SnO2 nanostructures also behave as classical waveguides;
when laser light is injected into the termination of any branch (or into the one of a straight NW), it
should propagate onto the node (or the other end of the straight NW). Optimal coupling conditions
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would require the light to enter coaxially into an arm and be focused exactly at the tip. In this sense,
the optical coupling in such conditions is quite critical and might require complex laser-nanostructure
geometry, which is currently beyond our experimental capability. In addition, the morphology of the
tip termination of each branch might be difficult to control, since producing smooth and flat tips is
currently a challenging task.
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Figure 2. Light propagation in an individual (a) straight and (b) multi-branched SnO2 NWs where
the laser beam has been directed to the center of the NW and to a node, respectively. For each panel,
bright (lamp ON) and dark (lamp OFF) images are shown, as functions of the incident laser power
(as indicated). Light does not propagate in the straight NW illuminated in its center (a), whereas by
illuminating a node (b), we observed bright spots at the end of each NW branch. This effect is amplified
with increasing incident light intensity, thus showing waveguide effects. The scale bar is 5 µm.

We note here that this waveguide effect in multi-branched SnO2 nanostructures has been observed
at nodes with dimensions comparable to the wavelength (λ) of the incident laser (λ≈ 632 nm). In general,
the transmission spectra of a multi-branched NW will depend on several parameters, such as the optical
properties of the material, shape and size of the nanostructure, tip geometry and shape, and more.
To envision and develop specific applications, it might be desirable to investigate the complete spectral
response as a function of key parameters, e.g., by injecting light in the nodes with a tunable laser or a
white light source coupled to a monocromator, and positioning a suitable detector in the neighborhood
of the end tip. Although the comprehensive study of the mechanism underlying the coupling between
the laser and the node is beyond the scope of this work, we investigated light scattering effects in such
nanostructures to better understand the role played by the node and the branches.

Figure 3a shows the Raman spectrum of an individual straight SnO2 NW dispersed on a SiO2/Si
substrate. The Raman spectrum was measured at room temperature with the laser beam focused
approximately at the center of the NW. We clearly observed the lines of the tetragonal rutile structure
of the SnO2 crystals, corresponding to the active modes Eg (~476 cm−1), A1g (~633 cm−1) and B2g

(~774 cm−1). These Raman lines were first detected in bulk SnO2 crystals [30] and more recently also
in straight SnO2 NWs with diameters in the range of 4–80 nm and lengths of up to several hundred
µm [31]. In addition, we observed a strong band at ~300 cm−1 and a weak satellite band at ~690 cm−1,
both of them already reported in the literature [32]. The band at ~300 cm−1 is theoretically predicted
by a rigid ion model of the phonon dispersion curves, while the second band at ~690 cm−1 can be
interpreted as an effect due to both confinement and disorder that can induce the LO A2u mode at
687 cm−1 to acquire Raman activity by symmetry breaking [33].



Materials 2019, 12, 3148 5 of 9
Materials 2019, 12, x FOR PEER REVIEW 5 of 9 

 

 

Figure 3. (a) Room temperature Raman spectrum of an individual and isolated straight SnO2 NW, 
measured at λ = 632.8 nm with the laser spot focused on the central region of the NW. (b) Intensity of 
the A1g Raman line of SnO2 (obtained from Lorentzian fitting of the Raman band at 633 cm−1) as a 
function of the r/R ratio between the radius of the NW (r) and the radius of the laser beam (R). (c) 
Calculated Raman active volume V(r) as a function of the r/R ratio. See Supporting Information for 
details on the calculation of the Raman active volume. 

First, we investigated the diameter-dependence of the Raman spectrum of individual and 
isolated straight SnO2 NWs. The spectra measured in NWs with diameters ranging from 250 nm to 
1.1 μm show the progressive enhancement of the A1g band at 633 cm−1, for which a Lorentzian fit 
allows it to obtain the corresponding intensity for each diameter, as reported in Figure 3b. While 
increasing the diameter, the intensity of the A1g band exhibits a monotonous increase of almost two 
orders of magnitude. We note that, in this experiment, the incident laser polarization is parallel to the 
NW axis, but we are not selective in the polarization of the collected scattered light. Thus, the 
obtained Raman spectra were not sensitive to possible effects dependent on the diameter of the NW 
(optical resonances), whose detection would also be required to be selective in the polarization of the 
measured light [34]. Moreover, the increase of the A1g band intensity can be directly related to the 
increase of the volume V(r) of Raman active material probed by the laser beam, being r the radius of 
the NW. In a simplified view, V(r) is the closed volume resulting from the orthogonal intersection 
between the laser beam (i.e., a cylinder with diameter D = 2R ≈ 1 μm, being R the radius of the laser 
beam) and the underlying NW (i.e., a uniform cylinder with diameter d = 2r varying between 250 nm 
and 1.1 μm), as schematically illustrated in the inset of Figure 3c. Although V(r) cannot be analytically 
solved, it can be numerically calculated (see Supporting Information) for given values of the 
parameter r/R in the range between 0 and 1, as shown in Figure 3c. Overall, the V(r) dependence from 
r/R reproduces quite well the observed diameter-dependence of the intensity and area of the A1g 
band, both qualitatively and quantitatively (about two order of magnitude increase).  

After studying the Raman signature of an individual SnO2 NW as a function of its diameter, we 
have then focused on how the presence of a node may affect such experimental signal and its 
measurement. The top panel of Figure 4 shows the Raman spectra characteristics of SnO2 NWs, where 
the laser beam has been directed towards (−) the node or (−) one of its branches, as labeled and shown 
in the corresponding SEM image. When the node was optically excited, we observed a clear overall 
signal enhancement of all the characteristic Raman bands of SnO2. 

Figure 3. (a) Room temperature Raman spectrum of an individual and isolated straight SnO2 NW,
measured at λ = 632.8 nm with the laser spot focused on the central region of the NW. (b) Intensity
of the A1g Raman line of SnO2 (obtained from Lorentzian fitting of the Raman band at 633 cm−1)
as a function of the r/R ratio between the radius of the NW (r) and the radius of the laser beam (R).
(c) Calculated Raman active volume V(r) as a function of the r/R ratio. See Supporting Information for
details on the calculation of the Raman active volume.

First, we investigated the diameter-dependence of the Raman spectrum of individual and isolated
straight SnO2 NWs. The spectra measured in NWs with diameters ranging from 250 nm to 1.1 µm
show the progressive enhancement of the A1g band at 633 cm−1, for which a Lorentzian fit allows it
to obtain the corresponding intensity for each diameter, as reported in Figure 3b. While increasing
the diameter, the intensity of the A1g band exhibits a monotonous increase of almost two orders of
magnitude. We note that, in this experiment, the incident laser polarization is parallel to the NW
axis, but we are not selective in the polarization of the collected scattered light. Thus, the obtained
Raman spectra were not sensitive to possible effects dependent on the diameter of the NW (optical
resonances), whose detection would also be required to be selective in the polarization of the measured
light [34]. Moreover, the increase of the A1g band intensity can be directly related to the increase of the
volume V(r) of Raman active material probed by the laser beam, being r the radius of the NW. In a
simplified view, V(r) is the closed volume resulting from the orthogonal intersection between the laser
beam (i.e., a cylinder with diameter D = 2R ≈ 1 µm, being R the radius of the laser beam) and the
underlying NW (i.e., a uniform cylinder with diameter d = 2r varying between 250 nm and 1.1 µm), as
schematically illustrated in the inset of Figure 3c. Although V(r) cannot be analytically solved, it can be
numerically calculated (see Supporting Information) for given values of the parameter r/R in the range
between 0 and 1, as shown in Figure 3c. Overall, the V(r) dependence from r/R reproduces quite well
the observed diameter-dependence of the intensity and area of the A1g band, both qualitatively and
quantitatively (about two order of magnitude increase).

After studying the Raman signature of an individual SnO2 NW as a function of its diameter,
we have then focused on how the presence of a node may affect such experimental signal and its
measurement. The top panel of Figure 4 shows the Raman spectra characteristics of SnO2 NWs, where
the laser beam has been directed towards (−) the node or (−) one of its branches, as labeled and shown
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in the corresponding SEM image. When the node was optically excited, we observed a clear overall
signal enhancement of all the characteristic Raman bands of SnO2.Materials 2019, 12, x FOR PEER REVIEW 6 of 9 
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Figure 4. (a) Raman spectra measured at different locations (node and branch) of a T-branched SnO2

NW, as shown in the SEM image. (b) Rayleigh spectra measured at node (solid line) and arm (dashed
line) locations for different and increasing incident laser power (0.1, 1 and 10 µW).

Furthermore, Figure 4b (bottom panel) similarly reports the Rayleigh spectra collected at the
node and arm as a function of incident laser power (0.1, 1 and 10 µW), again demonstrating that the
elastic scattering is strongly enhanced (approximately two-fold) at the node site. Key parameters from
Figure 4 are summarized in Table 1.

Table 1. Key parameters measured from Raman and Rayleigh scattering, depending on the site of the
optical excitation: branch (B) or node (N), and ratio N/B of corresponding signal amplitudes.

Branch
(B)

Node
(N)

Ratio
(N/B)

Raman
Eg (476 cm−1) 833 1396 1.67

A1g (633 cm−1) 1378 4342 3.15
B2g (774 cm−1) 611 1017 1.67

Rayleigh
0.1 µW 384 520 1.35
1 µW 3181 6836 2.15

10 µW 37,819 59,448 1.57

We attributed the intensity enhancement observed in the Raman peaks of straight wires with
increasing diameter to a “mass” effect (i.e., more material is optically excited by the beam for increasing
diameter). In the case of a node, this effect is most likely to be playing an important role; in fact, the
interaction volume increases where two or more branches merge together, leading to the enhancement
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of scattered light (see Supporting Information). Nevertheless, we should also consider that different
optical effects can further contribute to the light scattered enhancement. A node generally introduces
changes in the system topology, morphology and structure, with an overall increase of surface
roughness, defects and disorder, with a consequent increase of light diffusion. In particular, we can
safely assume a node to present multiple facets which most likely can be expected to act as prisms
and deflect the light within the node. Such a geminates-like feature is also likely to affect the surface
morphology, perhaps by introducing additional roughness and decreasing the optical reflectivity.
To this respect, we note here that due to the backscattering configuration, the measured scattered light
is only a small fraction of the total one emitted on the 4π solid angle, and the Rayleigh signal (but not
the Raman one) includes the back-reflected light. On the other hand, when optically exciting a node,
the surface of which is quite irregular, the back-reflected light is considerably smaller, explaining why
the Rayleigh signal is less enhanced than the Raman one in this particular configuration.

Based on our experimental findings, we try to elucidate in more detail the possible mechanism
behind the enhancement of scattered light. When the incident laser light enters the node, it is scattered
mainly uniformly in all directions and thus enters the arms. The scattered light incident on the SnO2/air
interface with an angle θ smaller that the Brewster angle θB, crosses through the interface and is lost.
Instead, the scattered light incident with an angle θ > θB undergoes total reflection and is guided along
the branch and re-emerges at the end of it, giving rise to the brightening spots visible in Figure 3b,c.
We can tentatively estimate the value of the Brewster angle θB = arctan(n2/n1), using values for the
refractive index n1 of the SnO2 NW and n2 of the contrast medium, as available in the literature. We can
assume the value n1 ≈ 2 characteristic of the rutile structure of SnO2 [35]. Besides, we can consider that
the contrast medium is air (n2 = 1), or eventually the SiO2 substrate on which the NW is deposited.
In the latter case we can use a value n1 ≈ 1.5 which corresponds to the average of the refractive indexes
measured for different polymorphisms of SiO2 (corresponding to different mass density). Thus we
estimate θB ≈ 63◦ (air contrast medium) or θB ≈ 53◦ (SiO2 contrast medium).

4. Conclusions

In conclusion, using a laser coupled to a microscope stage with sub-micron spatial resolution
and laser spot size, we have shown that focusing the laser on the “node” of a multi-branched SnO2

nanostructure clearly leads to a robust light-guiding effect between the nodes and the end tips of the
different NWs. To unveil this phenomenon, we investigated the light scattering response of a set of
NWs with different shapes (straight and multi-armed) and dimensions. This allowed us to suggest a
scenario where the nodes act as couplers of the laser light into the different arms, inside which the light
keeps confined and propagates via total reflection below the Brewster angle. Our observation of the
light-guiding effect in multi-armed SnO2 NWs paves the way for potential applications of these systems
as building blocks for nano-optics systems and allows envisioning quasi branched metal-oxides NWs
as a novel class of nanomaterials for optical communications. In particular, 3D multi-branched metal
oxide structures might play an important role, both in terms of shape and materials. For example
in photovoltaic conversion of photons into electricity, where branches could collect light, while
transferring charges to the main nanostructures via a leaf-to-branch heterostructure [36]. Similarly, one
can envision multi-materials multi-branched heterostructures where incident light upon a node, while
propagating, might optically excite nearby p-n junction while leading to the creation of a dislocated
nanoscale LED [37].

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/19/3148/s1,
Figure S1: Room temperature Raman scattering spectrum of an individual and isolated straight SnO2 nanowire,
measured at λ = 632.8 nm with the laser spot focused on center wire regions (as labelled), Table S1: Integral
numerical solution for Raman active volume.
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