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A B S T R A C T

Industrial processes are often subjected to abnormal events such as faults or external disturbances which
can easily propagate via the process units. Establishing causal dependencies among process measurements
has a key role in fault diagnosis due to its ability to identify the root cause of a fault and its propagation
path. This paper proposes a hybrid nonlinear causal analysis based on nonparametric multiplicative regression
(NPMR) for identifying the propagation of an oscillatory disturbance via control loops. The NPMR causality
estimator addresses most of the limitations of the linear model-based methods and it can be applied to both
bivariate and multivariate estimations without any modifications to the method parameters. Moreover, the
NPMR-based estimations can be used to pinpoint the root cause of a fault. The process connectivity information
is automatically integrated into the causal analysis using a specialized search algorithm. Thereby, it enables
to efficiently tackle industrial systems with a high level of connectivity and enhance the quality of the results.
The proposed approach is successfully demonstrated on an industrial board machine exhibiting oscillations in
its drying section due to valve stiction and. The NPMR-based estimator produced highly accurate results with
relatively low computational effort compared with the linear Granger causality and other nonlinear causality
estimators.

1. Introduction

Owing to the increasing demand for a higher product capacity and
quality, energy efficient and safe operations, the spreading of faults
and disturbances in large-scale systems is a major concern. Differ-
ent faults such as undesired parameter changes, sensor and actuator
problems can easily propagate through the process components by
material or information flows and degrade the process performance
(Yang & Xiao, 2012). Therefore, there is a constant need in developing
fault detection and diagnosis methods to efficiently handle abnormal
events (Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). In
particular, multivariate statistical process monitoring methods have
become increasingly popular in the field of process monitoring due to
their simplicity and the emergence of Industry 4.0 (Zhao & Sun, 2019).

For closed-loop processes, disturbances caused by normal operating
condition changes can be compensated and the manipulated variables
may be eventually controlled around their new set-points. However, in
case of real process faults, dynamic variations may be observed since
the disturbance cannot be compensated (Li, Zhao, & Huang, 2018). This
is the case when friction in a valve causes a limit-cycle oscillation in
control loops (Thornhill, Cox, & Paulonis, 2003). As the control loops
in an industrial plant are interconnected to each other; oscillations
can easily propagate through the control-loops of a process ultimately
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leading to poor control performance and excessive energy consump-
tion (Duan, Chen, Shah, & Yang, 2014; Yuan & Qin, 2013). Therefore,
it is eminently important to distinguish the root cause from the con-
sequent oscillations to allow optimal operating conditions (Choudhury
et al., 2007; Duan et al., 2014).

Causality analysis offers a practical tool to retrace a fault prop-
agation path and its root cause by capturing the cause and effect
relationships between process variables. Causality can be captured from
process knowledge and/or data (Duan et al., 2014; Yang, Duan, Shah, &
Chen, 2014). A qualitative model of a system can be obtained by utiliz-
ing expert knowledge, e.g., in the form of first principle mathematical
models or alternatively it can be extracted from a graphical representa-
tion of a process such as piping and instrumentation diagram (P&ID) or
process flow diagram (PFD) (Yang et al., 2014). P&IDs are available in a
standardized electronic form (XML) via several commercial CAD tools.
The connectivity information can be captured from those tools as open
XML text which describes the process schematic that complies with
Computer Aided Engineering Exchange (CAEX) schema (Thambirajah,
Benabbas, Bauer, & Thornhill, 2009).

However, models based on process knowledge have their inherent
limitation of being qualitative and relying on prior process knowl-
edge which is not always available (Duan et al., 2014; Duan, Yang,
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Chen, & Shah, 2013). On the other hand, data-driven analysis offers
a practical approach to obtain a quantitative measure of causality by
utilizing historical process data in the form of time series that is often
readily available in industrial systems. Popular data-based methods
are cross-correlation analysis (Bauer & Thornhill, 2008), frequency
domain methods such as direct transfer function (DTF) (Kaminski &
Blinowska, 1991) and partial directed coherence (PDC) (Baccala &
Sameshima, 2001), Granger causality (GC) (Granger, 1969), transfer
entropy (TE) (Schreiber, 2000) and nearest neighbors (Bauer, Cox,
Caveness, Downs, & Thornhill, 2007).

Each of the data-based methods has its own limitations and advan-
tages (Duan et al., 2014; Yang & Xiao, 2012). GC and the frequency
domain methods are based on auto-regressive (AR) modeling, therefore
they rely on the model accuracy and are restricted to linear causality.
Several extensions to GC based on non-linear model identification have
been proposed in order to detect causality (Chen, Rangarajan, Feng,
& Ding, 2004; Faes, Nollo, & Chon, 2008), however, those extensions
remain parametric and rely on AR model fitting (Nicolaou & Constandi-
nou, 2016). Other non-linear approaches to GC suggest replacing the
traditional AR modeling with a Gaussian model such as radial basis
Function (RBF) (Ancona, Marinazzo, & Stramaglia, 2004; Chen, Zhao,
Yan, & Yao, 2017), however, those models remain parametric and their
application to multivariate estimations is not addressed.

TE is a nonlinear method, however, it is more computationally
heavy compared with the linear methods since it requires estimation
of multidimensional probability density function (PDF). In addition, it
requires estimation of several parameters such as embedding dimension
and time delay whose selection is a tradeoff between the accuracy of
the results and the computational burden (Duan et al., 2014; Landman
& Jämsä-Jounela, 2016). Although several multivariate extensions have
been proposed to GC and TE (Chen et al., 2004; Duan et al., 2013; Guo,
Seth, Kendrick, Zhou, & Feng, 2008; Vakorin, Krakovska, & McIntosh,
2009), methods such as nearest neighbors and cross-correlation are
restricted to bivariate analysis.

Recently, a new causality estimator based on nonparametric multi-
plicative regression (NPMR) was proposed by Nicolaou and Constandi-
nou (2016). The concept of NPMR originates from the area of ecology
and was first introduced in the context of habitat modeling (McCune,
2006, 2011).

NPMR-based estimator offers several advantages over the traditional
causality methodologies: it is nonparametric, i.e., it does not rely on
estimation of any type of parametric model. It can be applied to both
linear and non-linear systems and there is no restriction on the order
of nonlinearity that can be estimated. Furthermore, the estimator can
be used for both pairwise and multivariate estimations without any
modifications (Nicolaou & Constandinou, 2016). The inherent features
of NPMR eliminate any overfitting issues, a problem which often leads
to detection of spurious causalities when using other nonlinear meth-
ods (Palus & Vejmelka, 2007). All these features of the estimator
combined with the following procedures make it explicitly appealing
for industrial applications: (1) statistical significance can be tested us-
ing surrogate data; (2) the sensitivity measure 𝑄 can be used to evaluate
the contribution of particular parameters within the model (Nicolaou
& Constandinou, 2016).

In this paper we propose to combine a causality estimator based
on NPMR with the information on process connectivity in order to
provide a powerful diagnostic tool which can efficiently tackle com-
plex industrial processes. Recent studies (Bauer, Thornhill, & Meaburn,
2005; Duan et al., 2014; Thambirajah, Benabbas, Bauer, & Thorn-
hill, 2007; Yang, Shah, & Xiao, 2012) highlight the need to utilize
process insights derived from process schematic or site expertise in
order to validate the results of the data-based methods. In particular,
this approach is beneficial when investigating a complex system with
multiple bidirectional and/or recycle streams. Consequently, several
attempts have been made to develop an automated tool for diagnosis of
plant-wide disturbances by combining data-based methods with process

connectivity information. Moreover, the possibility for an automatic
extraction of the process connectivity information and integrating it
with data-based analysis generates an effective and powerful diagnostic
tool (Duan et al., 2014; Thornhill & Horch, 2007). (Yim et al., 2006)
developed a software named plant-wide disturbance analysis (PDA)
which given an electronic P&ID and results from a data-based analysis,
allows the user to perform queries about the plant and detect the
root cause of disturbances. Furthermore, Thambirajah et al. (2009)
introduced a cause-and-effect analyzer which combines a data-based
analysis with the process connectivity information derived from an
XML description of a process schematic. The cause-and-effect analyzer
searches through the connectivity matrix representing a schematic of a
chemical process to find paths by which disturbances can propagate
through the process. However, these studies focus on searching for
feasible propagation paths between process elements for validating the
results of a data-based analysis or identifying a root cause of a fault. In
complex systems with numerous bidirectional and recycle streams, find-
ing feasible propagation paths between process components might not
be sufficient to obtain an accurate causal model. This study proposes a
hybrid causal analysis which aims to reduce the number of spurious
results obtained from the data-based analysis while simultaneously
minimizing the computational burden throughout the analysis. This is
achieved by estimating the causality between each of the measurement
points based on the physical connectivity among them: bivariate esti-
mation for direct connectivity and multivariate estimation for indirect
connectivity.

The cornerstone of the causal analysis is a specialized search al-
gorithm based on a depth-first search (Thambirajah et al., 2009). The
search algorithm has two functionalities: finding feasible propagation
paths between control elements and determine whether each path is
direct or indirect based on the process topology. The ability of the
search algorithm to determine whether a physical path between two
controllers is direct or indirect facilitates the analysis and reduces the
results of the data-based causal analysis which do not represent direct
causality. Moreover, this study proposes a measure for identifying the
root cause of a fault using the NPMR-based causality estimations.

The analysis is executed according to the following procedure.
Initially, the process connectivity information is extracted in the form
of an adjacency matrix (Jiang, Patwardhan, & Shah, 2008) which
is captured from an XML scheme using AutoCAD P&ID (Landman,
Kortela, Sun, & Jämsä-Jounela, 2014; Thambirajah et al., 2009). Then,
the bivariate NMPR-based causality is estimated for all paths which
are considered as direct based on the process topology while the
conditional (multivariate) NPMR-based causality is calculated for each
indirect path and the maximum value is considered as a causality mea-
sure. This methodology is exemplified in this paper using a case study of
an industrial board machine with multiple oscillating control loops due
to valve stiction. This highly inter-connected system serves to illustrate
the effectiveness and the advantages of the proposed hybrid analysis.
The results are discussed and the NPMR-based estimator is evaluated
against other causality estimators. Furthermore, since the causal model
points on two possible root causes for the fault, a straightforward
method is proposed for locating the root cause by utilizing the causality
matrix.

This paper is structured as follows. In Section 2 the proposed NPMR-
based causality framework is explained in detail including all the
methods which are part of the analysis. A description of an industrial
case study is given in Section 3. Next, the data preparation and the
procedure for setting the parameters are described in detail. Finally, the
results are presented and evaluated and the NPMR-based estimator is
compared to other causality estimators. The paper ends with summary
and conclusions in Section 4.
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Fig. 1. The analysis framework based on the NPMR-based causality estimator.

2. The NPMR-based causality analysis framework

The study aims to identify the propagation path of oscillation
through control loops. The analysis consists of the following steps: first,
the connectivity information is extracted from the P&ID of the process.
Next, the NPMR-based causality is estimated between each pair of
controllers based on their directionality. Namely, the search algorithm
searches for feasible propagation paths between each pair of control
loops. Then, if such paths exist, the search algorithm checks whether
the controllers are connected directly or indirectly. According to Jiang
et al. (2008), a direct path from controller 𝑖 to controller 𝑗 exists if the
output of controller 𝑖 has a direct effect on the output of controller 𝑗
without any intermediate effect on any other controller. Respectively,
the search algorithm identifies a physical pathway between controllers
𝑖 and 𝑗 as direct if it does not traverse any control element which does
not belong to either 𝑖 or 𝑗 controllers.

If two controllers are directly connected, the bivariate NPMR-based
causality is estimated while if the controllers are connected indirectly,
the conditional (multivariate) NPMR-based causality is calculated for
all the indirect paths and the maximum value is taken as a directionality
measure. Finally, all the estimations undergo a statistical evaluation
using surrogate data. The overall framework for the causal analysis is
illustrated in Fig. 1 while the explicit logic for calculating the NPMR-
based causality measure with the search algorithm is presented in
Fig. 2.

In the following subsections, the procedure for capturing the con-
nectivity information, the logic of the search algorithm and the NPMR-
based causality estimator are described in detail.

2.1. Extracting the connectivity information

Connectivity information describes the physical linkage between
process components. It can be extracted from P&IDs or PFDs and

Fig. 2. The logic of calculating the NPMR-based causality throughout the analysis.

then converted into a causal digraph or a connectivity (adjacency)
matrix. Yang et al. (2014) The digraph and the connectivity matrix
are a graphical and numerical representation of the process topology,
respectively (Sun, 2013).

The process schematic can be converted into eXtensible Markup
Language (XML). XML is a scripting language that describes the equip-
ment, their properties and the connections among them while ensuring
that it can be interpreted by both humans and computers (Thambi-
rajah et al., 2009; Yim et al., 2006). In this work, the connectivity
information was extracted from an electronic P&ID drawn by a spe-
cialized Autodesk AutoCAD drafting application and the topology data
was exported in the format of ISO-15926-compliant XML scheme XM-
pLant (Landman et al., 2014; Noumenon, 2008). The connectivity
information, i.e., the properties of the process components and the
connections among then were extracted via the database object of the
drawing. This information was further processed using object oriented
programming (OOP) tool of MATLAB in order to obtain a connectivity
matrix, whose elements are set to ‘1’ in case of a direct connectivity
and otherwise ‘0’ (Landman et al., 2014).

2.2. Finding physical pathways using a search algorithm

The search algorithm was developed to have the following three
functionalities: (1) detect whether there is a physical pathway between
two controllers corresponding to each ‘cause’ and ‘effect’ controllers.

3
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(2) Determine whether the path is direct or indirect. (3) In case a path is
indirect, the algorithm returns the intermediate controllers between the
‘cause’ and ‘effect’ controllers. The first two functionalities determine
the type of causality to be estimated according to the logic presented
in Fig. 2.

First, the algorithm searches for all possible propagation paths start-
ing at the ‘cause’ variable leading to the ‘effect’ variable. In this case,
the variables correspond to the measurement elements (i.e., indicators)
of each control loop. The search is based on a graph traversal algorithm
which searches through series of nodes (corresponding to the control
elements) while ensuring that each node is traversed only once (Tham-
birajah et al., 2009). In this case, the algorithm ‘searches’ through the
connectivity matrix to find elements which are physically connected via
pipe-lines or signal lines. The underlying idea of the search algorithm
is to move from the element connected to the ‘cause’ variable and
search for columns with ‘1’s which indicate that the row element is
directly connected to the column element. This procedure continues
repetitively until the same element is visited twice or the row element
disconnected from any elements. Then, the algorithm backtracks to
ensure all possible pathways are found (Thambirajah et al., 2009).

Once all possible propagation paths between each pair of elements
are found, the algorithm checks whether each path is direct or indirect.
If a path from controller 𝑖 to controller 𝑗 traverses only equipment
elements or control elements which belong to either 𝑖 or 𝑗 control loops
it is considered as direct. Otherwise, if a path traverses control elements
which belong to neither 𝑖 or 𝑗 controllers, the path is considered as
indirect (Landman et al., 2014).

2.3. NPMR-based causality estimator

Nicolaou and Constandinou (2016) extended the basic NMPR (Mc-
Cune, 2006) to handle applications outside of habitat modeling, in
particular, causality estimation. The basic idea of NPMR is as follows.
Consider a response variable 𝑌 with 𝑁 samples: 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑁 ] and
consider a matrix 𝑋 with 𝑚 predictors:

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1,1 𝑥1,2 … 𝑥1,𝑚
𝑥2,1 𝑥2,2 … 𝑥2
⋮ ⋮ ⋱ ⋮

𝑥𝑁,1 𝑥𝑁,2 … 𝑥𝑁,𝑚

⎞

⎟

⎟

⎟

⎟

⎠

(1)

Next, a response surface of 𝑦 is built from its 𝑚 predictors using
a multiplicative kernel smoother (McCune, 2006). This is achieved by
estimating each value 𝑦𝑛, (𝑛 = 1,… , 𝑁) from its local neighborhood
corresponding to the predictor space 𝑋𝑛 = [𝑥𝑛,1, 𝑥𝑛,2,… , 𝑥𝑛,𝑚]. The
influence of each predictor 𝑋𝑗 , (𝑗 = 1,… , 𝑚) on the estimation is
defined by its corresponding tolerance of the kernel smoother, 𝜎𝑗 ,
which is a unique feature for NPMR (McCune, 2006; Nicolaou &
Constandinou, 2016). In this study, the local neighborhood is defined
as the weighted mean and the weights are estimated using a Gaussian
weighting function (Eq. (2)). The weights are the distances of each of
the m predictors from a target point 𝑋𝑛 scaled by the standard deviation
(tolerance) of each predictor.

𝑤𝑖,𝑗 = 𝑒−
1
2 [(𝑥𝑖,𝑗−𝑥𝑛,𝑗 )∕𝜎𝑗 ]

2
(2)

The Gaussian kernel is a simple and intuitive way to express the
distance of a point from its target point. The Gaussian kernel tolerance
defines how broadly the information from the local neighborhood in
the predictor space is taken in order to estimate the value at the
target point (McCune, 2006). The Gaussian kernel allows the weights
to smoothly decrease as the distance of the samples from the target
point increases and the rate at which the weights are decreased can
be adjusted by modifying the tolerance (McCune, 2006; Nicolaou &
Constandinou, 2016). Thereupon, the estimation of target point 𝑛 of
𝑦 can be obtained as follows:

𝑦𝑛 =

∑𝑁
𝑖=1,𝑖≠𝑛 𝑦𝑖(

∏𝑚
𝑗=1 𝑤𝑖,𝑗 )

∑𝑁
𝑖=1,𝑖≠𝑛(

∏𝑚
𝑗=1 𝑤𝑖,𝑗 )

(3)

The estimate is the mean value of the observations where each
observation is weighted according to its distance from the target point
in the predictor space with the weights being the product of the
individual weights. By omitting the target point 𝑛 from the estimation,
overfitting is avoided and error estimates are more realistic (McCune,
2006). A detailed example of NPMR for a small dataset is provided
by McCune (2011).

The basic idea of NPMR was formulated in the context of causality
estimation by extending the predictor space to include past informa-
tion as additional predictors (Nicolaou & Constandinou, 2016). This
is achieved by using time delayed embedded vectors of the predictor
variables. For time instance n, the embedded vector 𝑥𝑛 is defined as
𝑥𝑛 = [𝑥𝑛, 𝑥𝑛−𝜏 ,… , 𝑥𝑛−(𝑑−1)𝜏 ] where d is the embedded dimension and 𝜏
is the embedding time delay. By using embedded vectors as predictors,
past information is included in the prediction of 𝑦. The variance of the
modeling error indicates how accurate the estimation is. The bivariate
NPMR-based causality estimator is defined as follows:

𝐶𝑁𝑃𝑀𝑅(𝑋𝑗 → 𝑌 ) = log

( 𝜎2
(𝑌 ,𝑌 )

𝜎2
(𝑌 ,(𝑌 ,�̃�𝑗 ))

)

(4)

where �̃�𝑗 is the time-delayed matrix of the 𝑗𝑡ℎ predictor, 𝑌 is the time-
delayed matrix of the response variable 𝑌 . 𝜎2

(𝑌 ,𝑌 )
and 𝜎2

(𝑌 ,(𝑌 ,�̃�𝑗 ))
are the

error variances when past values of 𝑌 are used as predictors and when
both past values of 𝑌 and 𝑋𝑗 are used as predictors, respectively. Eq. (4)
is analogous to the definition of the traditional GC where the numerator
corresponds to the residuals of the restricted model while the denom-
inator corresponds to the residuals of the unrestricted model (Bressler
& Seth, 2011). Likewise, the conditional 𝐶𝑁𝑃𝑀𝑅 follows the definition
of the conditional GC (Guo et al., 2008):

𝐶𝑁𝑃𝑀𝑅(𝑋𝑗 → 𝑌 ∕𝑍) = log

( 𝜎2
(𝑌 ,𝑌 ,𝑍)

𝜎2
(𝑌 ,(𝑌 ,�̃�𝑗 ,𝑍))

)

(5)

where 𝑍 corresponds to the intermediate variables, excluding 𝑋𝑗 .
Negative values of 𝐶𝑁𝑃𝑀𝑅 imply that including the past information
on the predictors results in a worse model fit, i.e., there is no causal
dependency among the time series.

The relative contribution of each predictor can be estimated with
sensitivity analysis. Sensitivity analysis involves adding and subtracting
a small proportion from each predictor 𝑗 and evaluating the resulting
change in the estimated prediction. The sensitivity, 𝑄, is measured as
follows (Nicolaou & Constandinou, 2016):

𝑄(𝑌 ∕𝑋𝑗 ) =
∑𝑁

𝑖=1 |𝑦𝑖
+ − 𝑦𝑖| + |𝑦𝑖

− − 𝑦𝑖|

2𝑁|𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛|△
(6)

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the maximum and minimum values of Y,
respectively, 𝑦𝑖 is the estimated value of 𝑦𝑖 without cross validation.
𝑦𝑖

+ and 𝑦𝑖
− are the estimated response when increasing and decreasing

𝑋𝑗 by an arbitrary small proportion, respectively (estimated without
cross-validation). △ is a small proportion by which each predictor is
nudged. Large values of 𝑄 indicate on high sensitivity to the response
to the particular predictor.

In addition, the overall model fit can be evaluated via ‘‘cross
𝑅2’’ (McCune, 2011):

𝜒𝑅2 = 1 − 𝑅𝑆𝑆
𝑇𝑆𝑆

= 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(7)

where 𝑦𝑖 is the predicted variable, 𝑦𝑖 is the estimated variable calculated
according to Eq. (3) and 𝑦𝑖 is the mean of the predicted variable. The
model fit is evaluated based on the relationship between the residual
sum of squares (RSS) and the total sum of squares (TSS). A value of
𝜒𝑅2 which is close to 1 indicates on a good model fit.

4
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2.3.1. Statistical significance
The statistical significance of each 𝐶𝑁𝑃𝑀𝑅(𝑥 → 𝑦) can be esti-

mated with surrogate data. If a 𝐶𝑁𝑃𝑀𝑅(𝑥 → 𝑦) is higher than its
threshold significance level, causality from 𝑥 to 𝑦 can be deduced.
Surrogate time series have the same power-spectrum, auto-correlation
function and probability density function as the original series, with
the exception of the phases and frequencies being randomized (Bauer
et al., 2007). There are several methods to generate surrogate data
and in this study the amplitude adjusted Fourier transform (AAFT)
method was used (Theiler, Eubank, Longtin, Galdrikian, & Farmer,
1992). The key steps of the AAFT algorithm are as follows: (1) The
original data is rescaled to a normal distribution by generating time
series with Gaussian white noise and sorting them according to the
ranking of the original series. (2) The rescaled data is Fourier trans-
formed and the phase component is randomized. (3) The surrogates are
scaled to the distribution of the original data using the inverse Fourier
transform (Bauer et al., 2007; Dolan & Spano, 2001).

The number of surrogates for a particular statistical level can be
estimated via 𝑁𝑠𝑢𝑟𝑟 = 1

𝛼 − 1 where 𝛼 is the desired statistical signif-
icance (Nicolaou & Constandinou, 2016). Bauer et al. (2007) suggest
that 20 surrogates should provide statistically relevant results while
maintaining a reasonable computational effort. Consequently, in this
study 20 surrogates were generated for each causality estimation,
i.e., 𝛼 ≈ 0.05 in order to obtain a 95% significance level.

For each pair of surrogates, the NPMR-based causality estimator is
applied and the significance level is set to be the maximum value of
𝐶𝑁𝑃𝑀𝑅 of all estimations.

2.3.2. Parameters settings
An appropriate selection of time delay allows longer dynamics to be

taken into account in the estimation (Nicolaou & Constandinou, 2016).
The minimum embedding dimension is dependent on the time delay
𝜏, hence the delay should be selected before the embedding dimension
is determined (Cao, 1997). Various methods have been proposed to for
estimating the time delay. For instance, the criteria can be based on the
minimum of mutual information (Fraser & Swinney, 1986) or when the
auto-correlation function approaches zero (Nicolaou & Constandinou,
2016).

Nicolaou and Constandinou (2016) suggest that the embedding
dimension does not affect the pattern of the causality but rather its
amplitude, yet, it is recommended to select the appropriate embed-
ding dimension using any method provided in literature. A practical
approach for estimating the minimum embedding dimension was pro-
posed by Cao (1997). Alternatively, the model fit (Eq. (7)) can be
used to determine the minimum embedding dimension by selecting a
threshold for model fit improvement when increasing the embedding
dimension (McCune, 2011; Nicolaou & Constandinou, 2016).

Lastly, the tolerance factor can be optimized via an iterative pro-
cedure or it can be estimated from the data itself (McCune, 2011;
Nicolaou & Constandinou, 2016). One of the advantages of NPMR is
that it allows for each predictor to have a different tolerance, i.e., the
influence of each predictor in the estimation can be adjusted (Nicolaou
& Constandinou, 2016).

3. Industrial case study: valve stiction in a board machine

The process case study involves an industrial board machine pro-
ducing various liquid packaging. The aim of this investigation is to
identify the propagation path of oscillation which originates in the
drying section of the machine due to valve stiction. Valve stiction is
one of the main causes for valve malfunctions in the board machine, in
particular, the drying section where it affects the control loops (Jämsä-
Jounela et al., 2012; Pozo Garcia, Tikkala, Zakharov, & Jämsä-Jounela,
2013). Oscillations generated by valve stiction can propagate to dif-
ferent parts of the machine due to the high connectivity between the
controllers in drying section and ultimately affect the board quality

and undermine the process performance (Pozo Garcia et al., 2013). The
analysis consists of the following steps: first, the data is pre-processed
and the subset of variables for the analysis is selected. Next, the pa-
rameters of the NPMR-based estimator are selected. Finally, the causal
analysis is carried out based on the selected parameters according to
the steps presented in Fig. 2. In the following subsections the process
case study is described, the procedure for preparing the data and
setting the parameters is explained and the results are discussed and
evaluated. Furthermore, a procedure for identifying the root cause of
the fault is proposed and the performance of the NPMR-based estimator
is compared to other causality estimators based on several criteria.

3.1. The drying section

The main purpose of the drying section is to evaporate the water
that remains in the paper web in order to obtain the desired moisture
content in the board. This is achieved by heating the paper web with
steam-filled cylinders. The condensation of the steam releases latent
heat which evaporates the water in the paper. The scheme of the
process is shown in Fig. 3. The drying section contains six consecutive
drying groups containing in total 74 cylinders. Each drying group con-
sists of a steam group of drying cylinders and a condensate tank where
the condensate is collected. Each drying group has its own controllers to
control the steam pressure, the pressure difference between the steam
and condensate headers and the level of the condensate tanks. The
steam to the cylinders is supplied by 5 and/or 10 bar steam headers
(denoted as red pipes at the top of Fig. 3). The pressure difference is
controlled by regulating the steam outlet of the condensate tanks and
the level at the condensate tanks is controlled by manipulating the flow
outlet valve. The investigated case study involves valve stiction which
originates in PC1652, the pressure controller of steam group 3.

The stiction was detected using the valve stiction detection system
proposed by Zakharov, Zattoni, Xie, Pozo Garcia, and Jämsä-Jounela
(2013) and was subsequently confirmed by the long-term maintenance
log books of the plant.

3.2. Dataset preparation

The measured process variables (𝑃𝑉 𝑠) corresponding to each con-
troller are presented in Fig. 4. In total, there are 22 process mea-
surements in the drying section measured with a sampling interval of
10 s (Fs = 0.1 Hz). Initially, the series were normalized to zero mean
and scaled to a unit standard deviation. Next, in order to reduce the
dimensionality of the analysis it was essential to select the variables
which are most pertinent to the fault. This step does not only reduce
the complexity of the analysis, but it also enhances the results and
facilitates their interpretation (Yuan & Qin, 2013). Several clustering
methods are reported in literature for isolating faulty variables for diag-
nostic purposes, e.g., principal component analysis (Yuan & Qin, 2013;
Zhao & Wang, 2016), spectral and oscillation analysis (Bauer et al.,
2005), spectral envelope method (Duan et al., 2014), variable selection
method using least absolute shrinkage and selection operator (Yan
& Yao, 2015), reconstruction-based contribution method (Alcala &
Qin, 2009; Li, Qin, & Yuan, 2016), sparse exponential discriminant
analysis (Yu & Zhao, 2018) and more.

Due to the oscillatory behavior of the control loops, spectral analysis
was chosen to identify series with similar features. Power spectra are
invariant to phase of a signal, meaning they are insensitive to the time
delays between one series and another (Bauer et al., 2005).

The spectra (Fig. 5) reveals that the series that share the same
oscillation frequency (0.007 Hz) are PC668, PC1653, PC651, PC652,
PC653, PC670, LC652, PC1652, PC671, LC653, PC672 and PC673.
The NPMR-based estimator does not require the data to be stationary,
therefore, longer segments of data can be analyzed to obtain a robust
model and capture longer dynamics (Nicolaou & Constandinou, 2016).
However, the amount of data also affects the computational load.
Consequently, 1000 samples (from 1000 to 2000) were taken for the
analysis.
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Fig. 3. Flow sheet of the drying section. Red lines indicate steam pipes, blue lines indicate condensate pipes and purple lines indicate mixed flow of steam and condensate (PI =
pressure indicator, PC = pressure controller, LC = level controller, SG = steam group, C = condensate tank). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. The measured process variables (𝑃𝑉 𝑠). The oscillation originates in PC1652
(in red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 5. The spectra of the process variables (Fs = 0.1 Hz). The oscillation originates
in PC1652 (in red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.3. The procedure for parameters settings

First, the time delay, 𝜏, was estimated as the time when the auto-
correlation function reaches 1∕𝑒 (Nicolaou & Constandinou, 2016). The
estimated time delay for the majority of the series was 3 and for the
remaining ones it was 2, therefore, 𝜏 was set to 3 for all the series.
Next, the embedding dimension was evaluated according to the method
presented by Cao (1997). For each 𝑑 = 1, 2,… , 10 and 𝜏 = 3 the values
of 𝐸1 ans 𝐸2 were calculated. The results revealed that the minimum
embedding dimension (i.e., the minimum 𝑑 for which 𝐸1 and 𝐸2 stop
changing) varied between 2–4 and therefore it was decided to set 𝑑 = 4
throughout the whole analysis. Sensitivity analysis can also be used
in order to tune some of the parameters or as an additional measure
for supporting the selection of a certain parameter. For instance, by
checking the sensitivity of a predicted value to different lagged samples
of a certain predictor one can examine the influence of 𝑑 and 𝜏 on the
estimated value.

Finally, the kernel tolerance (𝜎) was tuned for each pair of series by
calculating the model fit for 𝜎 = 0.2, 0.4, 0.6..., 2 and 𝜏 = 3, 𝑑 = 4. The
tolerance which produced the best model fit for each pair was selected.
The estimation of 𝑦𝑖 in Eq. (7) was calculated by considering every 𝑋𝑗
as a predictor. The results showed a slight variation in the optimum
value of 𝜎 for each pair of series (0.2 < 𝜎 < 0.8), hence, an optimum
value was set individually for each pair. As an example, Fig. 6 presents
the model fit as a function of 𝜎 from PC1652 to all other controllers.
The best model fit for the majority of the pairs is achieved at low
sigma values (0.2–0.8). One interesting finding is that the best model
fit (> 0.8) is obtained when predicting the neighboring controllers of
PC1652.

3.4. Results

The causality matrix with the calculated 𝐶𝑁𝑃𝑀𝑅(𝑋𝑖 → 𝑋𝑗 ) values
for each (𝑖, 𝑗)𝑡ℎ pair of controllers is shown in Table 1. The values
were calculated according to the scheme in Fig. 2. Zeros indicate
either on lack of physical connectivity or 𝐶𝑁𝑃𝑀𝑅 values that are lower
than their significance level. In addition, negative values of 𝐶𝑁𝑃𝑀𝑅
were excluded. Table 2 presents the connectivity information according
to the search algorithm : empty cells indicate on lack of physical
connectivity, squares denote indirect paths and bullets denote direct
paths between the row and column controllers.

Overall, the results indicate that all the paths which were identified
as indirect by the search algorithm were confirmed as indirect as well
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Table 1
The NPMR-based causality matrix with adjusted parameters.
𝐶𝑁𝑃𝑀𝑅𝑟𝑜𝑤→𝑐𝑜𝑙𝑢𝑚𝑛

PC1653 PC651 PC652 PC653 PC670 LC652 PC1652 PC671 LC653 PC673

PC1653
PC651 0.053
PC652 0.065 0.172
PC653 0.303
PC670 0.036 0.078 0.156 0.100
LC652 0.102 0.058
PC1652 0.190 0.498
PC671 0.094 0.134 0.090 0.234
LC653 0.108 0.249 0.135
PC673

Table 2
The connectivity information: indication of direct/indirect paths according to the search algorithm.

PC1653 PC651 PC652 PC653 PC670 LC652 PC1652 PC671 LC653 PC673

PC1653
PC651 □ ∙
PC652 ∙ ∙
PC653 □ □ □ ∙ □
PC670 ◦ ∙ ∙ ∙ ∙
LC652 ∙ ∙ ∙
PC1652 □ □ □ □ □ □ ∙ ∙
PC671 □ □ □ ∙ ∙ □ ∙ ∙
LC653 □ ∙ ∙ □ □ ∙
PC673 □ □ □ ∙ ∙ □

Empty cells denote lack of physical connectivity, squares denote indirect paths and bullets denote direct paths between the row and column
elements.

Fig. 6. The model fit from PC1652 to all other controllers for different values of 𝜎
with 𝜏 = 3, 𝑑 = 4.

according to the NPMR-based estimator since their corresponding esti-
mations were found to be statistically insignificant; Whilst the majority
of the paths which were identified as direct by the search algorithm
were confirmed as direct based on their 𝐶𝑁𝑃𝑀𝑅 values.

In this case, a discrepancy between the physical connectivity and
the causality estimation can occur due to one of the following reasons:
causality might exist but on a very low level (e.g., LC652 → PC1653) or
there is a direct physical path but there is no information transfer due
to a closed valve. The latter scenario might be the case for PC673 →

PC653 and PC673 → PC670. PC673 manipulates two valves, whereas
only one of the valves has direct interaction with PC653 and PC670
via the outlet steam line of C8. Typically, only one valve is constantly
open while the second valve is opened only when the controller output
exceeds a certain threshold (the pressure controllers are adjusting the
steam flow to the cylinders in the same manner). Therefore, if only one
valve is open, there is no flow through the other valve which eliminates

Fig. 7. The causal model according to Table 1 (dashed arcs correspond to causality
which is suspected as indirect).

any information transfer to SG2. This scenario exemplifies that physical
connectivity does not necessarily imply on causality.

The causal model based on Table 1 is shown in Fig. 7. The paths
which are suspected as indirect are denoted as dashed arcs. Initially,
the path PC1652 → LC653 is suspected as indirect according to the
captured topology (Fig. 7), however, according to the search algorithm
the path is direct since the steam condensate from SG3 is transferred
directly to C4 (unlike SG2 and SG1 where the pressure difference
controllers adjust the steam condensate flow, respectively). Moreover,
the high 𝐶𝑁𝑃𝑀𝑅 value (≈ 0.5) implies on a high level of interaction
between PC1652 and LC653. The path from LC653 to controllers PC651
and PC652 is recognized as direct, however, in this case as well, the
paths are further investigated to ensure direct causality. The search
algorithm reveals that the direct path from LC653 to PC651 and PC652
is via the steam outlet of C3 which flows directly into SG1 (see the
output of the search algorithm in Fig. 8), thereby affecting both PC651
and PC652. However, since the bottom flow outlet of C4 initially alters
the level in C3, it is reasonable to assume that LC652 is primarily
affected by LC653. Consequently, the 𝐶𝑁𝑃𝑀𝑅 values of LC653 → PC652
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Table 3
The indirect paths from LC653 to PC651 and LC652 and their NPMR-based causality
estimation.

Indirect Path 𝐶𝑁𝑃𝑀𝑅 Significance level

𝐿𝐶653 → 𝐿𝐶652 → 𝑃𝐶651 0.051 0.093
𝐿𝐶653 → 𝐿𝐶652 → 𝑃𝐶652 0.138 0.011

Fig. 8. The output of the search algorithm for direct paths from LC653 to PC651. LI =
Level Indicator, LC = level Controller, LV = Level Transmitter, PI = Pressure Indicator.

Fig. 9. The final causal model.

and LC653 → PC651 via intermediate controller LC652 are calculated.
The results (Table 3) suggest that the causality from LC653 to PC652
is direct whereas the causality from LC653 to PC651 can be considered
as indirect.

Consequently, the final causal model illustrating the propagation
path of the oscillation is shown in Fig. 9. Note that PC673 does not
influence and is neither influenced by any of the investigated con-
trollers, therefore it is not part of the model. Furthermore, the model
points on two possible root causes for the fault: PC1652 and PC671
since those are the only controllers that have causal pathways to all
the others. Therefore, to locate the root cause in such case, we propose
to quantify the level of influence of each controller on the remaining
controllers by calculating the sum of all 𝐶𝑁𝑃𝑀𝑅 values originating from
each controller (according to Table 1). The results (Fig. 10) clearly
identify ‘PC1652’ as the root cause. Moreover, as expected, the highest
𝐶𝑁𝑃𝑀𝑅 values are originating in the drying group where the stiction
was detected (PC1652, PC671 and LC563) and the values are decreased
along the consecutive groups.

Overall, the analysis proved to be highly efficient and accurate
in identifying the propagation path. Ultimately, only one causality
estimation turned out to be spurious (𝐿𝐶653 → 𝑃𝐶651). Misdetection
might be attributed to the parameters selection, especially the kernel

Fig. 10. The sum of all 𝐶𝑁𝑃𝑀𝑅 values originating from each controller.

Fig. 11. The causal model obtained with fixed parameters (red arcs correspond to
causality which was not obtained with adjusted parameters). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

tolerance tuning. When tuning 𝜎, it was observed that even a small vari-
ation in 𝜎 lead to a significant difference in the corresponding 𝐶𝑁𝑃𝑀𝑅
value. Moreover, 𝜎 has a larger influence on 𝐶𝑁𝑃𝑀𝑅 than 𝑑 and 𝜏.
Therefore, the optimization of the kernel tolerance remains a challenge
for future investigations. Further, although we found that parameters
tuning is essential to obtain adequate results, several estimations with
different parameters revealed that the causality pattern remains similar
and only the amplitude of 𝐶𝑁𝑃𝑀𝑅 changes, thus resulting in more false
positive results. The causality matrix that was obtained with the same
methodology but with fixed parameters: 𝜏 = 1, d=4 and 𝜎 = 1 is
shown in Table 4. The values in red correspond to estimations that were
excluded when using adjusted parameters (Table 1). The corresponding
causal model is shown in Fig. 11 where the red arcs correspond to the
values colored in red in Table 4. The results using fixed parameters sug-
gest that the causality pattern is almost unaltered when the parameters
are adjusted; however, it is expected to yield more false-positive results
(corresponding to the values in red). In addition, it is noteworthy that
the causality PC671 → PC1652, which was accurately captured by the
analysis with adjusted parameters, was found to be non significant
when using fixed parameters, presumably since the directionality in the
opposite direction is considerably stronger.

3.5. Comparison to other causality estimators

The NPMR-based estimator has shown several advantages over
other causality estimators (Granger causality, frequency domain mea-
sures, transfer entropy and nearest neighbors) when applied to the
same case study in previous investigations carried out by the au-
thors (Landman & Jämsä-Jounela, 2016, 2018; Landman et al., 2014).
Aside from its inherent advantages of being nonparametric and not
restricted to linear processes, it showed superior accuracy compared
with the transfer entropy and nearest neighbors methods. The results
of this study are easier to interpret as all the estimations underwent
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Table 4
The NPMR-based causality matrix with fixed parameters 𝜏 = 1, 𝑑 = 4, 𝜎 = 1.
𝐶𝑁𝑃𝑀𝑅𝑟𝑜𝑤→𝑐𝑜𝑙𝑢𝑚𝑛

PC1653 PC651 PC652 PC653 PC670 LC652 PC1652 PC671 LC653 PC673

PC1653
PC651 0.269
PC652 0.213 0.107
PC653 0.633
PC670 0.186 0.192 0.472 0.295
LC652 0.082 0.236
PC1652 0.407 0.588
PC671 0.498 0.533 0.603
LC653 0.238 0.275 0.317
PC673

a statistical significance test. Indeed, the final results indicate that the
analysis produced one specious causal estimation (𝐿𝐶653 → 𝑃𝐶651)
that was initially identified as direct and was eventually established as
indirect by calculating the multivariate estimation (𝐿𝐶653 → 𝐿𝐶652 →
𝑃𝐶651).

Although the transfer entropy and nearest neighbors methods
yielded a fairly precise model, the results were evaluated according to
their magnitude instead of computationally expensive methods relying
on surrogate data (Duan et al., 2014). Furthermore, the two methodolo-
gies proposed by the authors for implementing the transfer entropy and
nearest neighbors methods are implemented in two phases: bivariate
analysis in phase I and multivariate analysis in phase II to discriminate
indirect causality. On the other hand, the NPMR-based estimator is
applied in a single phase to either bivariate or multivariate estimations
without any modifications, thus rendering it highly practical for indus-
trial applications. In addition, the NPMR-based estimator was able to
locate the root cause by calculating the sum of 𝐶𝑁𝑃𝑀𝑅 of each row
in the causality matrix. Thereby, the estimator can be easily used to
validate or locate the root cause of a fault without using additional
measures.

The transfer entropy, nearest neighbors, and the NPMR-based es-
timator are all nonparametric, nonlinear and require the estimation
of several parameters: prediction horizon, time delay and embedding
dimension. The procedure for estimating the parameters is roughly
similar for all the methods; however, the transfer entropy requires
the estimation of joint PDFs, whose complexity increases with the
dimensionality of the analysis. Thus, in terms of implementation, the
transfer entropy analysis requires more computational time and effort.

The traditional GC method is limited to linear estimations and is
based on fitting multivariate AR models; however, it is straightforward
to implement and the statistical significance can be easily determined
via the 𝐹 -statistic test (Granger, 1969). Hence, the GC method was able
to identify the propagation path with less computational effort than
the NPMR-based estimator, however, the frequency domain analysis
was essential in order to further exclude ambiguous results and to
locate the root cause. These findings are somewhat expected since the
relationships between the feedback control loops in the drying section
are fairly linear. Thus, in such cases, linear methods should be preferred
in order to simplify the analysis.

With respect to the frequency domain methods, the linear PDC
and DTF are especially useful when investigating an oscillatory distur-
bance, owing to their ability to quantify the direct and total energy
transfer between time series at each frequency, respectively (Yang &
Xiao, 2012). The frequency domain methods can assist in locating
the root cause of a fault and discriminating between direct and in-
direct causality (Landman et al., 2014). The main limitation of the
frequency-domain methods is determining the statistical significance
using surrogate data; it is computationally heavy, as it requires cal-
culation of a threshold value at each frequency for each measure.
Therefore, it is recommended to utilize the frequency domain methods
as a supplementary analysis in case of an oscillatory disturbance to gain
more insights into the system intrinsic behavior. To sum up, Table 5
compares between different methods for causal analysis based on their
implementation to the current case study.

4. Summary and conclusions

This study introduced a methodology for hybrid causal analysis
using a nonlinear nonparametric causality estimator. The methodology
was successfully demonstrated on an industrial case study involving
valve stiction in a board machine. Previously, the NPMR-based causal-
ity estimator has been applied in habitat modeling (McCune, 2006,
2011) and on physiological data (Nicolaou & Constandinou, 2016),
while this study extended its applicability to industrial processes. The
numerous advantages of the NPMR-based estimator render it highly
efficient and practical compared with other causality estimators. Fur-
thermore, NPMR-based estimator can be used for identifying the root
cause of a fault in case ambiguous results are obtained from the causal
model.

The keystone of the proposed methodology is the incorporation of
process connectivity information into the causality estimation using a
search algorithm. This type of hybrid analysis enables to tackle com-
plex industrial systems while increasing the credibility of the results
and reducing the computational effort. Indeed, the results indicate
that all of the indirect paths according to the process topology were
identified as indirect according to their 𝐶𝑁𝑃𝑀𝑅 values, while the ma-
jority of the paths that were considered as direct according to process
topology showed a significant level of causality. This demonstrates
the importance of incorporating the process connectivity information
into data-based analysis. Nevertheless, the connectivity information is
merely a qualitative representation of the process schematic that does
not include any information on the process itself, such as chemical
composition and reactions rate. Thus, it is problematic, for instance,
to retrace the propagation path of a disturbance in a composition of
a stream. Thambirajah et al. (2009) and Yim et al. (2006) addressed
various limitations of process schematic in their studies and proposed
several solutions to solve them. Further research should therefore focus
on the development of standardized software that could discover and
examine additional information on a process that could enrich the
connectivity information (Thambirajah et al., 2009). Another important
implication of this study is that setting the appropriate parameters
(embedding delay, dimension, kernel tolerance) is highly recommended
but not imperative to obtain satisfactory results. Setting the initial
parameters based on prior process knowledge (such as the process time
delay) could be sufficient to gain an initial model and to locate the root
cause. Thereafter, if necessary, the results could be enhanced by tuning
the parameters. However, it is recommended that further research be
undertaken on the optimization of kernel tolerance due to its effect
on the estimation. In particular, it would be interesting to assess the
effect of each predictor on the estimation by optimizing the tolerance
individually for each predictor.

The major limitation of this study is that it does not include a variety
of case studies. Further research is required to establish the efficacy
of the proposed causal analysis using other case studies with different
types of disturbances. In particular, the performance of the NPMR-
based estimator should be examined by considering the following
aspects: the level of nonlinearity and complexity of a system, other
types of faults and disturbances such as sensor faults, disturbances in
unmeasured variables and non-oscillatory disturbances.
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Table 5
Comparison between the causality estimators based on the results of the hybrid causal analysis on the board machine.

Method Results accuracy Parameters to select Significance testing Computational load Remarks

Granger causality and
the frequency domain
measures

High (≈88%
accuracy)

Model order (AIC criteria) Yes (F -statistic test for
the GC and surrogates
for the PDC and DTF)

Low (The significance testing
of the PDC and DTF using
surrogate data requires high
computational effort)

Frequency analysis was used
as an auxiliary method to
exclude spurious results and
identify the root cause.

Transfer Entropy Good Embedding dimension,
prediction horizon and time
delay

No High Two phase implementation

Nearest neighbors High (≈90%
accuracy)

Embedding dimension,
prediction horizon, time delay
and number of nearest
neighbors

No Moderate Two phase implementation

NPMR-based causality
estimator

Very High (The
highest among
all estimators)

Embedding dimension, time
delay and kernel tolerance

Yes (with AAFT
surrogates)

Moderate One phase implementation

The NPMR-based estimator showed superior performance compared
with the nonlinear nearest neighbors and transfer entropy methods.
On the other hand, the conditional GC was able to produce adequate
results with low computational time and effort. These findings suggest
that in future cases, straightforward linear methods such as GC should
be applied at first to obtain an initial model, especially for small-scale
systems with a simple topology. In case of an oscillatory disturbance,
the frequency domain measures can be used to identify the root cause
and/or exclude spurious results from the model. If the system is highly
complex and nonlinear, the NPMR-based estimator would be an ap-
propriate selection. Overall, this study strengthened the idea that in
order to handle a large-scale complex system, a reasonable approach
would be to combine a topology-based model with data-based analysis
or apply several causality estimators in parallel. The work presented in
the paper can serve as a basis for the future development of a powerful
diagnostic tool for industrial applications. Still and all, it would be
highly beneficial to validate the final results using the available process
knowledge or site experts.
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