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Abstract� Non-negative Matrix Factorization (NMF) has 

been effective in extracting commands from surface 

electromyography (EMG) for the control of upper-limb 

prostheses. This approach enables Simultaneous and 

Proportional Control (SPC) over multiple degrees-of-freedom 

(DoFs) in a minimally supervised way. Here, like with other 

myoelectric approaches, robustness remains essential for clinical 

adoption, with device donning/doffing being a known cause for 

performance degradation. Previous research has demonstrated 

that NMF-based myocontrollers, trained on just single-DoF 

activations, permit a certain degree of user adaptation to a range 

of disturbances. In this study, we compare this traditional NMF 

controller with its sparsity constrained variation that allows 

initialization using both single and combined-DoF activations 

(NMF-C). The evaluation was done on 12 able bodied 

participants through a set of online target-reaching tests. 

Subjects were fitted with an 8-channel bipolar EMG setup, 

which was shifted by 1cm in both transversal directions 

throughout the experiments without system retraining. In the 

baseline condition NMF performed somewhat better than NMF-

C, but it did suffer more following the electrode repositioning, 

making the two perform on par. With no significant difference 

present across the conditions, results suggest that there is no 

immediate advantage from the naïve inclusion of more 

comprehensive training sets to the classic synergy-inspired 

implementation of SPC. 

I. INTRODUCTION

Surface electromyography (sEMG) constitutes one of the 
most common non-invasive interfaces between upper-limb 
amputees and powered prostheses [1]. However, 
commercially available devices almost solely rely on basic, 
sequential control methods that tend to be perceived as highly 
unintuitive and limited in function [2]. This lack of satisfactory 
interface has further contributed to the current high rate of 
prosthetic abandonment [3], [4].  

The inadequacies of existing clinical solutions have 
therefore spurred research efforts into more advanced control 
approaches. The most prominent of recent approaches involve 
pattern recognition based intention classification [5], [6], 
regression based motion estimation [7]�[9], and 
musculoskeletal modeling of the missing limb [10], [11]. Each 
of these approaches comes with its own pros and cons 
however, the increased functionality is commonly followed by 
the decreased robustness as controller performance becomes 

sensitive to non-stationarities caused by environmental 
factors, such as perspiration, muscle fatigue and electrode 
displacement [12]�[14]. 

The intuitive mapping established by regression based 
systems has been shown to allow users to adapt to the control 
scenarios, to a certain degree, even in case of sudden noise 
onsets [15] or electrode repositioning [16]. These algorithms 
tend to provide users with a possibility to compensate for the 
introduced instability and restore some functionality by this 
adaptation. Co-adaptive learning approach using recursive 
least squares [17] has been demonstrated as an effective way 
of further dealing with non-stationarities in regression based 
controllers. However, this is essentially a supervised approach 
which requires exact target labels in order for it to adapt, 
making it less applicable in real-life conditions. Moreover, it 
is highly dependent on the selected parameter values, which, 
if not fully optimized, can lead to further instabilities and 
performance deterioration.  

To deal with perturbations, pattern recognition based 
controllers have resorted to extending the training data sets as 
to include more descriptive and generalized data [13], [18]. 
This has been shown as a promising approach, however it may 
determine over-fitting. 

In this study, we are aiming to investigate whether a similar 
approach of training on a diverse dataset will lead to an 
increase in robustness of the muscle synergy inspired 
regression based myocontrollers. Muceli et al. [16] have 
previously shown that this type of controller, trained strictly 
on single Degree of Freedom (DoF) motions, allows users to 
adapt and restore a certain degree of functionality following 
electrode repositioning. Lin et al. [19] have proposed a 
sparseness constraint extension of the same controller which 
allowed multi-DoF training data to be used. Here, we compare 
the two approaches and investigate how robust they are against 
medial and transversal electrode shifts using a set of real-time 
virtual reality (VR) tasks. 

II. METHODS

A. Controller Design

Non-negative Matrix Factorization (NMF) has been
previously used [7], [20] for establishing regression based 
controllers. By adopting dimensionality reduction based on the 
assumption that multiple muscles act concurrently 
(synergistically) in order to execute an intended motion, NMF 
allows synergy matrix estimation from observed EMG signals. 
We adopt the model proposed by Jiang et al. [20]: 
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where �� is the 	 
� observation matrix, with 	 denoting the 
number of EMG channels and � the number of samples (root
mean square (RMS) values) per channel.  � represents a 	 

 synergy matrix estimation over 
 DoFs. � is a 
 
�
matrix of latent control signals describing the intended 
motions. 

In order to obtain the synergy matrix �, the NMF is
based on a multiplicative update rule [21] according to which 
the squared Euclidian error cost-function given by (2) is 
minimized using the update rules (3) and (4): 
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where ' ( )*+ , , +-
..
Estimation of the command signals (�) in real-time (/0�1�)

can then be done by multiplying the pseudo-inverse of the 
synergy matrix (�2) with the incoming EMG feature vector
(3�1�) as follows:

/0�1� � �23�1�         (5)

where /0�1� � )/�2+ /�4+ /�2+ /�4+ 5 + /62+ /64.7 , with /�2 and /�4
representing a positive and negative direction of the 8-th DoF
respectively (e.g. wrist rotation consists of pronation and 
supination). 

The synergy matrix can be estimated from a training set 
including single DoF activations and then used to estimate 
multi-DoF commands concurrently based on Eq. (5). An 
effective way to include multi-DoF motions into the training 
data set (combined-DoF regressor training), Lin et al. [19] 
have proposed the introduction of a sparseness constraint on 
the command signals. Here, as described in [22], we induce 
sparseness by imposing the 9�:� regularization on (2):
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with parameter < determining the trade-off between the
reconstruction error and the amount of sparseness. 

B. Subjects

Twelve subjects (1 left-handed female and 11 right-handed 
males, age: 22-31) volunteered to participate in the 
experiment. None of them had any known neurological 
disorder or had previously been extensively exposed to similar 
control paradigms. The local ethical committee of the Imperial 
College London (ICREC #18IC4685) approved the study and 
all the participants read and signed the informed consent.  

C. Data Acquisition

Subjects seated comfortably in a chair in front of a
computer screen with their arms relaxed by their side. Myo 
Armband, an 8 channel surface EMG acquisition wearable 

device (Thalamic Labs, Canada), was fitted on their dominant 
forearm. Placement was done so that channel 4 of the system 
(marked as the reference pod) lays flat on the muscle bulk 
located 2 cm below the lateral epicondyle. The positioning of 
the reference pod was then marked using a skin marker to 
ensure a precise landmark throughout the experiment. The data 
were sampled at 200 Hz and transferred via Bluetooth to the 
host computer for further processing. 

D. Calibration Phase

The calibration of the controller was done using solely
EMG signals acquired during free, dynamic movements. No 
additional kinematic or kinetic data was recorded for labeling. 
During the calibration, subjects were prompted by visual cues 
to first perform three repetitions of movements involving only 
one DoF at a time and then to perform three additional sets of 
concurrent activations. The focus of this study was on wrist 
flexion/extension (DoF1), and ulnar and radial deviation 
(DoF2). The data acquisition and visual guidance was 
provided using a custom Matlab® program.  

E. Parameter Search

To choose a suitable trade-off between the reconstruction
error and the amount of sparseness, <, parameter search with
3-fold cross-validation was conducted on the calibration data
acquired from a pilot test. Each subset of the training data
(DoF1 trials, DoF2 trials, and combination trials) was
partitioned across 3 folds. Within each fold, 2/3 of the data was 
used as the training set for model initialization with the
particular < and the remaining 1/3 was used as the validation
set. For each fold, the signal-to-noise ratio (SNR) was
calculated as the ratio between total intended DoF activation

Figure 1. The virtual reaching task presented to subjects during online 
testing. In each session, subjects are asked to maneuver the red cursor as 

quickly as possible into a set of sequentially presented targets (magenta 

circles) within a time interval of 10 s. 

Figure 2. Myo Armband placement on the right forearm of a subject. The 

transversal shifts of 1cm along the indicated directions have been induced in 

order to simulate prosthetic donning and doffing. 



and total unintended DoF activation estimated from the single 
DoF trials of the validation set: 

G	H � � I0&JK�L�KME� I0NJ&JK�L� KME   (8) 

where /0�OL�1� is the activation amplitude of the intended DoF

at time 1 while /0PO�OL�1� is the activation amplitude of the
unintended DoF. Here, the intended DoF corresponds to the 
single DoF direction indicated by the visual cue at time 1
during the calibration phase. The SNR from each fold was then 
averaged. Values of < ranging from 1 to 50 were searched with 
best value yielding the lowest average SNR. While this chosen 
value would not be optimal for each individual subject, 
inclusion of the regularization term generally improves the 
SNR of factorized control signals as demonstrated in Fig. 3. 

F. Online Testing

During the online testing phase, subjects were given the
control of an on-screen cursor within the task space (Fig. 1). 
The planar displacements (horizontal and vertical) of the 
cursor were proportional to the estimated wrist movements - 
flexion/extension movements were mapped along the 
horizontal axis and ulnar/radial deviations represented the 
vertical shifts. 

The online evaluation comprised six sessions. The first two 
sessions allowed subjects to operate either the single-DoF 
(NMF) or the combined-DoF (NMF-C) trained estimator with 
the initially trained e��
�	����
��������� �����������!"$� %�� ����
remaining four sessions, the subjects did the same but 
following the transversal repositioning of the electrodes (Fig. 
2). By rotating the electrode armband clock-wise around the 
right forearm, a 1-cm lateral shift &��� ����
��� ��'���	���
*������!"$� <�		��
�����=��>� ���� 	�������� ��� ���� �

������
direction from the neutral position brought the reference 
sensor 1-cm closer to the medial epicondyle, resulting in the 
?��������������Q������*������!"$ 

Each session contained 24 virtual target-reaching tasks, 
which required subjects to steer the cursor inside the target 
circle with radii of 8 density-independent pixels (dp) in a 
400x180dp task space (Fig. 1). The targets were equally 
spaced along two concentric rings. Eight targets were evenly 
distributed along the inner ring, 40dp from the origin, while 16 
targets were positioned equidistant from one another along the 
outer ring, 75dp from the origin. In this way, subjects had to 
face a mixture of tasks requiring both single and simultaneous 
DoF control. For a target to be successfully reached, the cursor 
had to be kept inside the target circle for 0.5s and this had to 
be accomplished within the time limit of 10s. When a target 
was reached or when the time limit was exceeded, subjects 
were required to relax and return the cursor to the origin before 
the next task was presented. For each session, the order of the 
targets was randomized. 

G. Performance Metrics

To evaluate the online performance of the two estimators,
a set of previously introduced metrics [23] was computed. The 
Completion Rate (CR) of each trial indicated the ratio between 
the number of successfully completed tasks and their total 
number. Completion Time (CT) recorded the time required to 
reach the completed target and Path Efficiency (PE) indicated 
the ratio between the optimal path from the origin (straight line 

to the target) and the actual trajectory of the cursor. 
Throughput (TP) was used to measure the information transfer 
capabilities of the established interface and it represented the 
ratio of the given ���X�������Z���������
������%\"���� the actual 
completion time: 

QR � S6
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[24], [25], and in this case ID was expressed as a relationship 
between target displacement along the DoFs (
�,>
�) and the
target radius (U):
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H. Statistical Analysis

To test for statistical differences in the performance of the
two estimators, a two-way repeated measures ANOVA (RM-
ANOVA) was conducted with algorithm and electrode shift 
condition as factors. If a significant interaction was detected, 
multiple focused one-way RM-ANOVA was done, with one 
level fixed in each analysis where detected significance was 
followed by pairwise comparisons. If no significant interaction 
between the factors was detected, only the main effects were 
analyzed. The analysis was carried out using SPSS with 
significance level set as ],]^ ��	����������$�Q��
�������
��	icity 
test was conducted prior to each analysis. If any significant 
difference between the variances was detected, Greenhouse-
Geiser correction was applied.  

III. RESULTS

The experimental results are shown in Fig. 4. From the 
two-way RM-`{|}`��>� ��=����
���� interaction between 
controller and electrode shift was detected for CR 
(F(2,22)=3.870, p=0.036). For NMF, there was statistically 
significant difference in CR between electrode shift positions 
(F(2,22)=8.906, p=0.001) and the post-hoc analysis with 
Bonferonni adjustment revealed that Unshifted electrode 
positions had higher CR than Lateral Shifted with a mean 
difference of 0.20±0.05, p=0.004. This shows that, while using 
NMF, there was a significantly lower number of targets 
reached following the electrode repositioning. While there was 
a decrease in CR of NMF-C once the sensors have been 
relocated, the observed difference was not significant. 
However, its initial, Unshifted, CR performance was indeed 
lower to begin with in comparison to that of unperturbed NMF. 
At the same time, both controllers have achieved similar CRs 
following the electrode shifts. 

The two-way RM-ANOVA applied on PE revealed no 
significant interaction between algorithm and electrode shift. 
However, the main effect of electrode shift showed 
statistically significant differences between sessions 
F(2,22)=6.297, p=0.007. PE was significantly higher in 
sessions with Unshifted electrodes compared to Lateral 
Shifted electrodes (5.408±1.517%, p=0.013) and Medial 
Shifted electrode positions (3.616±1.145, p=0.027). 



Essentially, this shows that regardless of the used algorithm 
the PE became worse once the electrodes have been 
repositioned.  

For CT, no significant interaction between the factors were 
found though significant differences were observed from the 
?��������
��������
�	�����������_��>��"��$���>�
��$���"$�<^���
in sessions with Unshifted electrodes were significantly lower 
than those with Medial Shifted electrodes with a mean 
difference of 0.502±0.159s, p=0.028. These results align with 
those of PE, indicating that both algorithms performed 
similarly and required longer times to reach the targets in the 
perturbed state. 

Finally, no significant interaction or main effect was 
detected for TP. 

IV. DISCUSSIONS

The effect of electrode shift was tested for two 
conceptually similar myoelectric controllers based on the 
minimally supervised extraction of muscle synergies. The first 
type (NMF) was trained using only the essential dataset 
containing single-DOF activations known to deliver a highly 
intuitive mapping. While initial performance was high under 
normative conditions, deterioration in control was noticeable 
after introduction of 1-cm transversal shifts to the electrode 
array. The second controller (NMF-C) was trained on both 
single and combined DoF activations. This produced a 
controller that was less intuitive to use and yielded inferior 
performance as compared to NMF under ideal conditions. 
However, following the electrode shifts, NMF-C seem to have 
not lost much of its initial controllability and thus, in relative 
terms, has been less affected by the perturbations. 
Nevertheless, the general performance of both controllers in 
the perturbed states was comparable. 

With NMF, muscle activations of orthogonal wrist 
movements, flexion/extension and abduction/adduction, were 
respectively mapped to the horizontal and vertical 
displacement of the cursor. In the unperturbed state, this 
controller allowed subjects to perform target reaching tasks 
with high precision and efficiency. Furthermore, despite only 
being trained on single-DoF activations, the resultant mapping 
also provided intuitive control for combined-DoF actions, a 
characteristic that is consistent with past studies [7], [16]. 
However, when the electrode shifts were introduced, subjects 
were unable to navigate the full task space as natural muscle 
activations were interpreted as conflicting within-DoFs 
commands, as shown in an exemplary case in Fig. 5. This can 
be attributed to the higher density of synergy matrices, a by-
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(Fig. 6). While the method addresses the indeterminacy of 
NMF by restricting the possible solution space and extracting 
antagonistic synergies for each DoF separately, it also results 
in sensitivities for opposing directions being proximal to one 
another such that electrode shifts would increase the amount 
of within-DoF co-activations. 

With NMF-C, all synergies are concurrently extracted 
from the entire repertoire of training activations, resulting in 
somewhat sparser weight matrices, as shown in Fig. 6. This 
makes the controller less affected by the electrode shift as 
individual DoF activations are more separated in sensor space. 

Figure 4. Performance metrics across all six sessions where * indicates 
statistical significance of simple main effects. The Completion Rate of NMF 

control was found to be significantly lower in Lateral Shifted electrode 

conditions compared to Unshifted. With both algorithms pooled, Path 
Efficiency was found to be significantly lower in Lateral and Medial Shifted 

sessions compared to Unshifted. Similarly, ignoring the effects of algorithm, 

Completion Time was found to be significantly higher in Medial Shifted 

sessions compared to Unshifted. 

Figure 3. Latent command signals factorized from training data consisting of single and combined DoF wrist motions. By including L1/2 regularization, sparsity 

is encouraged and unintended DoF activations become suppressed. Without this sparsity constraint, the relation between specific command signals and DoF 
directions become less clear. In both cases however, one basis was identified from the EMG patterns of combined adduction and flexion which are more 

localized. This command primitive has been assigned to the activation of DoF 2 in the positive direction. This is shown by the third activation in each set of 

���	���������<�?���������! section of the figure. 



By minimizing the within-DoF command conflicts that restrict 
the full exploration of the task space, target reaching 
capabilities are preserved between sessions despite the 
introduced perturbations.  It should be highlighted that for this 
particular set of wrist movements, combined DoF motions can 
produce EMG patterns that are more localized compared to 
single DoF motions. While there is overlap in the recruitment 
of muscles for flexion/extension and abduction/adduction, 
combined motions tend to rely more on the subset of muscles 
that are activated during each individual DoF movement. With 
regards to the extraction of additive basis features, the 
factorization algorithm then naturally favors assigning EMG 
patterns associated with combined DoF motions as the 
building blocks in the decomposition. This can be seen in Fig. 
3 where single DoF command signals were activated during 
combined DoF wrist movements and vice-versa. Indeed, 
assigning the extracted synergies to vertical and horizontal 
excitations in the task space can become ambiguous unless 
sparsity constraints are applied to the command primitives. 
Nonetheless, even the constrained solution results in mappings 
that are rotationally distorted, with subjects reporting irregular 
sensitivities between the different sectors of the task space.  

Muceli et al. [16] conducted a similar study of electrode 
shift effects on DoF-wise trained NMF controllers, however 
they reported a less severe degradation of performance. This 
may be attributed to differences in the hardware setup and 
implementation. Their study utilized high-density EMG grids 
and while relying on a subset of sensors, electrode shift was 
simulated by switching the channel sources to the adjacent 
column of electrodes. Although the electrode columns were 
also 1-cm apart, the change in skin-electrode impedance can 
be expected to be much less compared to physical shifting. 
Moreover, they relied on monopolar recordings while we used 
the bipolar montage that is typical of commercial systems. 
Finally, their study was conducted with a high-end benchtop 
bio-amplifier which sampled at a much higher frequency 
(2048Hz) compared to the Myo Armband (200Hz). 

Although provided with training data that is enriched with 
combined DoF movements, the NMF-C controllers were less 
intuitive and performed worse than their classically trained 
counterparts in unperturbed scenarios. This highlights the 
disadvantage of naively extending the training sets to account 
and promote the intrinsically provided functionality. Though 
more diverse data sets often lead to more robust performance 
of the machine learning based estimators [13], this as well was 
not a case here. The two controllers yielded similar 
performance while perturbed, with NMF-C initially requiring 
higher efforts to be trained.  

These results can be potentially explained by the fact that 
NMF algorithm allocates extracted basis activations to the 
orthogonal directions in the task space. Instead, a 
consideration of a more principled approach to building an 
intuitive synergy-inspired controller would recognize that 
forearm muscle synergies do not strictly operate in the 
reference orthogonal wrist DoFs. Such controller may then 
consider a rough model of forearm biomechanics where basis 
synergies drive movement in directions that are 
physiologically relatable. Similar, model-based approaches 
have been explored by Berger et al. [26] in force control 
experiments where the pulling vector of each synergy is 
estimated from the weighted force vectors of its constituent 
muscles which, themselves, are obtained via linear regression.  

V. CONCLUSIONS

This study compared the classic implementation of 

synergy-inspired myoelectric control (NMF) to its variation 

that considers more comprehensive training sets (NMF-C). 

While traditional NMF controllers were initialized from 

single-DoF data, here, NMF-C controllers utilized a 

combination of single and concurrent DoF activations during 

training. Online experiments revealed NMF-C to 

underperform due to unintuitive mappings though control was 

somewhat less sensitive to electrode perturbations. 

Conversely, NMF control yielded a high baseline 

performance although significant deterioration was found 

following the electrode shift. Despite the impaired control, the 

performance of NMF in electrode shifted conditions was still 

Figure 6. Averaged synergies from all subjects. The DoF-wise trained

NMF results in a denser synergy matrix with more synergy overlap in

sensor space. This overlap is reduced in the solutions obtained using NMF-

C as the additive bases become more separable from one another. 

Figure 5. Session trajectories from Subject 7 with colored circles 

representing the targets. When electrodes were shifted, access to the full 
solution-space was restricted with the DoF-wise trained NMF controller. In 

contrast, control with the multi-DoF trained NMF-C controller did not 

deteriorate with electrode shift with both controllers achieving similar target 

hit rates during the perturbed scenarios. 



on par with NMF-C. This indicated that naïve inclusion of 

more descriptive data during the training of these type of 

controllers does not yield additional benefits and further work 

should be done to address this trade-off between baseline 

performance and robustness to electrode shift. Concepts that 

warrant further investigation include more targeted adaptive 

controllers that compensate for non-stationarities and model-

based approaches for interpreting synergy excitations.  
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