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Abstract
In this work, we investigate quantum phase transition (QPT) in a generic family of
spin chains using the ground-state energy, the energy gap and the geometric measure
of entanglement (GE). In many of prior works, GE per site was used. Here, we also
consider GE per block with each block size being two. This can be regarded as a coarse
grain of GE per site. We introduce a useful parameterization for the family of spin
chains that includes the XYmodels with n-site interaction, the GHZ-cluster model and
a cluster antiferromagneticmodel, the last ofwhich exhibitsQPTbetween a symmetry-
protected topological (SPT) phase and a symmetry-breaking antiferromagnetic phase.
As the models are exactly solvable, their ground-state wavefunctions can be obtained,
and thus, their GE can be studied. It turns out that the overlap of the ground states with
translationally invariant product states can be exactly calculated, and hence, theGE can
be obtained via further parameter optimization. The QPTs exhibited in these models
are detected by the energy gap and singular behavior of geometric entanglement. In
particular, the XzYmodel exhibits transitions from the nontrivial SPT phase to a trivial
paramagnetic phase. Moreover, the halfway XYmodel exhibits a first-order transition
across the Barouch–McCoy circle, on which it was only a crossover in the standard
XY model.

Keywords Quantum entanglement · Quantum phase transition · Quantum spin chain

B Aydin Deger
aydndgr@gmail.com

Tzu-Chieh Wei
tzu-chieh.wei@stonybrook.edu

1 Department of Physics and Astronomy, C.N. Yang Institute for Theoretical Physics, State
University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

2 Department of Applied Physics, Aalto University, 00076 Aalto, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-019-2439-7&domain=pdf
http://orcid.org/0000-0002-6351-4768


326 Page 2 of 41 A. Deger, T.-C. Wei

1 Introduction

Quantum entanglement has now been recognized as one of many intriguing con-
sequences of quantum physics. Nonetheless, Einstein was greatly troubled by this
phenomenon. He described it as “spooky action at a distance” in his famous EPR
paper, since it seemed to imply a violation of relativistic causality [1]. Later, John Bell
introduced inequalities that helped to gain more insight about quantum correlations
[2] and motivated subsequent theoretical and experimental development [3–5]. These
quantum correlations have since been verified many times in different experiments
[4–7]. Quantum entanglement has also been found to provide resources for quantum
information processing [8–12] and has been increasingly used as a tool for investi-
gating in a wide range of physics from quantum computation to black holes [13,14].
Over the years, many approaches have been devised to quantify entanglement in both
bipartite and multipartite systems [15–17]. The entanglement entropy is perhaps the
most well-known example that measures quantum correlations between two halves of
a pure quantum system [15]. As another example, concurrence or the related entan-
glement of formation quantifies entanglement between two qubits, and among many
useful features, there is an analytic formula for that [18]. For multipartite systems,
there are various definitions, but most of them are not easy to calculate [15]. Thus, in
this paper, we will follow some prior works and adopt a particular simple multipartite
measure—the geometric measure of entanglement (GE)—to quantify entanglement
for pure quantum systems and examine how it detects the quantum phase transitions
(QPT) for spin systems [19–21].

Phase transition is a phenomenon that describes a change in the state of matter as an
external control parameter such as temperature or pressure is varied. Boiling of water
or water freezing to ice is a temperature-driven phase transition that we experience
in our daily lives. On the other hand, quantum phase transitions [22] occur at zero
temperature and, qualitatively speaking, involve either level crossing or closing of
an energy gap (between the ground and excited states) as the system size increases
[22]. In the latter case, there is a diverging correlation length at the quantum critical
point. The ground-state wavefunction is expected to exhibit a singular behavior, which
can be characterized by the changes of entanglement near the critical point [23,24].
Therefore, quantum entanglement may be an alternative way to detect a quantum
phase transition [15,25], other than the thermodynamic quantities. Besides interest
from quantum information and QPT [26–31], quantum entanglement is not only a
powerful theoretical concept but also has been measured in several recent experiments
[32–35]. In particular, (cluster) spin models can be implemented in experiments and
simulated in quantum information processors [36–44].

Since we are interested in systems at T = 0, we will be concerned with pure
quantum many-body states, |Ψ 〉 of N spins, expressed in some local basis, as

|Ψ 〉 =
∑

p1...pN

Ψp1 p2...pN |e(1)
p1 e

(2)
p2 . . . e(N )

pN 〉 . (1)

A simple idea to quantify its quantum correlation is to see how close |Ψ 〉 can
be approximated by the set of uncorrelated product states |Φ〉 = ⊗

i |φ[i]〉 , and
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thus, the maximal overlap Λmax(Ψ ) ≡ maxφ′s | 〈Φ|Ψ 〉 | is a quantity that mea-
sures such |Ψ 〉’s closeness to product states. We can choose to use the formula
EG(Ψ ) ≡ −2 logΛmax(Ψ ), which we call the geometric entanglement [19,21], to
quantify the quantum correlations in the state |Ψ 〉. Moreover, in choosing different
forms of product states |Φ〉, one can probe different coarse-grained levels of entan-
glement, and these represent different hierarchies of quantum correlations:

|Φ1〉 =
N⊗

i

|φ[i]〉 ⇒ entanglement among all sites,

|Φ2〉 =
N/2⊗

i

|φ[2i−1,2i]〉 ⇒ entanglement among all blocks with 2 sites,

|ΦL〉 =
N/L⊗

i

|φ[Li−L−1,..Li]〉 ⇒ entanglement among all blocks of L sites.

In conforming with the intuitive picture of renormalization group (RG) on states (see,
e.g., Ref. [45]), we denote |Ψ ′〉 as the quantum state of |Ψ 〉 after one step of RG via
merging two sites into one, and the entanglement under such a RG procedure should
therefore be defined as follows:

E (RG(Ψ )) = E({Ψ ′}) = min
U

E1(Ψ
′), (2)

where the unitary U is of the form U [12] ⊗U [34] ⊗ · · · ⊗U [2k − 1, 2k] ⊗ · · · and
|Ψ ′〉 = U |Ψ 〉 denotes the unitary transformation that describes themerging (therefore
acts on two neighboring sites in the original lattice). But since maximization over two-
site unitaryU [12] is equivalent tomaximization over two-site state |φ[12]〉, we have that

max
Φ1

|〈Φ1|Ψ ′〉| = max
Φ2

|〈Φ2|Ψ 〉|, (3)

and thus, we see that the geometric entanglement w.r.t. product of L-site states is the
entanglement of RG after log2 L steps on the quantum state [46]. However, to calculate
different hierarchies of entanglement is generally difficult. But as we see below, the
first two in the above, equivalently, the entanglement per site and per block of two,
can be calculated for a wide class of exactly solvable spin chains.

The purpose of this paper is threefold. Firstly, we describe and review the procedure
for diagonalizing a large family of solvable spin chains which include the XY models
with n-site interaction, the GHZ-cluster model and a cluster antiferromagnetic model,
the last of which exhibits QPT between a symmetry-protected topological (SPT) phase
and an antiferromagnetic phase (AFM). We provide a convenient parameterization of
these and others, forming the family which we call the generalized cluster-XYmodels.
In diagonalizing the Hamiltonians for finite sizes, we find and illustrate subtle points in
getting the true ground state and the energy gap. Secondly, we show how to compute
the geometric entanglement per site and per block of 2 sites for such systems and
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examine QPT on the phase diagram. As explained above, this corresponds to the
first two steps in the quantum-state RG procedure. One new ingredient here is the
calculation of block entanglement per two sites. Thirdly, we hope that the various
examples we include will be of use to readers interested in studying QPT from the
perspective of entanglement. We calculate both the energy gap and the entanglement
for ground state and use both of them for characterization of quantum phase transitions
(if they exist) in various cluster-XY models. We shall see that the family of the models
is interesting and displays many peculiar properties, as discussed below. Some of
the models have been studied before in terms of entanglement, such as the standard
XY model, the GHZ-cluster model by Wolf et al. [47] and the SPT-antiferromagnetic
model by Son et al. [48]. One new feature is that the three-site XYmodel (i.e., the XzY
model) exhibits a transition from Z2 × Z2 SPT phase to a paramagnetic phase [49].
The general n-site XY (with n odd) is expected to have such an SPT to paramagnetic
transition [50]. Moreover, among the family of the models, in the halfway XY model
we find a first-order transition across the Barouch–McCoy circle, on which it was only
a crossover for the standard XY model.

The structure of this paper is as follows: In Sect. 2, we introduce a parameterization
of the generalized Hamiltonian for the cluster-XY model with n-site Z-mediated XX
and YY interaction. With this solution, one can diagonalize many bilinear Hamilto-
nians by substituting related parameters, quantify entanglement and detect quantum
phase transition on the phase diagram. Then, we give an illustrative example of Hamil-
tonian for XYmodel with n-site interaction using our parameterization. In Sect. 3, we
introduce the geometricmeasure of entanglement per site and block for themultipartite
systems. We quantify global entanglement by calculating the overlap of ground-state
wavefunctions and certain types of product states. The resultant entanglement will be
used to examine quantum phase transitions in the family of the cluster-XY models.
In Sect. 4, we study several examples such as XY model with three-site interaction
and halfway interaction, whose geometric entanglement has not been analyzed before.
The three-site interaction XzY model exhibits transitions from nontrivial SPT phase
to a trivial paramagnetic phase. Moreover, the halfway XY model exhibits a first-
order transition across the Barouch–McCoy arc, on which it is only a crossover in the
standard XY model. However, the halfway Ising model has no such transition. More-
over, we present solutions of paramagnetic–ferromagnetic, GHZ-Cluster [46,47] and
symmetry-protected topological (SPT)-antiferromagnetic [48] transitions byusing this
method. We make some concluding remarks in Sect. 5.

2 Parameterization of cluster-XYmodels with n-site interaction

The quantum XY model was solved by Lieb, Schultz, Mattis in 1961 [51], and later,
all the statistical properties were examined by many other authors [52–59]. One con-
venient way to investigate spin chain problems is to use either bosonic or fermionic
language [60]. For example, one can analyze the Hamiltonian by using the Holstein–
Primakoff transformation [61] for mapping spin operators to bosonic annihilation and
creation operators. One can, for example, use it to study spin wave theory in themodel.
For some spin chain models, on the other hand, the fermionic approach, combining
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the Jordan–Wigner [51] and Bogoliubov transformations [62], provides a feasible way
to diagonalize the Hamiltonians that are intrinsically free fermions.

The motivation of this section is to generalize one-dimensional bilinear Hamiltoni-
ans with XY interaction by introducing a systematic parameterization that describes
a large family of quantum spin models, for which the ground state and its geomet-
ric entanglement are exactly solved. Similar models were discussed by Suzuki [63].
Here we offer a facile parameterization that includes further bilinear Hamiltonians.
In particular, we introduce a few sets of parameters to describe the Hamiltonians, and
diagonalize them to determine the energy spectrum. We adopt well-established meth-
ods and discuss the subtleties of determining the ground state and the energy gap for
finite systems.

2.1 Parameterization of Hamiltonians and their diagonalization

We begin by defining the Hamiltonian for which there are a few types of parameters.
We only consider translational invariance and models that are exactly solvable. The
parameters N (x) and N (y) are the number of X and Y types of blocks in the Hamil-
tonian, respectively, which represent X or Y interaction mediated by Z : X Z . . . Z︸ ︷︷ ︸

n(x)

X

or Y Z . . . Z︸ ︷︷ ︸
n(y)

Y . We have indicated the numbers of consecutive Z sites for each block,

n(x)
l and n(y)

l ′ , respectively. The subscript l ranges from 1 to N (x) and l ′ from 1 to
N (y), and they indicate different ranges in the XX and YY interactions, respectively.
For example, one can build a Hamiltonian with three (e.g., N (x) = 3) X interaction
blocks, such as XX , X ZX and X Z Z X , and only one Y -type block (N (y) = 1), such
as Y Z Z ZY . To indicate the strength of each block separately, we use parameters J (x)

l

and J (y)
l ′ . For the above example, there are four such parameters, J x1 , J

x
2 , J

x
3 and J y

1 .
Finally, the parameter h is the strength of the transverse field. Thus, the parameterized
Hamiltonian reads:

HPXY = −
N∑

j=1

⎛

⎝
N (x)∑

l=1

J (x)
l σ x

j−1σ
z
j . . . σ z

j+n(x)
l −1

σ x
j+n(x)

l

+
N (y)∑

l ′=1

J (y)
l ′ σ

y
j−1σ

z
j . . . σ z

j+n(y)
l′ −1

σ
y

j+n(y)
l′

+ hσ z
j

⎞

⎠, (4)

where σ ’s are the Pauli matrices associated with spin-1/2 angular momentum opera-
tors:

σ x
j =

(
0 1
1 0

)
, σ

y
j =

(
0 −i
i 0

)
, σ z

j =
(
1 0
0 −1

)
,

and N indicates the system size. We remark that the family of models in this param-
eterization includes many interesting ones, such as XY model with n-site interaction,
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the GHZ-cluster model, the SPT-AFM models and other interesting ones that have
been explored from different perspectives [47,48,50]. We discuss and analyze some
of these in the following.

Next, we employ the Jordan–Wigner transformation, which realizes a spin to
fermion c mapping:

σ x
i =

i−1∏

j=1

(
1 − 2c†j c j

) (
ci + c†i

)
, (5a)

σ
y
i = −i

i−1∏

j=1

(
1 − 2c†j c j

) (
ci − c†i

)
, (5b)

σ z
i = 1 − 2c†i ci , (5c)

where the fermionic creation and annihilation operators satisfy the canonical fermionic
commutation relations {ci , c†j } = δi j . To impose the periodic boundary conditions for
spins, we rewrite the expression σ x

Nσ x
N+1 = σ x

Nσ x
1 as fermions:

(
cN + c†N

) (
cN+1 + c†N+1

)
, (6a)

= −
N∏

j=1

(
1 − 2c†j c j

) (
cN + c†N

) (
c1 + c†1

)
. (6b)

One notices that there are two possibilities to hold the above equation. We define

P ≡ ∏N
j=1

(
1 − 2c†j c j

)
as a parity operator with eigenvalues ±1 depending on the

total number of fermions occupied (or equivalently the total number of down spins).
Since this operator commutes with Hamiltonian [H ,P] = 0, we can separate the
Hamiltonian into two sectors, as even H (even) and odd H (odd). The first sector (even)
has the antiperiodic boundary condition for fermions with the total number being
even:

N∏

j=1

(
1 − 2c†j c j

)
= 1, cN+1 = −c1. (7a)

The other sector has a periodic boundary condition where the total number of fermions
is odd:

N∏

j=1

(
1 − 2c†j c j

)
= −1, cN+1 = c1. (7b)

With the Jordan–Wigner transformation, we can rewrite the Hamiltonian in terms of
the fermion operators as follows:
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HPXY = −
N∑

j=1

⎡

⎣
N (x)∑

l=1

J (x)
l

(
c†j−1c j+n(x)

l
+ c†j−1c

†

j+n(x)
l

− c j−1c j+n(x)
l

− c j−1c
†

j+n(x)
l

)

+
N (y)∑

l ′=1

J (y)
l ′

(
c†j−1c j+n(y)

l′
− c†j−1c

†

j+n(y)
l′

+ c j−1c j+n(y)
l′

− c j−1c
†

j+n(y)
l′

)
+ h(1 − 2c†j c j )

]
. (8)

The above Hamiltonian in terms of fermion operators is also of interest due to recent
development inMajorana fermions in theKitaev’s chain [64]. But the fermionicHamil-
tonian (8)was obtained from the spinHamitonian (4), and thus, the number of fermions
is constrained, related to periodic or antiperiodic boundary condition for fermions. In
Ref. [51], Lieb, Schutz and Mattis described how to diagonalize such a Hamiltonian.
The strategy is to make some transformation (from c fermions to some γ fermions)
to bring the Hamiltonian in the following diagonal form:

H =
∑

k

εkγ
†
k γk + const. (9)

Then, the ground state will be obtained by filling up all the modes k that are negative
εk < 0, obeying the above fermion number constraints. As we shall see below, it
is generally possible to make εk ≥ 0 for most modes, except a few modes that are
already diagonal in the c-fermion basis (thus, transformation to gamma fermions is not
made for them). Moreover, the constraints on the fermion number and the boundary
condition on the fermionic operators separate the solutions into two different sectors.
Therefore, to determine the ground state, we need to compare the lowest solutions
from each sector. Such an issue is important for finite N , but can be ignored in the
thermodynamic limit. An alternative way to solve the Hamiltonian is to go to the
Majorana fermion basis, e.g., by letting η2 j−1 = (c j + c†j ) and η2 j = −i(c j − c†j ).
Then, the Hamiltonian becomes H = i

∑
j, j ′ A j, j ′η jη j ′ /2, where A is a 2N × 2N

real antisymmetric matrix. The matrix A will have spectrum {±iεm} which contains
double spectrum ±εm . However, we will not take the latter approach here.

With the above remarks, let us proceed to diagonalize the Hamiltonian (8). We
use a superscript (b) to indicate which of the two sectors: b = 0 is for the periodic
(odd sector) and b = 1/2 the antiperiodic (even sector) boundary conditions. As it is
translationally invariant, we can perform a Fourier transformation, using

c j = 1√
N

N−1∑

k=0

ei
2π
N j(k+b)c̃(b)

k , (10a)

c̃(b)
k = 1√

N

N−1∑

j=0

e−i 2πN j(k+b)c j . (10b)
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We then use the identities below (where x and y are integers indexing the sites and
the notation˜ indicates the operator in the momentum space):

N∑

j=1

c j+x c j+y =
N−1∑

k=0

ei
2π
N

[
(x−y)(k+b)

]
c̃k c̃N−k−2b, (11a)

N∑

j=1

c†j+x c
†
j+y =

N−1∑

k=0

e−i 2πN

[
(x−y)(k+b)

]
c̃†k c̃

†
N−k−2b, (11b)

N∑

j=1

c j+x c
†
j+y =

N−1∑

k=0

ei
2π
N

[
(x−y)(k+b)

]
c̃k c̃

†
k . (11c)

Substituting these into Eq. (8), we obtain the following form of the Hamiltonian:

HPXY = −Nh −
N−1∑

k=0

(
∑

l

2 J (x)
l cosΘ

(x)
l (k)

+
∑

l ′
2 J (y)

l ′ cosΘ
(y)
l ′ (k) − 2h

)
c̃(b)†
k c̃(b)

k

+ i

(
∑

l

J (x)
l sinΘ

(x)
l (k) −

∑

l ′
J (y)
l ′ sinΘ

(y)
l ′ (k)

)

[
c̃(b)
k c̃(b)

N−k−2b + c̃(b)†
k c̃(b)†

N−k−2b

]

= −Nh +
N−1∑

k=0

[
2αk c̃

(b)†
k c̃(b)

k − iβk (c̃(b)
k c̃(b)

N−k−2b + c̃(b)†
k c̃(b)†

N−k−2b)
]
.

(12)

We define Θ’s:

Θ
(x)
l (k, b) ≡ 2π

N
(k + b)(1 + n(x)

l ), (13a)

Θ
(y)
l ′ (k, b) ≡ 2π

N
(k + b)(1 + n(y)

l ′ ), (13b)

and α’s and β’s to express the solution more compactly

β
(b)
k ≡

N (x)∑

l=1

J (x)
l sinΘ

(x)
l (k, b) −

N (y)∑

l ′=1

J (y)
l ′ sinΘ

(y)
l ′ (k, b), (14a)

α
(b)
k ≡ h −

N (x)∑

l=1

J (x)
l cosΘ

(x)
l (k, b) −

N (y)∑

l ′=1

J (y)
l ′ cosΘ

(y)
l ′ (k, b). (14b)
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We may sometimes suppress the argument (b) in Θ and the subscript (b) in operators
c’s, α’s and β’s, when the context is clear. We note that in the above, when β

(b)
k = 0,

the part of the Hamiltonian is already diagonal, i.e., 2α(b)
k c̃(b)†

k c̃(b)
k ; we do not need to

make any further transformation. This can happen, in the case of b = 0, with k = 0 or
k = N/2 (for N even) and, in the case of b = 1/2, with k = (N − 1)/2 for N being
odd). We will discuss these below. For β

(b)
k 
= 0, we can diagonalize that part of the

Hamiltonian by employing the Bogoliubov transformation that introduces mixing of
fermion creation and annihilation operators:

c̃k = cos θk γk + i sin θkγ
†
N−k−2b, (15a)

c̃N−k−2b = cos θk γN−k−2b − i sin θk γ
†
k , (15b)

γk = ck cos θk − i sin θk c
†
N−k−2b, (15c)

γN−k−2b = cN−k−2b cos θk + i sin θk c
†
k , (15d)

where the Bogoliubov fermions γ ’s obey the same canonical commutation relations:
{γi , γ †

j } = δi j . By choosing appropriate Bogoliubov angles θk’s, we can eliminate

cross terms γkγN−k−2b and γ
†
k γ

†
N−k−2b and obtain the diagonalized Hamiltonian:

HPXY =
N−1∑

k=0

εk

(
γ
†
k γk − 1

2

)
=
∑

k
∣∣βk 
=0

εk

(
γ
†
k γk − 1

2

)

+
∑

k
∣∣βk=0

2αk

(
c̃†k c̃k − 1

2

)
, (16)

where εk (when βk 
= 0) is the single Bogoliubov particle’s energy spectrum:

εk = 2
√

(βk)
2 + (αk)

2, (17)

and the solution to θk’s (which we also refer to as the Bogoliubov solution) is given
by:

tan 2θk = βk

αk
, (18a)

cos 2θk = (αk)√
(βk)

2 + (αk)
2
, (18b)

sin θk = sgn(fik)

√
1 − cos 2`k

2
. (18c)

When βk = 0, the part of the Hamiltonian is already diagonal, and thus, it is natural
to define ε

k
∣∣βk=0

≡ 2αk , which leads to issue in determining the ground-state config-

uration in terms of particle occupation. Two key points to consider: (1) there are two
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sectors b = 0 (constrained by odd number of fermions) and b = 1/2 (constrained by
even number of fermions), the ground state should have the lowest energy among the
two sectors; (2) to obtain the lowest total energy in each sector, we need to consider
whether to occupy each k mode or not to make the energy as low as possible. The com-
plication comes when ε

k
∣∣βk=0

≡ 2αk can become negative in contrast to ε
k
∣∣βk 
=0

> 0.

We elaborate the above points below.

Subtlety in ground states As remarked earlier, we now discuss the subtlety required
to obtain the ground state and the energy gap. To attain the true ground state, we have
to compare the lowest energy in two sectors: b = 0 (periodic and odd fermions) and
b = 1/2 (antiperiodic and even fermions). We thus need to make a slight modification
to the expression in Eq. (17) when b = 0 and k = 0 (or equivalently Θ(k = 0, b =
0) = β

(0)
0 = 0), since in this case, k = 0 component in the Hamiltonian (12) is already

diagonal:

ε
(b=0)
k=0 c̃(b=0)†

0 c̃(b=0)
0 ≡ 2α(b=0)

k=0 c̃(b=0)†
0 c̃(b=0)

0 . (19)

From the above, it follows that γ (b=0)
k=0 = c̃(b=0)

0 (or equivalently θ
(b=0)
k=0 = 0), and thus,

Eq. (17) for (k = 0, b = 0) is modified. Combining constant terms (Nh and others
arising from the Jordan–Wigner transformation and commuting γkγ

†
k = −γ

†
k γk + 1),

the contribution from k = 0 mode becomes 2αk=0
(
c̃(b=0)†
0 c̃(b=0)

0 − 1/2
)
. Thus, the

ε
(b=0)
k=0 reads as 2α(b=0)

k=0 in Eq. (17).
Moreover, when N is even, k can take the value k = N/2; similarly, the term in

the Hamiltonian is also diagonal

ε
(b=0)
k=N/2c̃

(b=0)†
N/2 c̃(b=0)

N/2 ≡ 2α(b=0)
k=N/2 c̃

(b=0)†
N/2 c̃(b=0)

N/2 , (20)

and thus, γ
(b=0)
k=N/2 = c̃(b=0)

k=N/2 or equivalently θ
(b=0)
k=N/2 = 0 (when N is an

even integer). The contribution of k = N/2 mode to the Hamiltonian becomes
2αk=N/2

(
c̃(b=0)†
N/2 c̃(b=0)

N/2 − 1/2
)
. Therefore, when N is even, the ε

(b=0)
k=N/2 should be

taken as 2α(b=0)
k=N/2 in Eq. (17).

Next, we discuss the issues to obtain the lowest total energy. In the b = 0 sector,
the total number of fermions should be odd for the boundary condition in Eq. (7b) to
be satisfied. For the number of total sites N being odd, because all excitation εk ≥ 0
(possibly except εk=0), the lowest total energy in this sector has thus exactly one
fermion. However, it is not necessarily that the k = 0 mode is occupied. This is
because when all εk ≥ 0 (including the k = 0 mode), it is possible that some other
mode k 
= 0 has the lowest of all, and it is thus energetically favorable to occupy
this mode to achieve the lowest total energy, given the constraint of odd number of
fermions. For N being even, the situation can be further complicated by the mode
k = N/2 with εk=N/2 = 2α(b=0)

k=N/2, which can be negative, and the ground state in this
sector may have three fermions. (For such an example, Sect. 4.2 in the halfway XY
model).
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According to the above discussions, the associated lowest energy in the b = 0
sector for even N depends on where it is energetically favorable to occupy, one or
three fermions. In the case three fermions are occupied as the lowest energy state, it
must involve ε

(b=0)
k=0 < 0 and εb=0

(k=N/2) < 0, as well as the lowest of the remaining

modes, denoted by ε
(b=0)
k′ (but ≥ 0). They must satisfy the following condition that

ε
(b=0)
k=0 + ε

(b=0)
k=N/2 + ε

(b=0)
k′ < min

(
ε
(b=0)
k=0 , ε

(b=0)
k=N/2

)
. (21)

In this case, the lowest energy in this sector is

E (b=0,N even)
0 = ε

(b=0)
k=0 + ε

(b=0)
k=N/2 + ε

(b=0)
k′ − 1

2

N−1∑

k=0

ε
(b=0)
k , (22)

and its associated wave function is

|Ψ (b=0)〉 ≡ c̃(0)†
0 c̃(0)†

k=N/2γ̃
(b=0)†
k′

k< N
2∏

k=1

[
cos θ

(0)
k + i sin θ

(0)
k c̃(0)†

k c̃(0)†
N−k

]
|Ω〉 . (23)

where |Ω〉 denotes the vacuum state. Otherwise,

E (b=0,N even)
0 = min

k

(
ε
(b=0)
k

)− 1

2

N−1∑

k=0

ε
(b=0)
k = ε

(b=0)
k∗ − 1

2

N−1∑

k=0

ε
(b=0)
k , (24)

and the k∗ that has the lowest ε
(b=0)
k∗ is often but not necessarily k = 0 or k = N/2;

its associated wave function is

|Ψ (b=0)〉 ≡ γ̃
(0)†
k∗

k< N
2∏

k=1

[
cos θ

(0)
k + i sin θ

(0)
k c̃(0)†

k c̃(0)†
N−k

]
|Ω〉 . (25)

But as εN−k∗ = εk∗ , there is a degenerate wave function, by occupying k = N − k∗
mode instead.

When N is odd, the lowest energy state in this sector necessarily has one fermion,
but it does not need to be the k = 0 mode. The total energy has a similar expression:

E (b=0,N odd)
0 = min

k

(
ε
(b=0)
k

)− 1

2

N−1∑

k=0

ε
(b=0)
k . (26)

Similarly, if the minimum εk come from k = 0 mode, then the energy is degenerate.
Let us summarize the consideration for the b = 0 sector. When N is odd, only

ε0 = 2α0 may be negative and all other εk ≥ 0, and the odd fermion constraint leads
the minimization of total energy to exactly one fermion. On the other hand, when N is
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even, k = N/2 is allowed and βk=N/2 = 0. The possibility of εk=N/2 = 2αb=0
k=N/2 < 0

and ε0 = 2α0 < 0 can lead to a 3-fermion configuration having the lowest energy.
Hence, we have the possible lowest energies as in Eqs. (22), (24) and (26).

Now we move on to discuss the b = 1/2 sector. In this sector, the total number of
fermions should be even for boundary condition Eq. (7a) to be satisfied. When N is
odd, the fermion in the mode k = (N−1)/2 is not paired with any other mode, and the
contribution to theHamiltonian reads 2αk=(N−1)/2

(
c̃(b=1/2)†
N/2 c̃(b=1/2)

(N−1)/2−1/2
)
. That is to

say that, when N is odd, γk=(N−1)/2 = ck=(N−1)/2 (or equivalently θk=(N−1)/2 = 0),
and thus, εk=(N−1)/2 ≡ 2αk=(N−1)/2. The lowest energy can arise in two scenarios.
First, the simplest case is that there is no fermion. This occurs when

εk=(N−1)/2 + min
k 
=(N−1)/2

εk ≥ 0, (27)

then

E (b=1/2),(Nodd)
0 = −1

2

N−1∑

k=0

ε
(b=1/2)
k . (28)

But if Eq. (27) is violated with optimal k′ (and N − k′ − 1 as well), the ground-state
energy in this sector is then degenerate and has the expression

E (b=1/2),Nodd
0 = εk=(N−1)/2 + εk′ − 1

2

N−1∑

k=0

ε
(b=1/2)
k . (29)

However, there is no such modification when N is even. The lowest energy in the
b = 1/2 sector (with no γ fermions occupied) reads:

E (b=1/2),N even
0 = −1

2

N−1∑

k=0

ε
(b=1/2)
k , (30)

with the associated wavefunction being

|Ψ (b=1/2)〉 =
k< N−1

2∏

k=0

[
cos θk + i sin θk c̃

†
k c̃

†
N−k−1

]
|Ω〉 , (31)

where we suppress the superscript (b = 1/2) in θ ’s.
Let us summarize the discussion for the b = 1/2 sector.When N is even, allβk’s are

nonzero and εk > 0. Therefore, zero fermion has the lowest total energy in that sector.
But when N is odd, βk=(N−1)/2 = 0 and εk=(N−1)/2 = 2αk=(N−1)/2 can be negative,
and whether occupying zero or two fermions corresponds to the lowest energy needs
a comparison. We have shown the possibilities in Eqs. (28), (29) and (30).

In order to determine the gap above the true ground state, we also need to find the
next lowest energy in each sector, in addition to the lowest energies in both sectors
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E (b=1/2)
0 and E (b=0)

0 . It is not necessary that the gap is Δ = |E (b=1/2)
0 − E (b=0)

0 |, even
though we find that typically this is the case.

2.2 Illustrative example: XYmodel with n-site Z-mediated interaction in the
transverse field

In this part, we show how to choose parameters and thus obtain the solution of the XY
model with n-site Z -mediated XX and YY interaction. With this model, one can grasp
the general features of site interactions by simply changing n value. For example, the
standard XY model can be recovered by taking n = 0. Let us begin by listing the
parameters that characterize this Hamiltonian:

N (x) = 1, N (y) = 1, (32a)

J (x)
l = {(1 + r)/2}, J (y)

l ′ = {(1 − r)/2}, (32b)

n(x)
l = {n}, n(y)

l ′ = {n}. (32c)

With the choice of the above parameters, we obtain the corresponding Hamiltonian:

HXnY = −
N∑

j=1

(
1 + r

2
σ x
j−1σ

z
j . . . σ z

j+n−1σ
x
j+n

+ 1 − r

2
σ
y
j−1σ

z
j . . . σ z

j+n−1σ
y
j+n + hσ z

j

)
, (33)

which can be diagonalized as

H =
N−1∑

k=0

ε
(b)
k

(
γ

(b)†
k γ

(b)
k − 1

2

)
, (34)

ε
(b)
k = 2

√(
r sin φn

k

)2 + (h − cosφn
k

)2
, (35)

with the exceptions of the combination of b, k and N mentioned above; the solution
to the Bogoliubov angles is as follows:

tan 2θk = r sin φn
k

h − cosφn
k
, (36)

where we define φk for convenience

φn
k ≡ 2π

N
(n + 1)(k + b), (37)

and n is the number of σz term in each X and Y blocks. The above spectrum εk , of
course, needs to be appropriately modified, for (k = 0, b = 0), (k = N/2, b = 0) for
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N even and
(
k = (N − 1)/2, b = 1/2

)
for N odd, etc., as discussed previously. We

note that by varying the number of σz one obtains other models:

n = 0 → XY model,

n = 1 → XY model with three-site interaction (HXzY ),

n = N

2
− 1 → (for N even) halfway interaction.

We will investigate quantum phase transitions for these models and others in sections
below.

We can also build a different number of Z-mediated sites for each block, such as
(n + 2)-site interaction for X block and (m + 2)-site interaction for Y block with the
following parameters:

N (x) = 1, N (y) = 1, (38a)

J (x)
l = {(1 + r)/2}, J (y)

l ′ = {(1 − r)/2}, (38b)

n(x)
l = {n}, n(y)

l ′ = {m}, (38c)

and substituting parameters into HPXY gives the following Hamiltonian:

HXnmY = −
N∑

j=1

(
1 + r

2
σ x
j−1σ

z
j . . . σ z

j+n−1σ
x
j+n

+ 1 − r

2
σ
y
j−1σ

z
j . . . σ z

j+m−1σ
y
j+m + hσ z

j

)
. (39)

3 Geometric measure of entanglement for generalized cluster-XY
models

Entanglement has become a useful tool to study quantum criticality after several
pioneering works on the behavior of entanglement near the quantum critical points
[23,25,65–68]. Many of the previous works on entanglement investigated the domain
of bipartite systems. The geometric measurement of entanglement, introduced earlier,
was based on a work of Barnum and co-workers [19] and developed further by Wei
and collaborators [20,21,48,69–71].

The main idea of analyzing the geometric entanglement is to find a minimum
distance between the entangled state |Ψ 〉 and suitably defined product states, such as

|Φ〉 ≡
n⊗

i=1

|φ(i)〉 . (40)

An essential quantity is the maximal overlap,

Λmax(Ψ ) ≡ max
Φ

| 〈Φ|Ψ 〉 |, (41)
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from which we can define the geometric entanglement

E (1)
G (Ψ ) ≡ − log2 Λ2

max(Ψ ), (42)

and the entanglement density

E (1) ≡ E (1)
G (Ψ )

N
, (43)

where N denotes the total number of sites. We note that for GHZ states, Λmax = 1/2,
and thus, E (1)

G = 1. Similarly by properly defining the product state, we can define

the geometric entanglement among blocks with each block containing 2 spins, E (2)
G ,

and its density E (2), as discussed in Introduction. In the following section, we present
derivation of the overlaps for these two scenarios.

3.1 Geometric entanglement per site

Here, we review the derivation of the overlap of the ground state with a product state,
comprised of product of single spin states: |Φ1〉 = (a |↑〉 + b |↓〉)⊗N which can be
written as fermions by applying the Jordan–Wigner transformation

|Φ1〉 =
N⊗

i=1

(
a + bσ−

i

) |↑↑ . . . ↑〉 , (44a)

=
N∏

i=1

⎡

⎣a + b
i−1∏

j=1

(1 − 2c†j c j )c
†
i

⎤

⎦ |Ω〉 , (44b)

where |Ω〉 is the vacuum with no c fermions. Using this fact, we can further simplify
the expression

|Φ1〉 =
N∏

i=1

[
a + b c†i

]
|Ω〉 = aN

N∏

i=1

eb
′c†i |Ω〉 , (45)

= aNe
∑N

i=1 b
′c†i e

∑
i< j (b

′)2c†i c†j , (46)

where we have defined b′ ≡ b/a. Note that eAeB = eA+Be[A,B]/2 = eA+BeAB if
A2 = B2 = 0 and {A, B} = 0. For many such operators, we use eA1eA2 . . . eAk =
e
∑

Ai e
∑

i< j Ai A j to bring them to the same exponent. Namely,
∏N

i=1 e
b′c†i =

e
∑N

i=1 b
′c†i e

∑
i< j (b

′)2c†i c†j . Next, we need to express
∑

i< j c
†
i c

†
j in the momentum basis.

Notice that we can relax the limit i < j in the sum to i ≤ j , as c†i c
†
i = 0. For simplic-

ity and for the purpose of illustration, we consider quantum XY model with nearest
neighbor interaction with N being even and consider the odd sector, i.e., c j+N = −c j ,
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and thus, using the following Fourier transformation c j = 1√
N

∑N−1
k=0 ei

2π
N j(k+1/2)ck ,

we calculate

∑

j≤l

c†j c
†
l = 1

N

l∑

j=1

N−1∑

k,k′=0

e
−i 2πN j

(
k+ 1

2

)
−i 2πN l

(
k′+ 1

2

)

c†k c
†
k′ (47a)

= 1

N

N−1∑

k,k′=0

e
−i 2πN

(
k+ 1

2

)
e
−i 2πN l

(
k′+ 1

2

)

− e−i 2πN l(k+k′+1)

1 − e
−i 2πN

(
k+ 1

2

) c†k c
†
k′ . (47b)

Noting that

N∑

l=1

e
−i 2πN l

(
k′+ 1

2

)

= e
−i 2πN

(
k′+ 1

2

)
1 − e

−i 2πN N
(
k′+ 1

2

)

1 − e
−i 2πN

(
k′+ 1

2

) = e
−i π

N

(
k′+ 1

2

)

i sin
[

π
N

(
k′ + 1

2

)] , (48a)

N∑

l=1

e−i 2πN l (k+k′+1) = Nδk+k′+1,N , (48b)

we arrive at

∑

j≤l

c†j c
†
l = 1

N

N−1∑

k,k′=0

e
−i π

N

(
k+ 1

2

)

i sin
[

π
N

(
k + 1

2

)]
e
−i π

N

(
k′+ 1

2

)

i sin
[

π
N

(
k′ + 1

2

)]c†k c
†
k′

−
N−1∑

k=0

e
−i π

N

(
k+ 1

2

)

i sin
[

π
N

(
k + 1

2

)]c†k c
†
N−k−1. (49)

The coefficient of the first term is symmetric in (k, k′), and thus, the sum makes no
contribution, and we can symmetrize the second term, obtaining

∑

j≤l

c†j c
†
l =

N−1∑

k=0

i cot

[
π

N

(
k + 1

2

)]
c†kc

†
N−k−1. (50)

Thus, we have rewritten |Φ1〉 in terms of fermionic language,

|Φ1〉 = aNe
∑N

i=1 b
′c†i e

∑N
i=1(b

′)2
∑N−1

k=0 i cot
[

π
N

(
k+ 1

2

)]
c†k c

†
N−k−1 |Ω〉 , (51)

and we can choose an arbitrary normalizable constant such that a = cos ξ
2 and

b = sin ξ
2 . Note that we assume the product state is also translation invariant.

In many cases in the thermodynamic limit, the ground state is in the sector of
b = 1/2 with no fermion, i.e., |Ψ1/2〉. So we will illustrate the calculation of the
overlap 〈Φ1|Ψ1/2〉 in order to obtain the entanglement for |Ψ1/2〉. It is convenient to
rewrite |Φ1〉 in the similar pairing form as the ground state for the even N case,
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|Φ1(ξ)〉 =
k< N−1

2∏

k=0

(
cos2

ξ

2
+ i sin2

ξ

2
cot

π(k + 1
2 )

N
c̃†k c̃

†
N−k−1

)
|Ω〉 , (52)

and thus, we arrive at the overlap for even N

〈Ψ1/2|Φ(ξ)〉 =
k< N−1

2∏

k=0

(
cos θk cos

2 ξ

2
+ sin θk sin

2 ξ

2
cot

π(k + 1
2 )

N

)
. (53)

Maximizing log2 | 〈Ψ |Φ〉 |2 over ξ , we obtain geometric entanglement Eq. (43) and
the entanglement density.

One important point of the above calculations is that the product state can be
expressed in terms of pair creations from the vacuum, in the same manner as the
ground state. We shall see in the next section that for a different type of product states
consisting of pairs of sites it is of the form of four-particle creations from the vacuum.
Similar to this, the ground state will be conveniently re-expressed as creation of two
corresponding pairs to match the structure. In the above calculations of entanglement,
we have assumed the ground state has zero Bogoliubov fermions. Similar calculation
can be made for ground states having nonzero Bogoliubov fermions, such as that done
in Refs. [21,72].

3.2 Geometric entanglement per block

If we define the product state to be composed of tensor product of states for blocks
of spins, we can investigate the geometric entanglement among these blocks as well
as the entanglement per block. Each block can consist of L spins. For L = 2, we
write product state, where coefficients a, b, c, d below are normalized but arbitrary
constants.

|φ[2i−1,2i]〉 = a |↑〉2i−1 ⊗ |↑〉2i + b |↑〉2i−1 ⊗ |↓〉2i
+ c |↓〉2i−1 ⊗ |↑〉2i + d |↓〉2i−1 ⊗ |↓〉2i . (54)

Using the Jordan–Wigner transformation, we can re-express the total product state
|Φ〉 ≡ ⊗N/2

i=1 |φ[2i−1,2i]〉 as follows:

|Φ〉 =
N/2⊗

i=1

⎡

⎣a + b
2i−1∏

j=1

(1 − 2c†j c j )c
†
2i + c

2i−1∏

j=1

(1 − 2c†j c j )c
†
2i−2 + dc†2i−1c

†
2i

⎤

⎦ |Ω〉 ,

(55)
where |Ω〉 is the vacuumwith no c fermions, and we have assumed here that N is even.
We note that we have introduced a parameter c, which should be clear to distinguish
from the operators c’s (which carry a site index). Using the fact that the operators c’s
annihilate the vacuum, we have

123



326 Page 18 of 41 A. Deger, T.-C. Wei

|Φ〉 =
N/2⊗

i=1

[
a + b c†2i + c c†2i−2 + d c†2i−1c

†
2i

]
|Ω〉 (56)

= aN/2
[
⊗N/2

i=1 e
b′ c†2i+c′ c†2i−1

]
ed

′∑N/2
i=1 c†2i−1c

†
2i |Ω〉 , (57)

where we have defined b′ ≡ b/a, c′ ≡ c/a and d ′ ≡ d/a. Employing the trick used
earlier to bring operators to the same exponent, we arrive at

|Φ〉 = aN/2 e
∑N/2

i=1 e
b′ c†2i+c′ c†2i−1

e
∑

i< j (e
b′ c†2i+c′ c†2i−1 )(e

b′ c†2 j+c′ c†2 j−1 )ed
′∑N/2

i=1 c†2i−1c
†
2i |Ω〉.
(58)

Aswe also have the two lowest states |Ψb〉 (b = 0, 1/2) expressed in terms of fermionic
basis, we can evaluate the overlap 〈Ψb|Φ〉 in a straightforward, though tediousmanner.
Note that in the sum

∑
i< j , we can safely put the limit as

∑
i≤ j , aswhen i = j , the term

vanishes. Thus, we need to evaluate
∑N/2

i≤ j

(
c†2i c

†
2 j , c

†
2i−1c

†
2 j−1, c

†
2i c

†
2 j−1, c

†
2i−1c

†
2 j

)
,

as well as
∑N/2

i c†2i−1c
†
2i in terms of momentum sum. The calculations for b = 1/2

case are shown as follows:

N/2∑

i≤ j

(
c†2i−1c

†
2 j + c†2i c

†
2 j−1

)

= −1

2

N−1∑

k1,k2=0

ei
2π
N (k1+ 1

2 ) + ei
2π
N (k2+ 1

2 )

1 − e−i 2πN 2(k1+ 1
2 )

e−i 2πN 2(k1+ 1
2 ) (. . .) c†k1c

†
k2

(59)

N/2∑

i≤ j

c†2i c
†
2 j = −1

2

N−1∑

k1,k2=0

e−i 2πN 2(k1+ 1
2 )

1 − e−i 2πN 2(k1+ 1
2 )

(. . .) c†k1c
†
k2

(60)

N/2∑

i≤ j

c†2i−1c
†
2 j−1 = −1

2

N−1∑

k1,k2=0

e−i 2πN (k1−k2)

1 − e−i 2πN 2(k1+ 1
2 )

(. . .) c†k1c
†
k2

(61)

N/2∑

i≤ j

c†2i−1c
†
2i = 1

2

N−1∑

k1,k2=0

ei
2π
N (k1+ 1

2 ) (. . .) c†k1c
†
k2

, (62)

where (. . .) ≡ (
δk1+k2+1,N + δk1+k2+1,N/2 + δk1+k2+1,3N/2

)
. There are three Kro-

necker delta functions, the first of which, δk1+k2+1,N , represents the same pairing
(k, N − k − 1) as the ground state. The latter two, δk1+k2+1,N/2 + δk1+k2+1,3N/2, how-
ever, do not correspond to the same pairing, but instead correspond to terms broken
from twopairs of (k, N−k−1) to (k+N/2, N/2−1−k) and (k+3N/2, 3N/2−1−k).
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We then collect those quadratic operators in the exponential of |Φ〉 in the following
form

Ô ≡
k<(N/2−1)/2∑

k=0

(
fkc

†
kc

†
N−k−1 − fN/2−1−kc

†
N/2+kc

†
N/2−k−1

+ gkc
†
kc

†
N/2−k−1 + hkc

†
k+N/2c

†
N−k−1

)
. (63)

This division of operators into four groups facilitates the calculation of the overlap.
At last, the overlap reads:

〈Ψ1/2|Φ〉 = χN

k<(N/2−1)/2∏

k=0

{
a2 cos θk cos θ N

2 −k−1 + d2 sin θk sin θ N
2 −k−1

+ cos θ N
2 −k−1 sin θk

[
b2 + c2

2
cot

2π

N

(
k + 1

2

)

+ b c cot
2π

N

(
k + 1

2

)
cos

2π

N

(
k + 1

2

)
+ a d sin

2π

N

(
k + 1

2

)]

+ cos θk sin θ N
2 −k−1

[
− b2 + c2

2
cot

2π

N

(
k + 1

2

)

+ b c cot
2π

N

(
k + 1

2

)
cos

2π

N
(k + 1

2
) + a d sin

2π

N

(
k + 1

2

)]}
,

(64)

with

χN = 1 for N/4 = integer,

χN = a cos θ 1
2

(
N
2 −1

) + d sin θ 1
2

(
N
2 −1

) for N/2 = odd integer.

Bymaximizing log2 | 〈Ψ |Φ〉 |2 over parameters a, b, c, d, we can obtain the entangle-
ment per block. In the thermodynamic limit, it is written as

E2 = − max
a,b,c,d

4
∫ π/2

0
dμ log2

{
a2 cos θ(μ) cos θ(π − μ)

+ d2 sin θ(μ) sin θ(π − μ) + sin[θ(μ) − θ(π − μ)]b
2 + c2

2
cotμ

+ sin[θ(μ) + θ(π − μ)][b c cotμ cosμ + a d sinμ
]}

. (65)

Here we assume the closest product state is product of identical two-spin states.
We note that the above expression will reduce to that for the single-site product

states when we set the two-site state
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a |↑↑〉 + b |↑↓〉 + c |↓↑〉 + d |↓↓〉 = (α |↑〉 + β |↓〉) (α |↑〉 + β |↓〉), (66)

namely, we set a = α2, b = c = αβ and d = β2. In the case of antiferromagnetic
ground state,we canno longer assume the single-site product states to be translationally
invariant. However, in order to obtain the entanglement per site, we maximize the
overlap log2 | 〈Ψ |Φ〉 |2 with the following parameters: a = αγ, b = αδ, c = βγ, d =
βδ where |α|2 + |β|2 = |γ |2 + |δ|2 = 1, which comes from a product state of two
sites (α |↑〉 + β |↓〉)︸ ︷︷ ︸

|κ〉
(γ |↑〉 + δ |↓〉)︸ ︷︷ ︸

|η〉
.

4 Examples

After having given the parameterized exact solutions for the cluster-XY family of
Hamiltonians and calculated the overlap for the ground-state entanglement, we now
examine a few examples.We did verify numerically that for all themodelswe consider,
the closest product state to the ground state using (1) single-site product ones and (2)
two-site product ones can bewritten as (1) |κ〉 |η〉 |κ〉 |η〉 . . . and (2) |φ[1,2]〉 |φ[1,2]〉 . . .,
respectively. We also compared numerical exact diagonalization for lowest two ener-
gies, indicated by points at the below figures, with our analytic solutions.

4.1 The anisotropic XYmodel with three-site interaction (XzYmodel)

The first model analyzedwith the geometric entanglement is the celebrated XYmodel,
done in Ref. [21]. It was observed that the geometric entanglement displays a singular
behavior across the critical line hc = 1. This model was also investigated in terms
of other entanglement measures, such as the concurrence [23] and the entanglement
entropy [65,66,68]. The behavior of concurrence is similar. The entanglement entropy
shows a logarithmic scaling in the subsystem size at criticality.

As a first example in our calculation, we present the solution of the anisotropic XY
model with three-site interaction (XX andYY, eachmediated by one-site Z term) in the
transverse field and discuss the ground-state entanglement. Similar Hamiltonians have
been examined previously [55–58], with little emphasis on the entanglement behavior,
except for the localizable entanglement in Ref. [55]. This model in one dimension is
exactly solvable. We find that near the critical line hc = 1, the global entanglement
shows divergence and quantumphase transition occurs between a nontrivial SPT phase
and a trivial paramagnetic phase. The existence of the continuous transition is also
consistent with the behavior of the energy gap.

The model is characterized by the following parameters, which we introduced
earlier,

N (x) = 1, N (y) = 1, (67a)

J (x)
l = {(1 + r)/2}, J (y)

l ′ = {(1 − r)/2}, (67b)

n(x)
l = {1}, n(y)

l ′ = {1}. (67c)
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(a) (b)

Fig. 1 Energy difference: Eodd − Eeven, where Eodd is the lowest energy in the odd sector and Eeven is
that in the even sector. a For the XzY model with r = 0.5 and N = 8. It is seen that the ground-state energy
is always Eeven, from the even sector. b For XY model with r = 0.5 and N = 8. In contrast, it is seen that
the ground state switches back and forth between the even and odd sectors, depending on the value of h
(Color figure online)

Substituting these terms into HPXY (4), we obtain the XzY model in the transverse
field:

HXzY = −
N∑

j=1

[
1 + r

2
σ x
j−1σ

z
j σ

x
j+1 + 1 − r

2
σ
y
j−1σ

z
j σ

y
j+1 + hσ z

j

]
, (68)

where r is a magnetic anisotropy constant between σx and σy terms with 0 ≤ r ≤ 1.
When r = 1 (the Ising limit), the model reduces a cluster model [73], and in the limit
r = 0, it becomes an isotropic XY model with three-site interaction. Using Eq. (14),
we calculate αk and βk :

βk =
(1 + r

2

)
sinΘ

(x)
l −

(1 − r

2

)
sinΘ

(y)
l ′ , (69)

αk = h −
(1 + r

2

)
cosΘ

(x)
l −

(1 − r

2

)
cosΘ

(y)
l ′ , (70)

with Θ1 = Θ
(x)
1 = Θ

(y)
1 = 4π

N (k + b). We then obtain the diagonalized Hamiltonian
and the exact energy spectrum (see Eqs. 16–20):

H =
N−1∑

k=0

ε
(b)
k

(
γ

(b)†
k γ

(b)
k − 1

2

)
. (71)

The eigenvalues can be obtained by carefully analyzing odd (b = 0, periodic
boundary conditions) and even (b = 1/2, antiperiodic boundary conditions) sectors
separately, assuming N is even or odd, respectively:

ε
(b)
k =

⎧
⎨

⎩

2(h − 1), for k = 0 ∧ b = 0
2(h − 1), for k = N

2 ∧ b = 0
2(h − 1), for k = N−1

2 ∧ b = 1/2

⎫
⎬

⎭ = 2α(b)
k , (72)
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(a)

(c) (d)

(b)

Fig. 2 a Lowest few energy levels vs. h for the XzY model with an anisotropy r = 1 and the system size
N = 8. The model essentially becomes the Ising model with next-nearest neighbor interaction (except the
mediating Z factor) in the transverse field. In the odd sector, lowest one-fermion and three-fermion energy
levels intercept at h = 0. The red line (bottom line) indicates the ground state comes from the even sector
with zero-fermion occupation. b Energy difference between the ground and first excited states as a function
of h at r = 1. At the critical point h = 1, the energy gap is closing as a function of the system size, which
indicates a second-order quantum phase transition. In the thermodynamic limit (N → ∞), the energy gap
becomes 2

∣∣1− |h|∣∣. We show that numerical exact diagonalization for lowest two energies (points) and our
analytic solutions (curves) agree. cQuantum entanglement of the XzYmodel with the anisotropy r = 1 and
with increasing system sizes N = 16, 32, 64, 1024 (from top to bottom). d Derivative of the entanglement
density of the XzY model for r = 1, where N = 32, 64, 128, 1024 (from top to bottom for h < 1). The
derivative of entanglement diverges, and the QPT occurs at h = 1 between a nontrivial SPT phase for h < 1
and a trivial paramagnetic phase for h > 1 (Color figure online)

or otherwise (N can be either even or odd):

ε
(b)
k = 2

√
(βk)

2 + (αk)
2 = 2

√(
r sin

4π

N
(k + b)

)2
+
(
h − cos

4π

N
(k + b)

)2
,

(73)

with the corresponding Bogoliubov solution:

tan 2θ(b)
k = βk

αk
= r sinΘ1

h − cosΘ1
. (74)

One notices that the solution is similar to the solution of the standard XY model
[51,59,72]. The only difference occurs in the momentum space by a factor of two, i.e.,
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(a)

(c) (d)

(b)

Fig. 3 a Lowest few energy levels vs. h for the XzY model with an anisotropy r = 0.5 and the system
size N = 8. In the specific region (h � 0.5), the first excited state has three-fermion occupation, which is
energetically favorable then one-fermion occupation. The possibility of this peculiarity is discussed in Eq.
(21). However, the red line (bottom line) shows that the ground-state energy comes from the even sector
with zero-fermion occupation.We compare numerical exact diagonalization for lowest two energies (points)
with our analytic solutions (curves). b Energy difference of the ground and first excited states as a function
of h at r = 0.5. At the critical point h = 1, the energy gap is closing as a function of the system size,
which indicates a second-order quantum phase transition. c Quantum entanglement of the XY model with
three-site interaction in the transverse field (also labeled as the XzY model), where the anisotropy r = 0.5
with increasing system sizes N = 16, 32, 64, 1024 (from top to bottom). d Derivative of entanglement
density of the XzY model for r = 0.5 and N = 32, 64, 128, 1024 (from top to bottom for h < 1). The
derivative of entanglement diverges, and the QPT occurs at h = 1 between a nontrivial SPT phase for h < 1
and a trivial paramagnetic phase for h > 1 (Color figure online)

in the XY model Θ1 is 2π(k + b)/N instead of 4π(k + b)/N . But there are some
differences that are related to the subtlety in getting the global lowest energy state.
For instance, in the XY model with r 
= 1, the state of the lowest energy can come
from either the even or the odd sector, as illustrated in Fig. 1b for r = 0.5. As a
function or h, the ground state switches between the two sectors, as the lowest energy
changes between E (b=0)

0 and E (b=1/2)
0 . But for the XzY model, the ground state is

always in the even sector with zero fermion, as illustrated in Fig. 1a. Moreover, for
the odd-number fermion case (b = 0), the lowest energy level in this sector depends
on the field parameter (h) and the anisotropy constant (r ). For example, in the Ising
limit where r = 1, the odd sector has three-fermion occupation as the lowest energy
state in the region of h < 0; otherwise, it is energetically favorable to occupy one
fermion for even N ; see Fig. 2a and also Fig. 1a. However, the true ground state
arises from the b = 1/2 (even) sector and has no γ fermion. This phenomenon differs
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Fig. 4 Entanglement density per site vs transverse magnetic field (h) vs anisotropy (r ) for XzY model with
N = 1000 spins (Color figure online)

from the standard XY model, where the lowest energy in the odd sector always has
one-fermion occupation. The possibility of such peculiarity is discussed in Sect. 2.1;
see discussions around Eq. (21). We note that for a finite system size N (even) and
r = 0.5, the lowest energy level in the odd sector has three fermions from negative h
values up to about h ≈ 0.4; see Figs. 3a and 1a. Moreover, the energy gap between
the ground and the first excited states is closing with an increasing system size N at
h = 1, implying a quantum phase transition there; see Figs. 3b and 2b. For small finite
sizes, the gap as a function of h is not smooth for r = 0.5. In contrast, the gap vs. h
is smooth for r = 1 even with finite sizes, and in the thermodynamic limit N → ∞,
the energy gap for r = 1 (Ising limit of the XzY model) becomes 2

∣∣1 − |h|∣∣.
To examine the quantum phase transition in the phase diagram, we also calculate

geometric entanglement and we plot the entanglement per site in Fig. 4 over a wide
range of r and h. It is visible that the behavior of entanglement is singular across h = 1,
similar to that in the standard XY model [21]. We illustrate this for two different r ’s
(r = 0.5 and r = 1) in Figs. 3c and 2c, as well as the entanglement derivative w.r.t.
h in Figs. 3d and 2d. The derivative of the entanglement develops singularity, which
indicates a quantum phase transition.

From the above, it follows that for r = 1 the Hamiltonian reduces to

H = −
∑

j

(
σ x
j−1σ

z
j σ

x
j+1 + hσ z

j

)
. (75)

Themodel has a Z2×Z2 symmetry, generated byUe =∏ j even σ z
j andUo =∏ j odd σ z

j
[49]. At h = 0, the ground state is known to be the cluster state, which is a nontrivial
SPT state. (One expects this nontrivial SPT order to hold for general n-site mediated
Ising model with Z⊗n+1

2 symmetry; see Ref. [50].) At large h, the ground state is a
trivial paramagnetic state. As we have seen that there is a quantum phase transition at
h = 1, detected by the gap closing and the entanglement singularity, the SPT order
appears in the region |h| ≤ 1. In fact, XzY model Eq. (68) at any r has the Z2 × Z2
symmetry, and we expect that for 0 < r ≤ 1, the phase diagram contains a nontrivial
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Fig. 5 a Figure illustrates the energy gap for XnY model (namely, XY model with n-site Z-mediated
interaction) with the anisotropy r = 0.7 at a fixed system size N = 40 vs. the mediating Z number
(n) between 16 and 22 and vs. the transverse magnetic field h. We notice a jump in the energy gap at√
1 − r2 ≈ 0.714 for the halfway XYmodel (n = N/2−1 = 19). b Right figure illustrates the energy gap

for the halfway XY model (denoted by XhY) with the following parameters: N (x) = N (y) = 1, J (x)
l =

{(1 + r)/2}, J (y)
l′ = {(1 − r)/2}, n(x)

l = n(y)
l′ = {N/2 − 1}. The energy gap has different characteristics

between N = 4m and N = 2(2m + 1), as the former is degenerate and the latter is gapped in the region

|h| <
√
1 − r2 (Color figure online)

SPT phase for h < 1 (as there is no phase transition inside that region) and a trivial
paramagnetic phase for h > 1, separated at a critical line at h = 1. The reason r = 0
line is excluded is because the system is gapless for h ∈ [0, 1] at r = 0. This compares
to the standard XY model, where h = 1 separates a ferromagnetic phase from a
paramagnetic phase. From the results in Ref. [50], we also expect that this is generic
behavior for general but finite n (where the interaction is restricted to be short ranged).

4.2 XYmodel with halfway interaction

In Sect. 2.2, we introduced an illustrative example of the XY model with n-site Z -
mediated XX and YY interactions. For n = 0 and n = 1, we recover the standard
XY model and the XY model with three-site interaction (XzY model) investigated
in the previous example. In this part, we demonstrate how a specific choice of site
interaction n = N/2 − 1 (halfway interaction) exhibits different behaviors from that
of n = 0, 1 and has no quantum phase transition at h = 1. This is a rather interesting
result since except at this arbitrary point (n 
= N/2 − 1), the XY model generically
exhibits a quantum phase transition for each n-site interaction, as seen by vanishing
of the gap there in Fig. 5a. Moreover, we also discover a first-order phase transition
in the XY model with halfway interaction in the region of 0 ≤ r < 1. (The halfway
interaction only occurs for even system sizes N ). In this limit, the first-order transition
occurs at the Barouch–McCoy circle [74], namely r2 + h2 = 1. For example, in the
case of r = 0.7 the phase transition occurs at hc = √

1 − 0.72 ≈ 0.714 as illustrated
in Fig. 5b. We note that there is an even-odd effect in N/2 and the behavior of the gap
is different.

We note that for the standard XY model, the Barouch–McCoy circle represents
only a crossover that divides the ferromagnetic phase into two regions. Here, for the
halfway interaction, the circle represents a curve of first-order transition points.
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First, let us define the parameters that give the XY model with n-site interaction

N (x) = 1, N (y) = 1, (76a)

J (x)
l = {(1 + r)/2}, J (y)

l ′ = {(1 − r)/2}, (76b)

n(x)
l = {n}, n(y)

l ′ = {n}, (76c)

yielding the corresponding Hamiltonian:

HXnY = −
N∑

j=1

(
1 + r

2
σ x
j−1σ

z
j . . . σ z

j+n−1σ
x
j+n

+ 1 − r

2
σ
y
j−1σ

z
j . . . σ z

j+n−1σ
y
j+n + hσ z

j

)
. (77)

This Hamiltonian can be diagonalized into the form, Eq. (16), and we obtain the
following Bogoliubov solution (with φn

k ≡ 2π
N (n + 1)(k + b)):

tan 2θ(b)
k = r sin φn

k

h − cosφn
k
. (78)

In the case of halfway interaction, we substitute n = N/2− 1 to simplify Bogoliubov
solution, respectively, for the even (b = 1/2) and the odd sector (b = 0):

tan 2θ(1/2)
k =

r sin
[
π
(
k + 1

2

) ]

h − cos
[
π
(
k + 1

2

) ] = (−1)kr

h
, (79a)

tan 2θ(0)
k = r sin (πk)

h − cos (πk)
= 0, (79b)

with following energy spectrum for odd N and b = 1/2 and for even N and b = 0:

ε
(b)
k =

⎧
⎨

⎩

2(h − 1), for k = 0 ∧ b = 0
2
[
h − (−1)N/2

]
, for k = N

2 ∧ b = 0
2 h, for k = N−1

2 ∧ b = 1/2

⎫
⎬

⎭ = 2α(b)
k , (80)

or otherwise:

ε
(b)
k = 2

√[
h − cos

(
π(b + k)

)]2 +
[
r sin

(
π(b + k)

)]2

=
{
2|h − (−1)k |, for b = 0,
2
√
h2 + r2, for b = 1/2.

(81)

To obtain the ground state and the first excited state, one should examine even and
odd sectors carefully. This model shows vacua competition [59] similar to the standard
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(a)

(c) (d)

(b)

Fig. 6 Lowest few energy levels vs. h for the halfway XY model at r = 0.5 with top a N = 8; bottom c
N = 10. This model shows that the ground state changes from the odd to even sector at the transition. The
right panel illustrates the energy gap vs. h for the halfway XY model at r = 0.5. Top b N = 4m; bottom
d N = 2(2m + 1). There is clearly a difference between N = 4m and N = 2(2m + 1). In the former, it
is gapless in the range −0.86 � h � 0.86, but has a jump to a finite gap outside that range. On the other
hand, in the latter case of N = 2(2m + 1), inside the region −0.86 � h � 0.86, it is gapped, but the size
of the gap has a jump at h ≈ ±0.86. This suggests that the transition there is first order, consistent with the
level crossing, shown in a and c. We confirm our analytic solutions (curves) with the results obtained from
numerical exact diagonalization for lowest two energies and energy gap (points) (Color figure online)

XYmodel, meaning that odd and even sectors switch the roles of being the true ground
state depending on h. This competition is lifted in the Ising limit where r = 1 and the
ground state is certainly constructed from the even sector (b = 1/2) with no fermion;
except when N = 2(2m + 1) and at h = 0, another degenerate ground state is from
the odd sector with one fermion; see Fig. 7. In the case of r = 0.5, the switching
happens around h ≈ 0.866. The ground state becomes dominated by the odd sector
in the range −0.87 � h � 0.87, but outside that range the ground state comes from
the even sector (b = 0) with zero-fermion occupation; see Fig. 6. In particular, for
−0.87 � h < 0 and with N = 4m, the lowest energy level in the odd sector has
three-fermion occupation instead of one fermion, as it is energetically favorable to
occupy three fermions in the odd sector rather than just one fermion. In fact, in this
region, the ground state is degenerate (not shown explicitly in Fig. 6a, but is shown
in Fig. 6b), both degenerate ground states have 3 fermions. But in 0 ≤ h � 0.87, the
lowest one-fermion and three-fermion states become degenerate. For N = 2(2m + 1)
and − 0.87 � h � 0.87, the lowest energy is dominated by the one-fermion state in
the odd sector. This phenomenon is anticipated earlier in Eqs. (19–22). Using these
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(a)

(c) (d)

(b)

Fig. 7 Lowest two levels for even and odd sectors with top a N = 8; bottom c N = 10, for the halfway
Ising model at r = 1. We note that for the negative h, three-fermion occupation occurs as the lowest level in
the odd sector, instead of one fermion, which satisfies the inequality is shown in Eq. (21). The true ground
state is constructed by the even sector (b = 1/2) with no fermion. The right panels illustrate the energy gap
between the ground state and the first excited state for halfway XY model as a function of h at r = 1. Top
b N = 4m; bottom d N = 2(2m + 1). We see that as N becomes very large, the system becomes gapped
at all h, except possible double degeneracy at h = 0. This shows that there is no phase transition in the
thermodynamic limit. We show that numerical exact diagonalization for lowest two energies (points) and
our analytic solutions (curves) agree (Color figure online)

equations, we also calculate the lowest energy for the odd/even sector and the true
energy gap which is shown in Fig. 6. All of these suggest that there is a first-order
phase transition for the halfway XY model with 0 ≤ r < 1, as the transition is due to
a level crossing. However, for r = 1, the halfway Ising model, the gap closes at h = 0
only for N = 2(2m + 1), but not for N = 4m.

There is an interesting picture that emerges. In the standardXYmodel in a transverse
field, there is a crossover curve, the so-called Barouch–McCoy circle, given by r2 +
h2 = 1 [74]. The crossover curve divides the ferromagnetic phase into two regions:
(i) inside the arc, the spin–spin correlation functions display oscillatory behavior, and
(ii) outside the arc, the correlation functions have no oscillatory behavior. On the
arc, the ground state is essentially a product state, also detected by zero geometric
entanglement previously in Ref. [21]. Here for the halfway XY model, the crossover
arc, r2 + h2 = 1 is promoted to a first-order transition curve, due to the mediated
long-range Z string of a specific length n = N/2 − 1. Thus, the transition field h
for r = 0.5 is hc(r = 0.5) = √

1 − 0.52 ≈ 0.886, agreeing with our calculations
of the energy gap in Fig. 6. This works for other value of 0 ≤ r < 1 as well, see
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(a) (b)

Fig. 8 a Figure shows the entanglement per site for the halfway Isingmodel (r = 1), with increasing system
sizes N = 16, 32, 128, 1024, all of which collapse on the same line. b Cusp of the entanglement in a gives
rise to a jump in the entanglement derivative (Color figure online)

Fig. 5b for r = 0.7 case. The behavior of the r = 1 halfway Ising model is different,
as there is a closing of the energy gap at h = 0 only for the total site number being
N = 2(2m + 1), as shown in Fig. 7. But in the thermodynamic limit, the energy gap
ΔE is always finite, except at the peculiar point h = 0, namely that it does not close
continuously. We thus do not regard this as a phase transition.

As the transition in the halfway XY model is first order, one expects that the entan-
glement will have a discontinuity at the transition, as it is caused by a level crossing.
In this case, the ground state in the range −√

1 − r2 ≤ h ≤ √
1 − r2 involves the

odd sector with either one or three fermions. One could calculate the ground-state
overlap with product states. But we will not proceed with that here. For r = 1 halfway
Ising model, as well as other Ising models with n-site interaction, the ground-state
wavefunction comes from the even sector without a fermion, and for that the overlap
is calculated in Sect. 3, and hence, the geometric entanglement (per site and per block
of two sites) is readily available upon simple parameter optimization. As shown in
Fig. 8, the entanglement develops a cusp behavior at h = 0 and gives rise to a jump
in the derivative. However, this ‘weak’ singularity is a result that the entanglement is
symmetric w.r.t. h = 0, but it immediately decreases as soon as h deviates from 0 (i.e.,
with a nonzero slope). As shown in Ref. [50], at h = 0, the state is the generalized
cluster state, which exhibits the same geometric entanglement as the cluster state, and
is expected to display the infinite localizable entanglement length [75]. Even though
there is no true phase transition in the usual statistical mechanics, but there is one
peculiar transition proposed by Verstraete, Martin-Delgado and Cirac [75] in that the
localizable entanglement length is infinite. This kind of transition was shown to be
detectable by the geometric entanglement, displaying the weak singularity, such as
the cusp [71].

4.3 GHZ-Cluster model

In this part, we calculate the ground-state energy of the GHZ-Cluster model, which
was introduced by Wolf et al. [47], and examine the quantum phase transition on the
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(a)

(c) (d)

(b)

Fig. 9 a Lowest few energy levels for even and odd sectors in GHZ-cluster model, with N = 8, as a
function of g. We use E. and O. to imply Even and Odd sectors, respectively. We compare numerical
exact diagonalization for lowest two energies (points) and our analytic solutions (curves). b Energy gap for
increasing system sizes (N = 8, 16, 32, 64, 512), interestingly, is the same. As constructed in Ref. [45],
the ground-state energy displays no singularity at the QPT (g = 0). c Transition can be detected by the
behavior of entanglement. The figure shows geometric entanglement per site (red, dashed) and per block
(black, solid) for GHZ-Cluster state where N = 128. d Derivative of the entanglement per site and per
block (inset) close to the critical point at g = 0, where N = 8, 16, 32, 64, 512 is used (identified from top
to bottom for g < 0) (Color figure online)

phase diagram, utilizing the geometric entanglement and the energy gap. We consider
a local Hamiltonian with three-site interaction constructed by the following matrix
product state as its ground state:

A0 =
(
0 0
1 1

)
, A1 =

(
1 g
0 0

)
, (82)

and the corresponding Hamiltonian possessingZ2 symmetry was constructed byWolf
et al. [47] and reads:

H =
N∑

j=1

(
2(g2 − 1)σ z

j−1σ
z
j + (g − 1)2σ z

j−1σ
x
j σ

z
j+1 − (1 + g)2σ x

j

)
. (83)

The QPT in the model is peculiar as the ground-state energy is analytic for all range
of the parameter g, even though the correlation length diverges at the critical point.
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To utilize our parameterization for themodel, first we rotate theHamiltonian around
the y axis such that σx → σz . Then we choose N (x) = 2 and a list of J (x)

l , as we
need two X blocks and N (y) = 0 to eliminate Y block. We note that one can assign
the value for h in terms of g to generate the required Hamiltonian. Here we give the
resulting parameters that give the equivalent cluster-GHZ model:

h = (1 + g)2, (84a)

N (x) = 2, N (y) = 0, (84b)

J (x)
l = {−2(g2 − 1),−(g − 1)2}, J (y)

l ′ = {0}, (84c)

n(x)
l = {0, 1}, n(y)

l ′ = {0}. (84d)

Substituting above parameters into Eq. (4) yields the following Hamiltonian:

H = −
N∑

j=1

(
− 2(g2 − 1)σ x

j−1σ
x
j − (g − 1)2σ x

j−1σ
z
j σ

x
j+1 + (1 + g)2σ z

j

)
. (85)

This Hamiltonian can be diagonalized in the form of Eq. (16) with the following
Bogoliubov solution, where ϕ

(b)
k ≡ 2π(b+k)

N ,

tan 2θ(b)
k = − 2(g − 1) sin ϕ

(b)
k

[
(g − 1) cosϕ

(b)
k + g + 1

]

2
(
g2 − 1

)
cosϕ

(b)
k + (g − 1)2 cos 2ϕ(b)

k + (g + 1)2
. (86)

The exact energy spectrum can be obtained by utilizing Eqs. (14) and (17–20). The
eigenvalues in the case of even N for the odd sector (b = 0, periodic boundary
conditions) and odd N for the even sector (b = 1/2, antiperiodic boundary conditions)
are as follows:

ε
(b)
k =

⎧
⎨

⎩

8g2, for k = 0 ∧ b = 0
8, for k = N

2 ∧ b = 0
8, for k = N−1

2 ∧ b = 1/2

⎫
⎬

⎭ = 2α(b)
k , (87)

or otherwise:

ε
(b)
k = 4

∣∣∣1 + g2 +
(
g2 − 1

)
cosϕ

(b)
k

∣∣∣ . (88)

The model exhibits quantum phase transition at gc = 0, and the ground state is the
Greenberger–Horne–Zeilinger (GHZ) state. At g = 1, the Hamiltonian is proportional
to
∑

j σ
z
j where all spins are in the z-direction; this is a paramagnetic phase.At g = −1,

the ground state is a cluster state (disordered phase), and theHamiltonian has a Z2×Z2
symmetry. The cluster state is a representative nontrivial Z2× Z2 SPT state. However,
the model only has Z2 symmetry at g 
= −1. Here we also obtain the exact energy
spectrum for this model using Eqs. (17–30) and analyze what ground and first excited
states are composed of by examining odd/even sector and the number of fermions
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occupation. If we restrict ourselves to the region −2 < g < 2, we find that the ground
state comes from the even sector (b = 1/2) with no fermions and the first excited
state is constructed from the odd sector (b = 0) with one-fermion occupation. The
ground state in the model has no three-fermion occupation in any finite g, see Fig. 9a.
We remark that for any system size N (even), the energy gap is equal to ΔE = 8g2

in the regime of −1 < g < 1; otherwise, outside that range the energy gap is always
ΔE = 8, regardless of the system size. As already shown by construction in Ref. [47]
and confirmed here by calculation, the ground-state energy displays no singularity at
the critical point g = 0; see Fig. 9b. It is a peculiar type of quantum phase transition,
as emphasized in Ref. [47].

Figure 9c shows the global entanglement upon using the solution which we derived
in the previous section. It contains the global entanglement per site (red, dashed) and
per block (black, L=2). We also examine the derivative of the entanglement [46] to
study the divergence near the critical point. As shown in Fig. 9d, the quantum phase
transition is detected at the GHZ point (g = 0) by the behavior of entanglement.
However, we note that at g = −1, the entanglement per block shows a cusp behavior,
there is no true phase transition there. However, there is a different kind of transition
there in the sense of infinite localizable entanglement length [75]. As remarked earlier,
this kind of transition was shown to be detectable by the geometric entanglement in
the form of weak singularity, such as the cusp [71].

4.4 SPT-Antiferromagnetic transition

As the last example,we examine a particular quantumphase transition [76,77] between
a symmetry-protected topological order and an antiferromagnetic phase by using the
same method we derived. The specific model we study here was first discussed by
Son et al. [48], who also computed the geometric entanglement per site. They showed
that the transition was detected by the singular behavior of the entanglement. For
completeness, we also study the spectrum and the geometric entanglement per block.

In order to construct the Hamiltonian, we choose one X and one Y block and set
h = 0 to eliminate the transverse field term. Parameters of the model considered are
shown as follows:

h = 0, (89a)

N (x) = 1, N (y) = 1, (89b)

J (x)
l = {1}, J (y)

l ′ = {−λ}, (89c)

n(x)
l = {1}, n(y)

l ′ = {0}. (89d)

Substituting above parameters into Eq. (4) yields the following Hamiltonian:

H = −
⎛

⎝
N∑

j=1

σ x
j−1σ

z
j σ

x
j+1 − λ

N∑

j=1

σ
y
j−1σ

y
j

⎞

⎠. (90)
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(a)

(c) (d)

(b)

Fig. 10 a Lowest few energy levels vs. λ for the SPT-AFM model with N = 8. We show that numerical
exact diagonalization for lowest two energies (points) and our analytic solutions (curves) agree. b Energy
gap between the ground state and the first excited state as a function of λ. The ground state is degenerate
for |λ| ≥ 1 in the thermodynamic limit, and the energy gap becomes ΔE = 2

(
1 − |λ| )θ(1 − |λ|) where

θ(x) = 1 if x > 0 and zero otherwise. Thus, the singularity at λ = 1 signals a quantum phase transition. c
Geometric entanglement per site (red, dashed) and per block (black, solid) for SPT-antiferromagnetic chain
where N = 256. d Derivative of the entanglement per site (the inset shows that for per block) where N=32,
64, 256, 1024, 4096 (from top to bottom) (Color figure online)

This Hamiltonian can be diagonalized in the form of Eq. (16) with the following
Bogoliubov solution:

tan 2θ(b)
k =

λ sin
(
2π(b+k)

N

)
+ sin

(
4π(b+k)

N

)

λ cos
(
2π(b+k)

N

)
− cos

(
4π(b+k)

N

) . (91)

The exact energy spectrum can be obtained by utilizing Eq. (14) and (17–20). The
eigenvalues in the case of even N for the odd sector (b = 0, periodic boundary
conditions) and odd N for the even sector (b = 1/2, antiperiodic boundary conditions)
are as follows:

ε
(b)
k =

⎧
⎨

⎩

2(λ − 1), for k = 0 ∧ b = 0
−2(λ + 1), for k = N

2 ∧ b = 0
−2(λ + 1), for k = N−1

2 ∧ b = 1/2

⎫
⎬

⎭ = 2α(b)
k , (92)
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or otherwise:

ε
(b)
k = 2

√

1 + λ2 − 2λ cos

(
6π

N
(k + b)

)
. (93)

The even sector (b = 1/2) with no fermions corresponds to the ground state energy for
finite system size N (even), whereas the first excited state comes from the odd sector
(b = 0) with one-fermion occupation as shown in Fig. 10a. The energy gap in this case
can be obtained by calculating ΔE = E lowest

b=0 − E lowest
b=1/2 which is approximately 2(1−

|λ|) in the region −1/2 < λ < 1/2 for small system size (N ). In the thermodynamic
limit (N → ∞), the energy gap becomes ΔE = (1 − |λ| )[1 + sgn(1 − |˘|)] for all
regions−∞ < λ < ∞. The critical point, λc = 1, can be deduced from the energy gap
in the thermodynamic limit; see Fig. 10b. We also calculated geometric entanglement
per site and per block, shown in Fig. 10. As can be seen in Fig. 10d, the derivative of the
entanglement per site has singularity at λ = 1, at which the quantum phase transition
occurs between the cluster and the antiferromagnetic phases. We note that as the
antiferromagnetic phase is involved in the model, in order to compute entanglement
per site, we use the closest product state of the form |Φ〉 = ∏

i |φ[2i−1,2i]〉 with
|φ[2i−1,2i]〉 = (α |↑〉 + β |↓〉)(γ |↑〉 + δ |↓〉). The entanglement derivative w.r.t. λ

clearly also shows the development of divergence at λ = 1 as the system size N
increases. The representative state in the SPT phase is the 1D cluster state [78,79],
which we also have seen in previous subsection. We remark that there is a weak
singularity in the entanglement per block around λ ≈ 0.94, but we cannot identity the
state there and do not know the nature of this singularity. It might be a transition in
localizable entanglement, but that requires further investigation.

4.5 Halfway antiferromagnetic-SPTmodel

Beyond reproducing results by Son et al. [48], we also examine a slight variation in the
model, where, instead of X ZX , the halfway interaction for X blocks is considered:

H = −
⎛

⎝
N∑

j=1

σ x
j−1σ

z
j . . . σ z

j+(N/2)−2σ
x
j+(N/2)−1 − λ

N∑

j=1

σ
y
j−1σ

y
j

⎞

⎠. (94)

The parameters for this model can be defined as follows:

h = 0, (95a)

N (x) = 1, N (y) = 1, (95b)

J (x)
l = {1}, J (y)

l ′ = {−λ}, (95c)

n(x)
l = {N/2 − 1}, n(y)

l ′ = {0}. (95d)
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The model can be exactly diagonalized with the following Bogoliubov solution:

tan 2θ(b)
k =

λ sin
(
2π(b+k)

N

)
+ sin (π(b + k))

λ cos
(
2π(b+k)

N

)
− cos (π(b + k))

. (96)

The exact energy spectrum can be obtained by utilizing Eqs. (14) and (17–20). The
eigenvalues in the case of even N for the odd sector (b = 0, periodic boundary
conditions) and odd N for the even sector (b = 1/2, antiperiodic boundary conditions)
are as follows:

ε
(b)
k =

⎧
⎨

⎩

2(λ − 1), for k = 0 ∧ b = 0
−2
[
λ + (−1)N/2

]
, for k = N

2 ∧ b = 0
−2λ, for k = N−1

2 ∧ b = 1/2

⎫
⎬

⎭ = 2α(b)
k , (97)

or otherwise:

ε
(b)
k = 2

√

1 + λ2 − 2λ cos

(
(2 + N )π

N
(k + b)

)
. (98)

Similar to SPT-AFM model, the ground state is constructed from the even sector
(b = 1/2) with no fermions as the first excited state comes from the odd sector (b = 0)
with one-fermion occupation for N = 8, see Fig. 11a. On the other hand, in the case of
N = 10, the lowest zero-fermion and one-fermion states become degenerate except
in the vicinity of λ = 1. Interestingly, at the point λ = −1 ground-state energy is
constructed by the odd sector with one-fermion occupation, whereas at λ = 1, the
ground-state energy comes from the even sector with zero-fermion occupation, see
Fig. 11c. This model does not exhibit the peculiarity discussed in Eq. (21), where the
odd sector has three-fermion occupation as the lowest energy state. We note that the
energy gaphas different characteristics depending on the system sizes (even): N = 4m,
N = 2(4m + 1), and N = 2(4m − 1) (with m = 1, 2 . . .). The latter is gapless for
all range of λ, whereas the case of N = 2(4m + 1) displays a peak at the λ = 1, as
shown in Fig. 11d. With increasing system sizes, the peak approaches to zero, and in
the thermodynamic limit, both cases become gapless. However, the case of N = 4m
exhibits similar behavior to the SPT-AFM model with critical points λc = ±1, see
Fig. 11b. The ground state is degenerate for |λ| ≥ 1 in the thermodynamic limit and the
energy gap becomes ΔE = 2

(
1 − |λ| )θ(1 − |λ|), where θ(x) = 1 if x > 0 and zero

otherwise. Thus, the singularity at λ = 1 signals a quantum phase transition. This is in
contrast to the halfway XY model, discussed in Sec. 4.2, that the halfway interaction
prevents the model from undergoing a quantum phase transition but rather helps to
exhibit a first-order transition across the Barouch–McCoy circle. The quantum phase
transition (for N = 4m case) in the halfway SPT-AFM model can be confirmed by
the behavior of entanglement as well. With an increasing system size, the derivative
of the entanglement per site develops a singularity at λc = 1, at which the quantum
phase transition takes place; see Fig. 12.
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(a)

(c) (d)

(b)

Fig. 11 Lowest two levels for even and odd sectors with a N = 8; c N = 10, for the SPT-antiferromagnetic
chain with halfway interaction. Similar to SPT-AFM model, the ground state comes from the even sector
(b = 1/2) with no fermion for N = 4m (with m = 1, 2 . . .). In the case of N = 10, (N = 2(4m + 1)), the
lowest zero-fermion and one-fermion states become degenerate except in the vicinity ofλ = 1. Interestingly,
at the point λ = −1 ground-state energy is constructed by the odd sector with one-fermion occupation,
whereas at λ = 1, the ground-state energy comes from the even sector with zero-fermion occupation. We
confirm our analytic solutions (curves) with the results obtained from numerical exact diagonalization for
lowest two energies and energy gap (points). We note that the energy gap has different characteristics for b
N = 4m and d N = 2(4m+1) and the inset figure illustrates N = 2(4m−1) case. The latter is gapless for
all range of λ. In the case of N = 4m, the ground state is degenerate for |λ| ≥ 1. With increasing system
size, energy gap closes continuously. Thus, the singularity at λc = ±1 signals a quantum phase transition
(Color figure online)

Fig. 12 Derivative of the
entanglement per site where
N = 32, 64, 256, 1024, 4096
(from top to bottom) for
SPT-antiferromagnetic chain
with halfway interaction (Color
figure online)
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5 Conclusion

In this work, we introduced a convenient parameterization for a general class of
exactly solvable spin chains, which we called the cluster-XY models. We reviewed
the procedure to diagonalize these spin chains and obtained the energy spectrum, the
ground-state energy, the ground-state wavefunctions, and the energy gap. We illus-
trated the subtlety in determining the true ground state, as it can come from two
different sectors, with different numbers of fermions. The quantum phase transitions
can be studied from the energy gap in the thermodynamic limit. Furthermore, we
employed the geometricmeasure of entanglement per site/block for quantifying entan-
glement in the many-body system. We presented detailed calculations for the overlap
of the ground states with two different types of product states. Using these, we exam-
ined the global entanglement near the quantum critical point in several illustrative
models that include the three-site interacting XY model, the XY model with halfway
interaction, the GHZ-cluster model, and the SPT-AFM models (and a variation in the
last model).

Among the above models, the XzY model possesses a Z2 × Z2 symmetry and
exhibits transitions from nontrivial SPT phase to a trivial paramagnetic phase. Such
a transition is expected to exist in all other finite-range Xz…zY models. However, it
does not appear in the halfway XY model. Instead, the halfway XY model exhibits
a first-order transition across the Barouch–McCoy circle, on which it was only a
crossover in the standard XY model. However, the halfway Ising model has no such
transition. The GHZ-cluster model was constructed in Ref. [45] to exhibit a QPT but
without singularity in ground-state energy. Geometric entanglement was able to detect
such QPT [46]. The SPT-AFM model is an interesting example that has a transition
between a symmetry-protected topological phase and a symmetry-breaking phase [48].
We not only reproduced the entanglement per site but also presented results using the
entanglement per block and examined the spectrumand the energy gap. Both quantities
display singularity near the critical point. Furthermore, we also studied a peculiar
variation, where the cluster interaction X ZX is replaced by a halfway interaction. In
contrast to the halfway Isingmodel, this halfway SPT-AFMmodel exhibits a QPT. Our
study on arbitrary n-site XYmodel generalizes previous study on theXYmodel via the
geometric entanglement [21]. These examples we gave demonstrate the usefulness of
our general results on entanglement in the family of the generalizedXY-clustermodels.

Regarding the entanglement per block, we were able to obtain analytic results for
a block of two sites. The two-site state can be generally entangled, but can also be
set to be a product state. The latter is useful for the geometric entanglement per site
in the case of antiferromagnetic ground states, as the globally the closest product
state cannot be translationally invariant. Even though numerically one can compute
per block of any number of sites, it would be interesting to derive analytically the
overlap with block product state composed of any number of sites in a block. Then,
the entanglement under RG can be studied in further detail. We leave it for future
exploration.
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