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In estimating an unknown parameter of a quantum state the quantum Fisher information (QFI) is a pivotal
quantity, which depends on the state and its derivate with respect to the unknown parameter. We prove the
continuity property for the QFI in the sense that two close states with close first derivatives have close QFIs. This
property is completely general and irrespective of dynamics or how states acquire their parameter dependence
and also the form of parameter dependence—indeed this continuity is basically a feature of the classical Fisher
information that in the case of the QFI naturally carries over from the manifold of probability distributions
onto the manifold of density matrices. We demonstrate that, in the special case where the dependence of the
states on the unknown parameter comes from one dynamical map (quantum channel), the continuity holds in
its reduced form with respect to the initial states. In addition, we show that, when one initial state evolves
through two different quantum channels, the continuity relation applies in its general form. A situation in which
such a scenario can occur is an open-system metrology where one of the maps represents the ideal dynamics,
whereas the other map represents the real (noisy) dynamics. In the making of our main result, we also introduce
a regularized representation for the symmetric logarithmic derivative which works for general states even with
incomplete rank, and it features continuity similar to the QFI.

DOI: 10.1103/PhysRevA.100.032317

I. INTRODUCTION

Estimation of unknown parameters of a system is an es-
sential task for almost all branches of science and technology.
Evidently almost any estimation would entail errors due to
various factors such as imperfection of measurement devices
or natural stochasticity of the event in question. As a result,
estimated values are usually inaccurate. It is of fundamental
and practical importance to see what optimal accuracy laws
of physics allow in principle. This question of fundamental
attainable accuracy in metrology can be addressed by the
Crámer-Rao bound [1],

δx �
(
MF (C)

x

)−1/2
, (1)

where “x” represents the unknown parameter of interest in a
system, δx is the estimation error (i.e., the standard deviation
of an unbiased estimator), M is the number of independent
repetitions of the estimation protocol, and measurements are
performed on an N-particle “probe” system. Here the key con-
cept is the (classical) Fisher information, F (C)

x ({p}), defined
as

F (C)
x ({p}) =

∫
Dy

dy[∂x p(y|x)]2/p(y|x), (2)

where p(y|x) is the conditional probability for obtaining the
value y given that the exact value of the parameter is x and
Dy is the domain of admissible y’s. One can see that F (C)

x
scales as O(N ) under the assumption that the joint probability
for the outcomes of measurements on the N-particle probe
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system is factorized, i.e., the N outcomes are independent and
identically distributed (i.i.d.) random variables. This scaling is
called the shot-noise limit [1].

In quantum metrology, a measurement scenario is de-
scribed by a set of positive operators {�y} which have the
completeness property

∫
Dy

dy �y = I, where I is the iden-
tity operator. If �(x) denotes the state of the system to be
measured, then the probability p(y|x) is given by the Born
rule p(y|x) = Tr[�(x) �y]. Here an important quantity is the
symmetric logarithmic derivative (SLD), which is a Hermitian
operator L� defined through the (Lyapunov) equation [2]

∂x� = (L�� + �L� )/2, (3)

where we have adopted the shorthand � for �(x). The SLD
has the following integral representation for full-rank density
matrices [3,4]:

L� = 2
∫ ∞

0
ds e−s� ∂x� e−s�. (4)

Optimizing the Fisher information—attributed to the proba-
bilities obtained through measurements in a quantum metrol-
ogy scenario—over all measurements yields the quantum
Fisher information (QFI)

F (Q)
x (�) = Tr

[
� L2

�

] (3)= Tr[∂x� L�]. (5)

Thus the quantum Crámer-Rao bound

δx � (MF (Q))−1/2 (6)

gives the achievable minimum estimation error [1,3], where
we have used the lighter notation F (Q) for the QFI associated
with x—we shall adopt this notation throughout the paper.
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Since a major focus of quantum metrology is to find good
states and measurements which can yield the largest quan-
tum or classical Fisher information, we consider M = 1 for
simplicity.

Similar to the classical case, in Eq. (5), the state � denotes
the state of the probe system, usually comprised of N systems
[each of which with the Hilbert space H, hence � ∈ S(H ⊗N ),
where S is the linear space of linear operators on H ⊗N ],
on which a measurement strategy is performed. Bearing
this in mind, however, it can be expected that existence of
quantum features may enhance metrology. Particularly, it has
been shown that a quantum mechanical enhancement in the
form of F (Q) = O(N2) scaling (the Heisenberg limit) can be
achieved by employing many-body quantum correlations (in
particular, entanglement) [5,6], many-body interactions [7], or
nonlinearities [8]. In fact, a considerable part of the existing
literature on quantum metrology concerns the scaling of the
QFI with the probe size, under various conditions, in closed-
and open-system metrology scenarios [9–12]. For a review of
this subject, see, e.g., Refs. [13,14].

Despite this understanding, not much is yet known about
specific properties of the QFI [2,14,15]. For example, one can
point to convexity [16–18], which recently has been shown to
hold for the QFI in the following extended sense [19]:

F (Q)
(∑

a pa�a
)
� F (C)({pa}) + ∑

a paF (Q)(�a), (7)

which reduces to the ordinary convexity property when pa’s
do not depend on the unknown parameter.

Another essential property to look into is continuity. This
property (in some sense) has already been shown to hold
for, e.g., the von Neumann entropy [20–23], quantum con-
ditional entropy [24,25], quantum relative entropy and mu-
tual information [25–28], quantum discord [29], and some
(entropy-based) entanglement measures and quantum channel
capacities [30–34]. For the QFI, however, this property thus
far has not been studied in a full generality—for special cases,
see Refs. [35,36] and remark (vi) of Sec. III. This paper is to
bridge this gap.

Let us start with an observation about the (classical) Fisher
information (2). For two conditional probability distributions
{p(y|x)} and {q(y|x)}, we can show that

|F (C)({p}) − F (C)({q})| � f (C)
∫

Dy

dy |p(y|x) − q(y|x)|

+ g(C)
∫

Dy

dy|∂x p(y|x) − ∂xq(y|x)|,
(8)

with suitable f (C) and g(C)—see Appendix A for derivation.
Appearance of both the distance of the probability distribu-
tions and the distance of their derivatives can be justified by
noting that, strictly speaking, the Fisher information depends
on the state as well as its derivative. This property should be
contrasted with the continuity in its reduced sense, discussed
in Refs. [35,36], in which under some conditions two “close”
states have close Fisher information. Motivated by this obser-
vation, here we derive a continuity relation for the QFI (and
similarly for the SLD). This continuity is general in that it is
independent of the underlying dynamics for the probe system
or how the dependence on the unknown parameter is acquired

FIG. 1. Schematic of a general estimation scenario for dynamics.
(Top) Ideal case, where the prepared state �0 and the parameter-
dependent map E x (as well as the measurement operation) are
assumed ideal (noiseless). (Bottom) Real case, where some noise has
affected the scenario and changed the initial state �0 → �′

0 and the
dynamics E x → E ′

x . Note that E x and E ′
x can be by construction

general open-system dynamics, described by completely positive,
trace-preserving quantum maps or channels [22]. We, however, call
E x “ideal” or “noiseless” in the sense that this is what we designed
originally and E ′

x “real” or “noisy” in the sense that some extra
uncontrollable or unaccounted-for source of noise has changed the
designed E x to E ′

x .

by the probe state (hence our relation can be considered as a
kinematical relation).

Having a continuity relation (in some sense) for the QFI not
only is of fundamental importance per se, but also it enables
one to investigate relative robustness of metrological scenarios
against various sources of “noise”—in the specific sense
illustrated and explained in Fig. 1. For example, in building
fault-tolerant quantum computation [37] and robust quantum
sensing with strongly interacting probes [38], a continuity
relation may have important implications. In addition, noting
that in general computing the QFI for systems of large size
is even numerically formidable, the continuity relation may
allow us to see whether a given state �0 (or �′

0) may be useful
(or useless) for a metrological scenario, without the need to
compute the QFI explicitly. Hence such a relation can offer a
significant reduction in complexity of metrology.

We remark that the QFI plays important roles in several
other subjects too. For example, it has been shown that
when two general density matrices are compared through the
quantum fidelity or the closely related Bures distance (or the
Fubini-Study metric in the case of pure states), the QFI takes
the role of an information-theoretic metric when the matrices
depend continuously on a parameter [3,39]. As a result, it
seems natural that the QFI may also have intimate connection
with quantum phase transitions [40,41]. In addition, recently
the QFI has been employed in high-energy physics and gravity
to study the holography property; see, e.g., Ref. [42]. Having
said this, one can anticipate that the utility of continuity
relations may naturally go far beyond quantum metrology.

The structure of this paper is as follows. In Sec. II we
provide some preliminary norm relations used throughout the
paper. In Sec. III we lay out our main result and prove it (rel-
egating parts of the proof to several appendixes). Section IV
illustrates our results with three examples or special cases. We
conclude and summarize in Sec. V.
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II. NECESSARY RELATIONS

In this section, we establish the preliminary definitions and
necessary relations required for proving our main result.

Let us begin by recalling the definitions of the p-norm (p ∈
[1,∞)) of linear operators. For a linear operator A acting on
a linear (finite-dimensional) space, it is defined that ‖A‖p =
(Tr[|A|p])1/p, where |A| =

√
A†A [43,44]. The p-norms have

numerous appealing properties. One particular property useful
for our purpose in this paper is the following duality between
the 1-norm (or trace norm) and the ∞-norm (or standard
norm) [44–46]:

‖A‖1 = sup
B 	=0

|Tr[B†A]|
‖B‖∞

, (9)

from whence we obtain this useful inequality

|Tr[BA]| � ‖A‖1 ‖B†‖∞ � ‖A‖1 ‖B†‖1. (10)

Note that ‖A‖∞ = limp→∞ ‖A‖p = supi si(A), where {si(A)}
are the eigenvalues of |A| (singular values of A). The last
inequality above is a special case of the property

‖A‖q � ‖A‖p, 1 � p � q � ∞. (11)

Another useful property is the submultiplicativity in the form

‖AB‖p � ‖A‖p ‖B‖p, (12)

for any p. In addition, we also have

‖AB‖1 � ‖A‖∞ ‖B‖1, ‖A‖1 ‖B‖∞, (13)

‖ABC‖p � ‖A‖∞ ‖B‖p ‖C‖∞. (14)

Let A, B, A′, and B′ be linear operators. We have

‖AB − A′B′‖p = ‖(AB − A′B) + (A′B − A′B′)‖p

� ‖(A − A′)B‖p + ‖A′(B − B′)‖p, (15)

which is akin to the inequality for classical probability
distributions—see Eq. (A4). This, noting Eq. (13), yields

‖AB − A′B′‖1 � ‖A − A′‖∞ ‖B‖1 + ‖A′‖1 ‖B − B′‖∞,

(16)

‖AB − A′B′‖1 � ‖A − A′‖1 ‖B‖∞ + ‖A′‖∞ ‖B − B′‖1. (17)

As a result, when we take A = K1X , B = K†
1 , A′ = K2X , and

B′ = K†
2 , we obtain

‖K1XK†
1 −K2XK†

2 ‖∞ � ‖K1 − K2‖∞ ‖X‖1(‖K1‖∞+‖K2‖∞),
(18)

where we have also used ‖O†‖p = ‖O‖p (valid for any p-norm
on linear spaces). For the more general case of ‖K1X1K†

1 −
K2X2K†

2 ‖∞, from Eq. (18) we have

‖K1X1K†
1 − K2X2K†

2 ‖∞ � ‖X1 − X2‖1 ‖K1‖2
∞ + ‖K1 − K2‖∞

× ‖X2‖1(‖K1‖∞ + ‖K2‖∞).
(19)

Another identity which will be important for our analysis is as
follows:

eA − eB =
∫ 1

0
dτ eτA(A − B)e(1−τ )B, (20)

for any pair of linear operators defined on a given linear space.
To prove this, we choose V (τ ) = eτAe−τB and use V (I) − I =∫ 1

0 dτ dV (τ )/dτ . An immediate consequence is

‖eA − eB‖p � ‖A − B‖p

∫ 1

0
dτ‖eτA‖p ‖e(1−τ )B‖p. (21)

A useful special case is when A = −s�, B = −sσ , and s � 0,
in which � and σ are two quantum states (density matrices) of
a given system. We first note that

‖e−s�‖∞ = e−sλmin (�), (22)

where λmin(�) is the smallest eigenvalue of �. Using this rela-
tion, we can calculate the integral in Eq. (21), from whence

‖e−s� − e−sσ ‖∞ � e−sλmin (σ ) − e−sλmin (�)

λmin(�) − λmin(σ )
‖� − σ‖1. (23)

Applying a similar method to Eq. (4) yields

‖L�‖∞ � ‖∂x�‖∞/λmin(�). (24)

Since in our derivation later in the paper it is necessary
to upperbound ‖L�‖∞, this relation will be useful. However,
when � is incomplete rank, this upper bound become vacuous
(∞). In fact, as we carefully argue in Appendix B, in some
particular situations concerning the incomplete-rank case this
divergence shows up due to the integral representation (4). To
remedy this issue, here we utilize an inherent freedom of the
SLD (3) in the QFI (see also Appendix B) in order to introduce
a regularized representation L� (called “r-SLD”) as follows:

L� = 2
∫ ∞

0
ds e−s̃� ∂x� e−s̃� + 2(P� ∂xP� P⊥

� + P⊥
� ∂xP� P� ),

(25)

where �̃ is the (invertible) restriction of � onto P�H ⊗N P�

and P� (P⊥
� ) is the projector onto the support (null sub-

space) of the density matrix �—noting P� + P⊥
� = I. In

fact, although P⊥
� L�P⊥

� is divergent (Appendix B), we
have P⊥

� L�P⊥
� = 0 (because P⊥

� e−s̃� = e−s̃�P⊥
� = 0, whereas

P⊥
� e−s� = e−s�P⊥

� = P⊥
� ). Note that although L� differs in the

form with L�, it is straightforward to see that (see Appendix B)
they both satisfy Eq. (3), and as long as the QFI is concerned,
these two quantities are equivalent,

F (Q)
x (�) = Tr

[
� L2

�

] = Tr
[
� L2

�

]
. (26)

Note that, in Eq. (25), ∂xP� becomes undefined exactly at x
values where the rank of � changes. Thus L� is well defined
everywhere except at rank-changing points. Excluding such
problematic points, from Eq. (25) we obtain the following
upper bound on the norm of the r-SLD operator:

‖L�‖∞ � ‖∂x�‖∞/λmin (̃�) + 4‖∂xP�‖∞, (27)

where we have used the fact that the standard norm of pro-
jectors is unity (‖P�‖∞ = ‖P⊥

� ‖∞ = 1). Obviously, when � is
full rank, this bound reduces to the bound (24).

III. CONTINUITY RELATION

We start with a remark regarding the notations “L�” and
“F (Q)(�).” It should be understood that putting “�” here is
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for brevity and does not necessarily imply that the SLD or
QFI are functions (in the conventional mathematical sense) of
� alone. In fact, from the definitions (4) and (5) it is evident
that both SLD and QFI are functions (strictly speaking, func-
tionals) of � and ∂x�. Thus it is more appropriate to define
the shorthand boldface symbol � = (�, ∂x�) and hereafter
represent the SLD, r-SLD, and QFI with L�, L�, and F (Q)(�),
respectively. Indeed mathematically speaking, the QFI is a
function defined on the tangent bundle [16,47] of the manifold
of the density matrices. The following theorem encompasses
our main result.

Theorem 1. For any pair of density matrices � and σ

(depending on the same unknown parameter x, although ir-
respectively of their specific dependence on this parameter)
defined on the Hilbert space H ⊗N , we have

|F (Q)(�) − F (Q)(σ)| � f (Q)‖� − σ‖1 + g(Q)‖∂x� − ∂xσ‖1,

(28)

where

f (Q) = ‖∂xσ‖1

λmin (̃�) λmin(σ̃ )

(
‖∂xσ‖1 + 32(‖∂xP�‖∞ + ‖∂xPσ ‖∞)

+ 64‖∂xσ‖1
λmin (̃�) + λmin(σ̃ )

λmin (̃�) λmin(σ̃ )

)
, (29)

g(Q) = 1

λmin (̃�)
(‖∂x�‖1 + ‖∂xσ‖1) + 4‖∂xP�‖∞ + 32‖∂xσ‖1

λ2
min (̃�)

.

(30)

Noting that the QFI is a function of both the state and its
derivate, Eq. (28) can be interpreted as a “continuity relation.”

Proof. From the definition of the QFI (5) [or Eq. (26)] for
two parameter-dependent states � and σ , we have

|F (Q)(�) − F (Q)(σ)| = |Tr[∂x� L� − ∂xσ Lσ]|
(10)
� ‖∂x� L� − ∂xσ Lσ‖1. (31)

If we replace A = ∂x�, B = L�, A′ = ∂xσ , and B′ = Lσ in
Eq. (16), we obtain

|F (Q)(�) − F (Q)(σ)| � ‖∂x� − ∂xσ‖1 ‖L�‖∞
+ ‖∂xσ‖1 ‖L� − Lσ‖∞. (32)

Equation (32) indicates that we still need to calculate
‖L� − Lσ‖∞ in terms of more primitive quantities (e.g., rele-
vant properties of �, σ , and perhaps their derivatives). We start
from the integral representation (25), whence

‖L� − Lσ‖∞ � 2
∫ ∞

0
ds ‖e−s̃�∂x� e−s̃� − e−sσ̃ ∂xσ e−sσ̃ ‖∞

+ 2‖P� ∂xP� P⊥
� + P⊥

� ∂xP� P�

− Pσ ∂xPσ P⊥
σ − P⊥

σ ∂xPσ Pσ‖∞. (33)

Now if we employ Eq. (19) with K1 = e−s̃�, K2 = e−sσ̃ , X1 =
∂x�, and X2 = ∂xσ , the first term on the right-hand side (RHS)
of Eq. (33) becomes upper bounded by

2
∫ ∞

0
ds

[‖∂x� − ∂xσ‖1 ‖e−s̃�‖2
∞ + ‖e−s̃� − e−sσ̃ ‖∞ ‖∂xσ‖1

× (‖e−s̃�‖∞ + ‖e−sσ̃ ‖∞)
]
. (34)

The above integrals can be upper bounded by using Eqs. (22)
and (23), which gives

1

λmin (̃�)
‖∂x� − ∂xσ‖1 + ‖∂xσ‖1

λmin (̃�) λmin(σ̃ )
‖� − σ‖1. (35)

For the second term on the RHS of the Eq. (33) term, after
using Eqs. (16) and (17) twice, we obtain

‖P� ∂xP� P⊥
� +P⊥

� ∂xP� P�−Pσ ∂xPσ P⊥
σ −P⊥

σ ∂xPσ Pσ ‖∞

�2[(‖∂xP�‖∞+‖∂xPσ‖∞)‖P�−Pσ ‖∞+‖∂xP� − ∂xPσ ‖∞].
(36)

From Lemma 1 of Appendix C we have

‖P� − Pσ‖∞ � 8

λmin (̃�) λmin(σ̃ )
‖� − σ‖1, (37)

‖∂xP� − ∂xPσ‖∞

� 8

(
1

λ2
min (̃�)

‖∂x� − ∂xσ‖1

+ 2
[λmin (̃�) + λmin(σ̃ )]‖∂xσ‖1

λ2
min (̃�) λ2

min(σ̃ )
‖� − σ‖1

)
. (38)

Inserting Eqs. (37) and (38) back into Eq. (33) yields

‖L� − Lσ‖∞ � a‖� − σ‖1 + b‖∂x� − ∂xσ‖1, (39)

where

a = 1

λmin (̃�) λmin(σ̃ )

(
‖∂xσ‖1 + 32(‖∂xP�‖∞ + ‖∂xPσ ‖∞)

+ 64‖∂xσ‖1
λmin (̃�) + λmin(σ̃ )

λmin (̃�) λmin(σ̃ )

)
, (40)

b = 1

λmin (̃�)

(
1 + 32‖∂xσ‖1

λmin (̃�)

)
. (41)

This relation establishes a continuity property for the r-SLD.
Due to Eq. (32), the latter continuity of the r-SLD carries over
to the QFI too; doing so, we obtain Eq. (28). �

Corollary 1. If η = max{ f (Q), g(Q)}, we can write Eq. (28)
as

|F (Q)(�) − F (Q)(σ)| � η D(�, σ ), (42)

where D(�, σ ) = ‖� − σ‖1 + ‖∂x� − ∂xσ‖1 is a distance
measure.

Corollary 2. For the case of full-rank density matrices, our
Eqs. (29) and (30) reduce to

f (Q) = ‖∂xσ‖2
1

λmin (̃�) λmin(σ̃ )
, (43)

g(Q) = 1

λmin (̃�)
(‖∂x�‖1 + ‖∂xσ‖1). (44)

These expressions should be contrasted with their classical
counterparts f (C) and g(C) in Appendix A [Eqs. (A7) and
(A8)].

Several remarks are in order here.
(i) As a caveat, note that the bounds and inequalities we

have derived in this paper are not necessarily tight. This can
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be partly alleviated by replacing � ↔ σ in the bounds and
then taking the minimum of the two sets of expressions for
the bound as a tighter and more appealing substitute (because
of the � ↔ σ symmetry).

(ii) If we restrict the density matrices to a domain [a
subspace of S(H ⊗N )] on which f (Q) and g(Q) can be bounded
(that is, η < ∞), one can consider our bound (28) as a Lips-
chitz continuity relation—for an introduction to the Lipschitz
continuity, see Ref. [43].

(iii) Although we can still simplify the expressions of
Eqs. (40) and (41) [by using Eq. (C10) of Appendix C), the
existing forms are more preferable since they are smaller and
also better capture the behavior of the bound (28) for the case
of full-rank states.

(iv) When an initial state �0 evolves by a general dynamical
map E x (see also Secs. IV C and IV D), we can obtain a lower
bound on λmin(E x[�0])—Appendix D. Although λmin (̃�) and
λmin(σ̃ ) are strictly nonzero, they both might become infinites-
imally small. This (pathological) case, however, does not
impact our main relation because the upper bound in Eq. (28)
holds irrespective of how small λmin’s are (in particular, in the
‖� − σ‖1 → 0 and ‖∂x� − ∂xσ‖1 → 0 limit). In such cases,
however, our bound may become vacuous. This phenomenon
can be interpreted as the failure of the continuity relation in
the sense that the bound (28) diverges. It should, however,
be cautioned that such divergence of our bound does not
necessary imply that the difference of the QFIs must diverge
(although the converse is always true). As a side, it may be
relevant to note that if one of the eigenvalues of the density
matrix approaches zero, the QFI matrix will fail to “concen-
trate” [48]. It could be interesting to see if it is possible to
conclude conditions for such failure of the concentration from
our continuity relation. We, however, leave this investigation
as an open problem.

(v) Singular appearance of λmin (̃�) and λmin(σ̃ ) (and their
combinations) in f (Q) and g(Q) of the upper bound (28) can
be partially justified by comparing these quantities with their
classical counterparts f (C) and g(C), where now p(y|x) is
replaced with �, miny∈Dy

p(y|x) with λmin (̃�), and ∂x p(y|x)
with ∂x�. With this recipe, similarities are evident and one
may have a better understanding of why specific and complex
combinations show up in the coefficients f (Q) and g(Q).

As a specific example, consider the problem of estimating
a classical parameter 0 � x � 1 by some scheme, which has
given the measurement results y ∈ Dy = [0, 2]. Assume that
we estimate the parameter x with two probability distributions
p(y|x) = x e−xy and q(y|x) = e−xxy/y!, for y � 0. We have
F (C)(p) = 1/x2 and F (C)(q) = 1/x, and thus |F (C)(p) −
F (C)(q)| → ∞ when x → 0, or equivalently when p, q → 0.
However, in this limit we have |p − q| → 0, |∂x p − ∂xq| < ∞
but f (C), g(C) → ∞—see Fig. 2. This behavior is compatible
with the 1/ min p and 1/(min p min q) dependence of the
coefficients f (C) and g(C) as in Appendix A [Eqs. (A7) and
(A8)].

(vi) After completion of the first version of this work
[49], we became aware that the special case of closed-system
(unitary) metrology has been recently analyzed in the sense
of both reduced continuity and entanglement in Ref. [35]. A
while later, another reference appeared [36] wherein “discon-
tinuities” of the QFI and Bures metric have been studied in

FIG. 2. |F (C)(p) − F (C)(q)| vs x for the example discussed in
remark (v).

a different sense: considering F (Q)
x as a real-valued function

of a single real parameter (x) and hence comparing F (Q)
x and

F (Q)
x+dx. There the parametrization of the state is assumed fixed

in terms of x; �(x) → �(x + dx). In this reference, it has been
argued that when during the change of the estimation parame-
ter there is a rank change for �(x), the QFI is “discontinuous”
in this particular sense.

Note that all of these results are compatible with our
main message. However, within a more general context, our
continuity relation improves upon these few relevant studies
in various aspects. Specifically, our bounds are completely
general, independent of the way the unknown parameter has
entered the description of the state, and apply for any kind of
parameter dependence in the state (modulo differentiability).

IV. EXAMPLES AND SPECIAL CASES

A. Qubit

Here we show through a simple example that the difference
of the QFIs can depend on both the distance of the states and
the distance of their derivatives. To this end, we consider a
one-qubit state (N = 1) in the form of

�(x) = [I + r�(x)Sz]/2, (45)

represented in the computational basis {|0〉, |1〉}, where Sz =
|0〉〈0| − |1〉〈1| = diag(1,−1) is the z-Pauli matrix. Since
the state is diagonal and full-rank (perhaps except few
points), the SLD can be readily calculated as L� = [∂xr�/(1 +
r� )]|0〉〈0| − [∂xr�/(1 − r� )]|1〉〈1|. Thus the QFI reads as

F (Q)(�) = (∂xr� )2
/(

1 − r2
�

)
. (46)

Taking � with r� = sin2(x) and σ with rσ = sin2(3x), it
is straightforward to see that at x = π/4, � = σ , whereas
F (Q)(�) 	= F (Q)(σ). To illustrate this result, |F (Q)(�) −
F (Q)(σ)| has been depicted in terms of ‖� − σ‖1/2 = |r� −
rσ |/2 in Fig. 3 (top). It is seen that at x = 0 the two states
and their associated QFIs are equal due to the equality of the
derivatives of the states there, ∂x�(0) = ∂xσ (0) = 0, whereas
at x = π/4, π/2 the QFI exhibits a diversion from the reduced
continuity. We have also compared our bound and the exact
value of the difference of the QFIs (vs x) in Fig. 3 (bottom).
Note that our bound at point x = π/2 (where P� is not
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FIG. 3. (Top) Difference of the QFIs for two density matrices
given in Sec. IV A vs their distance, for x ∈ [0, π/2]. It is evident,
from the multivaluedness of |F (Q)(�) − F (Q)(σ)| at the point where
‖� − σ‖1 = 0, that at x = π/4, π/2 the QFI exhibits violation of
the reduced continuity (while satisfying the continuity in the general
sense of Theorem 1). (Bottom) Comparison of the exact value of
|F (Q)(�) − F (Q)(σ)| and our upper bound (28).

differentiable because its rank changes) becomes trivial. In
fact, the divergence of our bound at x = π/2 can be a case
of the failure of our continuity relation—see remark (iv) of
the previous section.

Remark. Because of the diagonal form of the density
matrices (45), this example can be alternatively explained
by the continuity relation for the classical Fisher infor-
mation [Eq. (8)] for probability distributions (1/2){1 +
sin2(x), cos2(x)} and (1/2){1 + sin2(3x), cos2(3x)}.

B. Exponential density matrices

As another example, we consider states in the exponential
form [50]

�(x) = eH (x), σ (x) = eG(x). (47)

This class includes, for example, thermal states. We have
∂x� = ∫ 1

0 ds esH ∂xH e(1−s)H . Hence Eq. (14) and ‖esH‖∞ =
‖�s‖∞ � 1 (for 0 � s � 1) yield

‖∂x�‖1 � ‖∂xH‖1, ‖∂xσ‖1 � ‖∂xG‖1. (48)

FIG. 4. Schematic of a metrological scenario with general
parameter-dependent dynamics represented by a linear map E x . Note
that this is an example in line with the general scheme of Fig. 1 (top).

After some algebra one can also show that (see Appendix E)

‖� − σ‖1 � ‖H − G‖1,

‖∂x� − ∂xσ‖1 � 1
2‖H − G‖∞(‖∂xH‖1 + ‖∂xG‖1)

+ ‖∂xH − ∂xG‖1. (49)

In this case, � and σ are full-rank density matrices; thus
the absolute value of the difference of their QFIs is given by
Eq. (28) as

|F (Q)(�) − F (Q)(σ)| � f (Q)
e ‖H − G‖1 + g(Q)

e ‖∂xH − ∂xG‖1,

(50)

where

f (Q)
e = ‖∂xG‖2

1

eλmin (H )+λmin (G)
+ (‖∂xH‖1 + ‖∂xG‖1)2

2 eλmin (H )
,

g(Q)
e = 1

eλmin (H )
(‖∂xH‖1 + ‖∂xG‖1). (51)

For the special case where the dependence on the un-
known parameter is linear, i.e., H (x) = x H1 and G(x) = x G1,
Eq. (50) becomes the reduced continuity relation. An example
of this case is thermometry, where x is the (minus) inverse
temperature and H1 and G1 are Hamiltonians [51].

C. General noiseless quantum dynamics: Parameter encoding
by a noiseless quantum channel

We recall that in Fig. 1 we portrayed a generic open-system
dynamical scenario where preparation and dynamics (and per-
haps measurement) may be affected by further uncontrollable
noise. Here we want to partially relax this generality in the
sense that we assume only the preparation is affected by noise
whilst the dynamics is intact and ideal. We show that in this
reduced case, the reduced continuity is relevant.

Consider a (parameter-dependent) dynamical map E x with
the Kraus representation E x[◦] = ∑q

k=1 Ak ◦ A†
k [2,22,44], in

which we have dropped the explicit dependence of Ak’s on x
in order to avoid cluttering the notation. Applying N identical
and independent maps E⊗N

x on N-particle initial probe states
(see Fig. 4) gives

E⊗N
x [�0] :=

∑
k

A(N )
k �0A(N )†

k , (52)
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where A(N )
k = Ak1 ⊗ Ak2 ⊗ · · · ⊗ AkN , with k =

(k1, k2, . . . , kN ). Here k j ∈ {1, 2, . . . , q} is the k j th Kraus
operator for the dynamics of the jth probe system (subscript
j ∈ {1, 2, . . . , N} runs over system numbers [16]).

Considering the dynamics of Eq. (52) applied on the two
N-particle initial states �0 and σ0, one obtains

‖∂x� − ∂xσ‖1

=
∥∥∥∥∥∑

k

∂xA(N )
k (�0 − σ0)A(N )†

k + A(N )
k (�0 − σ0)∂xA(N )†

k

∥∥∥∥∥
1

.

(53)

Using the triangle inequality and Eq. (14) yields

‖� − σ‖1 � ‖�0 − σ0‖1

∑
k

∥∥A(N )
k

∥∥2
∞, (54)

‖∂x� − ∂xσ‖1 � 2‖�0 − σ0‖1

∑
k

∥∥∂xA(N )
k

∥∥
∞

∥∥A(N )
k

∥∥
∞.

(55)

These imply that, for any pair of states � and σ obtained
from the same dynamics, the continuity of the QFI in the
general form (28) is simplified to the reduced continuity,

|F (Q)(�) − F (Q)(σ)| � h(�0, σ0, E) ‖�0 − σ0‖1, (56)

where the explicit form of h can be read from Eqs. (28), (54),
and (55) as

h = f (Q)
∑

k

∥∥A(N )
k

∥∥2
∞ + 2g(Q)

∑
k

∥∥A(N )
k

∥∥
∞

∥∥∂xA(N )
k

∥∥
∞,

(57)
with f (Q) and g(Q) defined in Eqs. (29) and (30). We can
further simplify h if we use the relation between λmin(E x[�0])
and λmin(�0) proven in Appendix D. The advantage of this
relation over the result of Ref. [35] is twofold: (i) the dynamics
here is a general quantum channel, not limited to the unitary
evolutions, and (ii) dependence of the dynamics on the param-
eter is arbitrary (but differentiable), not necessarily linear. In
the case of the unitary evolution Ux = e−ixH , Corollary 2 gives

|F (Q)(�) − F (Q)(σ)| � 4‖H‖2
∞[2 + λmin(σ0)]

λmin(�0) λmin(σ0)
‖�0 − σ0‖1.

(58)

One can compare this with the bound reported in Ref. [35],

|F (Q)(�) − F (Q)(σ)| � 32‖H‖2
∞

√
‖�0 − σ0‖1. (59)

It is important to highlight a particular advantage of the
continuity relation (56)—or similarly Eqs. (58) and (59). If
we are given an initial state for a metrology scenario as
described in this subsection, then by choosing σ a “simple”
state whose QFI one can calculate readily, we can find an
estimate on the QFI of the evolved state � and depending
on how it scales vs N we may be able to decide whether
the initial state �0 is useful for metrology. This approach can
give a significant computational advantage because typically
calculating the QFI for many-body states is a formidable
task—even numerically.

FIG. 5. Schematic of a metrological scenario with general
parameter-dependent dynamics E x . (Top) The noiseless scenario.
(Bottom) The noisy scenario. Here the noise operations N δ1 and N δ2

affect, respectively, the preparation and the dynamics.

D. Noisy quantum dynamics: Parameter encoding by a noisy
quantum channel

Here we discuss an example of an open-system metrology
scenario, depicted in Fig. 5, which is affected by noise in
both preparation and dynamics steps [in line with the general
scheme of Fig. 1 (bottom)]. Let U (x) = (1/

√
2)(eixSz − iSy),

where Sy is the y-Pauli matrix. This can describe the dynamics
of a spin-1/2 particle under an external magnetic field B(x)
which nonlinearly depends on an unknown parameter x as

B(x) = 2 cos−1[(1/
√

2) cos x]√
1 + sin2 x

(0, 1,− sin x). (60)

That is, U (x) = e−iH (x), where H (x) = −B(x) · S and S =
(1/2)(Sx, Sy, Sz ) is the vector of the Pauli operators (up to a
factor of 1/2). Here again we have taken N = 1.

The goal now is to estimate x. Here E x[◦] = U (x) ◦ U †(x).
We assume that this operation is now affected by two de-
polarizing noise channels—defined by N δ[ξ ] = (1 − δ)ξ +
(δ/2)I for any state ξ—and is modified to E ′

x = N δ1 E xN δ2 .
This scheme can model noise in preparation and dynamics
scenarios. The noise parameters δ1 and δ2 are taken to be in-
dependent of x. For specificity, we assume �0 = (1/2)(I + r0 ·
S), where r0 = (0,−1/

√
3, 1/

√
2). Figure 6 shows the exact

values of |F (Q)(�) − F (Q)(σ)| and our bound (28), where � =
E x[�0] and σ = E ′

x[�0] and we have assumed δ1 = δ2 = 1/3.
As is evident from this figure, our bound captures the behavior
of the exact difference of the QFIs faithfully [see Fig. 6(d)];
with a rescaling factor of ≈0.02 the two quantities have almost
similar values for all x’s. Interestingly, one can discern that the
very nonvanishing of the difference of the QFIs is associated
with the nonvanishing property of ‖∂x� − ∂xσ‖1—Fig. 7.
Note that, for this example, ‖� − σ‖1 = √

5/6(δ1 + δ2 −
δ1δ2), independent of x, whereas ‖∂x� − ∂xσ‖1 = √

1/6(δ1 +
δ2 − δ1δ2)

√
6 + cos 2x − 2

√
6 sin x.

V. SUMMARY

We have proved the continuity relations for the quan-
tum Fisher information (QFI) and the symmetric logarithmic
derivative (SLD), which was motivated by the observation
that the classical Fisher information features a somewhat
akin fundamental property. These properties imply that, in
general cases, the QFI and the SLD behave such that for
two close states with close first derivatives both the QFIs and
the SLDs would be respectively close too. These continuity
relations are completely general in various aspects as follows.
(i) They are irrespective of dynamics or how the parameter
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FIG. 6. Example IV D. (a) Exact value of |F (Q)(�) − F (Q)(σ)| vs x. (b) Bound (28) vs x. (c) The two quantities in the same plot. (d) The
two quantities in the same plot where our bound is rescaled with a factor of ≈0.02. The good agreement here indicates that our bound captures
the behavior of the difference of the exact QFIs faithfully.

dependence enters the description of the states; thus they are
applicable to any metrology scenarios. (ii) They hold for any
dependence of the states on the unknown parameter (modulo
differentiability). (iii) They hold for any state whether full
rank or incomplete rank. To establish the latter feature, we
have introduced a regularized SLD by removing the inherent
singularity of the SLD for vanishing eigenvalues of the state
density matrix. Notwithstanding this generality, our proofs are
fairly straightforward, based mostly on well-known operator
norm inequalities.

In addition, we have demonstrated that, in the special
case where the dependence of the states on the unknown
parameter is induced by a quantum channel, the continuity
holds in its reduced form, i.e., only with respect to the initial
states. Nevertheless, for the case when one initial state evolves
through two different quantum channels, we have shown that
the continuity relation should be considered in its general
form. The latter situation includes open-system metrology
where one of the maps represents ideal dynamics, whereas the
other map represents the real (noisy) dynamics.

We anticipate that, given the generality and utility of our
continuity relation for the QFI, it can spur numerous appli-

FIG. 7. Example IV D. |F (Q)(�) − F (Q)(σ)| vs ‖∂x� − ∂xσ‖1.
This monotonic behavior indicates that the very nonvanishing of
the difference of the QFIs is rooted at the nonvanishing property of
‖∂x� − ∂xσ‖1.

cations in quantum metrology and other areas of quantum
information science and technology. For example, it may
help significantly reduce the computational cost of deciding
whether a given initial state is useful for a quantum metrology
task, by obviating the need to compute the QFI explicitly. This
application can be important in quantum sensing.
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APPENDIX A: PROOF OF THE CONTINUITY RELATION
FOR THE CLASSICAL FISHER INFORMATION

Here we show that the classical Fisher information (2) is
not necessarily continuous in the ordinary or reduced sense
[i.e., in the sense |p(y|x) − q(y|x)| → 0, then |F (C)({p}) −
F (C)({q})| → 0]. Rather, it fulfills a continuity relation which
includes both expressions |p(y|x) − q(y|x)| and |∂x p(y|x) −
∂xq(y|x)|.

For two different conditional probability distributions
p(y|x) and q(y|x), associated to probability distributions {p}
and {q} for the same unknown parameter x, we write

∂x p(y|x) = p(y|x) �p, (A1)

∂xq(y|x) = q(y|x) �q, (A2)

where �p = ∂x ln p(y|x) and �q = ∂x ln q(y|x). By starting
from the definition, we have

|F (C)({p})−F (C)({q})|=
∣∣∣ ∫

Dy

dy [∂x p(y|x)�p − ∂xq(y|x)�q]
∣∣∣

�
∫

Dy

dy [|∂x p(y|x) − ∂xq(y|x)
∣∣ |�p|

+ |∂xq(y|x)| |�p − �q|], (A3)

where in the last line we have employed the triangle inequality
and

|AB − A′B′| � |A − A′| |B| + |A′| |B − B′|. (A4)
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In addition, it is straightforward to show that

|�p − �q| � 1

|p(y|x) q(y|x)| [|∂x p(y|x) ∂xq(y|x)| |q(y|x)|

+ |∂xq(y|x)| |p(y|x) − q(y|x)|]. (A5)

Now Eqs. (A3) and (A5) yield Eq. (8),

|F (C)[p(y|x)] − F (C)[q(y|x)]|

� f (C)
∫

Dy

dy |p(y|x) − q(y|x)|

+ g(C)
∫

Dy

dy |∂x p(y|x) − ∂xq(y|x)|, (A6)

with

f (C) = max
y∈Dy

|∂xq(y|x)|2
|p(y|x) q(y|x)| , (A7)

g(C) = max
y∈Dy

1

|p(y|x)| [|∂x p(y|x)| + |∂xq(y|x)|]. (A8)

�

APPENDIX B: SLD [EQ. (4)] AND r-SLD [EQ. (25)]

Equation (3) is reminiscent of the Lyapunov equation [2,3],
which in turn is a special case of the Sylvester equation [43],

AX − XB = Y. (B1)

From Theorem 7.2.3 in Ref. [43], if A and B have disjoint
spectrums, then

X =
∫ ∞

0
ds e−sAY esB. (B2)

In our case of interest, we see that, by taking X = L�, Y =
2∂x�, and A = −B = �, Eq. (3) has an integral representation
as in Eq. (B2) when the density matrix is full rank. Below,
we follow a careful analysis to examine utility of this integral
representation for the SLD.

Suppose that �(x) is defined on a Hilbert space H ⊗N

[where we keep, for a while, the x dependence for clarity and
to remind that the rank of �(x) may vary with x]. In order
to retain physical relevance of �(x), we assume sufficient
smoothness for it in terms of x. We denote the eigenvectors of
�(x) with {|λi(x)〉}H ⊗N

i=1 , and more specifically assume {|s j (x)〉}
and {|nk (x)〉} denote, respectively, those eigenvectors of �(x)
which correspond to the nonzero and zero eigenvalues, i.e.,

support vectors and null space vectors. Thus, for all x ∈ Dx

we have

�(x) =
H ⊗N∑
i=1

λi(x)|λi(x)〉〈λi(x)|, (B3)

IH ⊗N =
H ⊗N∑
i=1

|λi(x)〉〈λi(x)| = P(x) + P⊥(x), (B4)

where P(x) = ∑
|s j〉∈ supp(x) |s j (x)〉〈s j (x)| is the projection

onto the support space of H ⊗N . We obtain

∂x�(x) =
H ⊗N∑
i=1

∂xλi(x)|λi(x)〉〈λi(x)|

+
∑

|s j〉∈ supp(x)

λ j (x)[|∂xs j (x)〉〈s j (x)|

+ |s j (x)〉〈∂xs j (x)|] (B5)

and

e−s�(x) =
H ⊗N∑
i=1

e−sλi (x)|λi(x)〉〈λi(x)|

=
∑

|s j〉∈ supp(x)

e−sλ j (x)|s j (x)〉〈s j (x)| + P⊥(x), (B6)

where we identify the first term on the RHS as e−s̃�(x), with
�̃(x) = P(x)�(x)P(x) being the restriction of �(x) onto its
support space. From Eq. (B6) the following relations are
evident:

P⊥(x)e−s�(x) = e−s�(x)P⊥(x) = P⊥(x), (B7)

P⊥(x)e−s̃�(x) = e−s̃�(x)P⊥(x) = 0, (B8)

e−s�(x)∂x�(x)e−s�(x)

= e−s̃�(x)∂x�(x)e−s̃�(x) +
∑

|s j〉∈ supp(x)

λ j (x)e−sλ j (x)

× [P⊥(x)|∂xs j (x)〉〈s j (x)| + |s j (x)〉〈∂xs j (x)|P⊥(x)]

+
∑

|nk〉∈null(x)

∂xλk (x)|nk (x)〉〈nk (x)|. (B9)

Note that the last term on the RHS of Eq. (B9) is independent
of s. By integrating the last equation over s ∈ [0, t] and noting
that

∫ t
0 ds e−sλ j = (1 − e−tλ j )/λ j (for λ j 	= 0), we obtain

∫ t

0
ds e−s�(x)∂x�(x)e−s�(x) =

∫ t

0
ds e−s̃�(x)∂x�(x)e−s̃�(x) +

∑
|s j 〉∈ supp(x)

[1 − e−tλ j (x)][P⊥(x)|∂xs j (x)〉〈s j (x)| + |s j (x)〉〈∂xs j (x)|P⊥(x)]

+ t
∑

|nk〉∈null(x)

∂xλk (x)|nk (x)〉〈nk (x)|. (B10)

Now multiplying this relation by 2, taking the t → ∞ limit, and recalling Eqs. (4) and (25) yield

L�(x) = L�(x) +
∑

|nk〉∈null(x)

∂xλk (x)|nk (x)〉〈nk (x)| × lim
t→∞

∫ t

0
ds. (B11)
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The last term above vanishes identically in either of the following cases: (i) the rank of �(x) is always constant (whether full
rank or incomplete rank) and does not depend on x and (ii) �(x) is incomplete rank but at our point of interest x (where the rank
changes) all vanishing eigenvalues have vanishing first derivatives too. In either of these cases the commonly accepted integral
form of the SLD and the r-SLD are equal, L�(x) = L�(x). Otherwise, the above relation shows that the integral form (4) does not
necessarily converge. Hence the main advantage of the r-SLD is that, unlike the form in Eq. (4), it is always convergent and
thus has a finite norm (‖L�(x)‖∞ < ∞). In addition, this careful analysis can completely remove the confusion in the quantum
metrology literature regarding the applicability of the integral representation (4) [4,36]. This analysis also justifies the point we
made in the main text that the r-SLD representation (25) is devoid of the divergence problem with the integral form (4), and thus
this can make it more suitable. We, however, still need to justify that the r-SLD is relevant for the QFI.

Despite the above discrepancy between the integral forms (4) and (25), we now show that the very basic definition of the SLD
as in Eq. (3) always entails an indefiniteness for part of the SLD; the projection of the SLD on the null space of � ({〈ni|L�|n j〉})
is left arbitrary. But, interestingly, one can also show that this indefiniteness is completely irrelevant (i.e., does not contribute) as
long as the QFI (5) is concerned. Note that

F (Q)(�) = Tr[L��L�]

=
∑

|si〉∈ support

〈si|L��L�|si〉 +
∑

|ni〉∈ null

〈ni|L��L�|ni〉

=
∑

i

〈si|L� I � I L�|si〉 +
∑

i

〈ni|L� I � IL�|ni〉

=
∑

i

〈si|L�

(∑
i1

|si1〉〈si1 | + |ni1〉〈ni1 |
)

�

(∑
i2

|si2〉〈si2 | + |ni2〉〈ni2 |
)

L�|si〉

+
∑

i

〈ni|L�

(∑
i2

|si3〉〈si3 | + |ni3〉〈ni3 |
)

�

(∑
i3

|si4〉〈si4 | + |ni4〉〈ni4 |
)

L�|ni〉

=
∑
ii1i2

〈si|L�|si1〉〈si1 |�|si2〉〈si2 |L�|si〉 +
∑
i,i3,i4

〈ni|L�|si3〉〈si3 |�|si4〉〈si4 |L�|ni〉

=
∑

i j

λ j (〈si|L�|s j〉〈s j |L�|si〉 + 〈ni|L�|s j〉〈s j |L�|ni〉), (B12)

where no 〈ni|L�|n j〉 term remains in the last expression.

APPENDIX C: BOUNDS ON EIGENPROJECTIONS

Lemma 1. Let P� and Pσ denote eigenprojections on the support of two density matrices � and σ , respectively. Then,

‖P� − Pσ ‖∞ � 8

λmin (̃�) λmin(σ̃ )
‖� − σ‖1, (C1)

‖∂xP� − ∂xPσ ‖∞ � 8

(
1

λ2
min (̃�)

‖∂x� − ∂xσ‖1 + 2
[λmin (̃�) + λmin(σ̃ )]‖∂xσ‖1

λ2
min (̃�) λ2

min(σ̃ )
‖� − σ‖1

)
. (C2)

Proof. We recall that the eigenprojection P� of a density matrix � on its support is given by [52,53]

P� = − 1

2π i

∮


dλ Rλ(�), (C3)

where Rλ(�) = (� − λI)−1 is the resolvent of � and  is the
contour of integration in the complex λ plane (λ ∈ C), which
includes the nonvanishing part of the spectrum of �—that is,
�(�)\{0} ∈ interior(). Since �(�) ⊆ [0, 1], we can choose
 to be a narrow strip as depicted in Fig. 8.

Note that

P� − Pσ = 1

2π i

∮


dλ[Rλ(σ ) − Rλ(�)]

= 1

2π i

∮


dλ Rλ(σ ) (σ − �) Rλ(�), (C4)
FIG. 8. Counterclockwise integration contour in the form of a

strip of width 2ε, which encloses all nonvanishing eigenvalues of �

and σ .
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where in the last line we used “the second resolvent identity”
[52]

Rλ(σ ) − Rλ(�) = Rλ(σ ) (� − σ )Rλ(�). (C5)

Note that Eq. (C4) clearly indicates that when ‖� − σ‖1 → 0,
then ‖P� − Pσ ‖∞ → 0. Now if |∂| denotes the length of the
contour  and we employ the identity [52]

‖Rλ(X )‖∞ = 1/dist(λ,�(X )), (C6)
FIG. 9. Graphical proof that maxε∈[0,λmin (̃�)] min{ε, λmin (̃�) −

ε} = λmin (̃�)/2.

we obtain

‖P� − Pσ ‖∞ � |∂|
2π

‖� − σ‖1 max
λ∈

1

dist(λ,�(�))
max
λ∈

1

dist(λ,�(σ ))

= (1 + πε)

π

‖� − σ‖1

min{ε, λmin (̃�) − ε} min{ε, λmin(σ̃ ) − ε}
� 2‖� − σ‖1

1

maxε∈[0,λmin (̃�)] min{ε, λmin (̃�) − ε}
1

maxε∈[0,λmin (σ̃ )] min{ε, λmin(σ̃ ) − ε}
Fig. 9= 8‖� − σ‖1

λmin (̃�) λmin(σ̃ )
. (C7)

Thus one can conclude that

‖P� − Pσ ‖∞ � min

{
2,

8

λmin (̃�) λmin(σ̃ )
‖� − σ‖1

}
. (C8)

From Eq. (C3) one can see that

∂xP� = 1

2π i

∮


dλ Rλ(�) ∂x� Rλ(�), (C9)

where we have used the identity ∂x(A−1) = −A−1∂xAA−1 (for an x-dependent invertible and differentiable operator A), and have
assumed that  is an integral contour (akin to Fig. 8), which encloses all nonvanishing eigenvalues of �(x) and �(x + δx) for
sufficiently small (but nonvanishing) variations δx. From this relation we conclude

‖∂xP�‖∞ � |∂|
2π

max
λ∈

‖Rλ(�) ∂x� Rλ(�)‖∞
(13)
� |∂|

2π
‖∂x�‖1 max

λ∈
‖Rλ(�)‖2

∞
(C6)
� 8‖∂x�‖1

λ2
min (̃�)

(C10)

and

‖∂xP� − ∂xPσ ‖∞ � |∂|
2π

max
λ∈

‖Rλ(�) ∂x� Rλ(�) − Rλ(σ ) ∂xσ Rλ(σ )‖∞

(19)
� |∂|

2π
max
λ∈

(‖∂x� − ∂xσ‖1 ‖Rλ(�)‖2
∞ + ‖Rλ(�) − Rλ(σ )‖∞‖∂xσ‖1[‖Rλ(�)‖∞ + ‖Rλ(σ )‖∞])

(C5), (C6)
� |∂|

2π
max
λ∈

( ‖∂x� − ∂xσ‖1

dist(λ,�(�))2 +
[ 1

dist(λ,�(�))
+ 1

dist(λ,�(σ ))

] ‖∂xσ‖1‖� − σ‖1

dist(λ,�(�))dist(λ,�(σ ))

)
� 8

(
1

λ2
min (̃�)

‖∂x� − ∂xσ‖1 + 2
[λmin (̃�) + λmin(σ̃ )]‖∂xσ‖1

λ2
min (̃�) λ2

min(σ̃ )
‖� − σ‖1

)
. (C11)

�

APPENDIX D: BOUNDS ON THE MINIMUM EIGENVALUES OF SUM AND PRODUCT
OF TWO HERMITIAN OPERATORS

1. λmin(A + B)

Consider A and B to be two Hermitian n × n matrices with eigenvalues λ j (A) and λ j (B). Assume that λ
↓
k (A) de-

notes the eigenvalues of A ordered decreasingly, that is, λ
↓
1 (A) ≡ λmax(A) � · · · � λ↓

n (A) ≡ λmin(A). The Weyl inequality
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yields [43]

λ
↓
j (A + B) � λ

↓
i (A) + λ

↓
j−i+1(B), i � j, (D1)

λ
↓
j (A + B) � λ

↓
i (A) + λ

↓
j−i+n(B), i � j. (D2)

Choosing i = j = n gives

λmin(A + B) � λmin(A) + λmin(B). (D3)

2. λmin(AB)

Let us assume x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) are n-dimensional vectors with nonnegative elements.
From majorization theory [43] we recall the definitions

ln x ≺w ln x if
k∏

i=1

x↓
i �

k∏
i=1

y↓
i , for k = 1, 2, . . . , n, (D4)

ln x ≺ ln y if ln x ≺w ln y with
n∏

i=1

x↓
i =

n∏
i=1

y↓
i . (D5)

Now we use Corollary 3.4.6 (Lidskii) in Ref. [43]. Let A and B be two positive operators. Then all eigenvalues of AB are
nonnegative and

ln λ↓(A) + ln λ↑(B) ≺ ln λ(AB) ≺ ln λ↓(A) + ln λ↓(B), (D6)

where λ↓(A) [λ↑(A)] denotes the vector of the eigenvalues of A ordered decreasingly (increasingly). Thus

k∏
i=1

λ
↓
i (AB) �

k∏
i=1

λ
↓
i (A)

k∏
i=1

λ
↓
i (B), (D7)

n∏
i=1

λ
↓
i (AB) =

n∏
i=1

λ
↓
i (A)

n∏
i=1

λ
↓
i (B). (D8)

We can write Eq. (D8) as

λmin(AB)
n−1∏
i=1

λ
↓
i (AB) = λmin(A)

n−1∏
i=1

λ
↓
i (A) λmin(B)

n−1∏
i=1

λ
↓
i (B),

λmin(AB)

λmin(A) λmin(B)
=

∏n−1
i=1 λ

↓
i (A)

∏n−1
i=1 λ

↓
i (B)∏n−1

i=1 λ
↓
i (AB)

(D7)
� 1. (D9)

Hence we obtain

λmin(AB) � λmin(A) λmin(B). (D10)

3. λmin(E [�0])

Assume a completely positive trace-preserving dynamical map E applied on an initial state �0, E [�0] = ∑
k Ak�0A†

k . We
have

λmin
(∑

kAk�0A†
k

) (D3)
�

∑
k λmin(Ak�0A†

k ) = ∑
k λmin(�0A†

kAk )
(D10)
� λmin(�0)

∑
k λmin(A†

kAk ), (D11)

where in the second line we have used the identity λ(AB) = λ(BA). Positivity of A†
kAk and the trace preserving condition∑

k A†
kAk = I imply that 0 � λ(A†

kAk ) � 1.
For random unitary channels of the form U [◦] = ∑

k pkUk ◦ U †
k , where {pk} constitutes a probability distribution and Uk’s

are unitary, the above bound gives

λmin
(∑

k pkUk�0U
†
k

)
� λmin(�0). (D12)

As an example, for a d-dimensional depolarizing channel U [�0] = (1 − p)�0 + (p/d )I, we have λmin(U [�0]) = (1 −
p)λmin(�0) + p/d , which is obviously � λmin(�0)—in agreement with Eq. (D12).
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APPENDIX E: PROOF OF EQ. (49)

Note that

‖∂x� − ∂xσ‖1 =
∥∥∥ ∫ 1

0
dt etH∂xH e(1−t )H − etG∂xG e(1−t )G

∥∥∥
1

�
∫ 1

0
dt‖ etH︸︷︷︸

A

∂xH e(1−t )H︸ ︷︷ ︸
B

− etG︸︷︷︸
A′

∂xG e(1−t )G︸ ︷︷ ︸
B′

‖1

(15)
�

∫ 1

0
dt

(‖etH − etG‖∞ ‖∂xH e(1−t )H‖1 + ‖etG‖∞ ‖∂xH e(1−t )H − ∂xG e(1−t )G‖1
)

=
∫ 1

0
dt‖etH − etG‖∞‖∂xH e(1−t )H‖1 +

∫ 1

0
dt‖etG‖∞‖∂xH e(1−t )H − ∂xG e(1−t )G‖1. (E1)

Let us consider the two terms in Eq. (E1) separately. For the first term we have∫ 1

0
dt‖etH − etG‖∞‖∂xH e(1−t )H‖1

(13)
�

∫ 1

0
dt‖etH − etG‖∞‖∂xH‖1‖e(1−t )H‖

(21)
�

∫ 1

0
dt‖t (H − G)‖∞

∫ 1

0
dτ‖eτ tH‖∞‖e(1−τ )tG‖∞‖∂xH‖1‖e(1−t )H‖∞

=
∫ 1

0
dt t‖H − G‖∞

∫ 1

0
dτ‖�τ t‖∞‖σ (1−τ )t‖∞‖∂xH‖1‖�1−t‖∞

‖�s‖∞�1 for 0�s�1
� 1

2
‖H − G‖∞‖∂xH‖1. (E2)

Similarly, for the second term in Eq. (E1), one can obtain∫ 1

0
dt‖etG‖∞‖ ∂xH︸︷︷︸

A

e(1−t )H︸ ︷︷ ︸
B

− ∂xG︸︷︷︸
A′

e(1−t )G︸ ︷︷ ︸
B′

‖1

(15)
�

∫ 1

0
dt‖etG‖∞

(‖∂xH − ∂xG‖1 ‖e(1−t )H‖∞ + ‖∂xG‖1 ‖e(1−t )H − e(1−t )G‖∞
)

(21)
�

∫ 1

0
dt‖etG‖∞

(
‖∂xH − ∂xG‖1 ‖e(1−t )H‖∞ + (1 − t )‖∂xG‖1 ‖H − G‖∞

∫ 1

0
dτ‖eτ (1−t )H‖∞‖e(1−τ )(1−t )G‖∞

)
=

∫ 1

0
dt‖σ t‖∞

(
‖∂xH − ∂xG‖1 ‖�1−t‖∞ + (1 − t )‖∂xG‖1 ‖H − G‖∞

∫ 1

0
dτ‖�τ (1−t )‖∞ ‖σ (1−τ )(1−t )‖∞

)
� ‖∂xH − ∂xG‖1 + 1

2
‖∂xG‖1 ‖H − G‖∞. (E3)

Substituting Eqs. (E2) and (E3) in Eq. (E1) yields

‖∂x� − ∂xσ‖1 � 1
2‖H − G‖∞

(‖∂xH‖1 + ‖∂xG‖1
) + ‖∂xH − ∂xG‖1. (E4)

�
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