
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Farjam, Tahmoores; Charalambous, Themistoklis; Wymeersch, Henk
Timer-based distributed channel access for control over unknown unreliable time-varying
communication channels

Published in:
Proceedings of the 18th European Control Conference, ECC 2019

DOI:
10.23919/ECC.2019.8796060

Published: 01/06/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Farjam, T., Charalambous, T., & Wymeersch, H. (2019). Timer-based distributed channel access for control over
unknown unreliable time-varying communication channels. In Proceedings of the 18th European Control
Conference, ECC 2019 (pp. 2975-2982). Article 8796060 IEEE. https://doi.org/10.23919/ECC.2019.8796060

https://doi.org/10.23919/ECC.2019.8796060
https://doi.org/10.23919/ECC.2019.8796060


© 2019 IEEE. This is the author’s version of an article that has been published by IEEE. 
Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works.  
 



Timer-Based Distributed Channel Access for Control Over
Unknown Unreliable Time-Varying Communication Channels

Tahmoores Farjam, Themistoklis Charalambous, and Henk Wymeersch

Abstract— We consider the resource allocation problem for a
system consisting of multiple control subsystems that share an
unknown unreliable time-varying wireless channel. We propose
a novel method for granting channel access deterministically
without requiring information exchange between subsystems,
based on local timers for prioritizing channel access with
respect to a local cost that takes into account the (initially
unknown) channel conditions. We propose a novel setup which
has the capability of learning the parameters of imperfect
communication links while ensuring distributed collision-free
implementation. More specifically, we adopt learning algorithms
for estimating the channel quality and, hence, define the local
cost as a function of this estimation and control performance.
The efficacy of this mechanism is evaluated via simulations.

Index Terms— Wireless networked control systems, dis-
tributed channel access, cost of information loss, exploration-
exploitation, bandits.

I. INTRODUCTION

Modern control environments, e.g., smart buildings and
autonomous vehicles, consist of a large number of spa-
tially distributed smart devices with sensing, actuating and
computing capabilities. To perform the control tasks, these
devices use a shared wireless medium for communication
and comprise systems known as Wireless Networked Control
Systems (WNCSs); see, e.g., surveys [1] and [2]. Despite the
numerous advantages that result from using a wireless net-
work, for instance, flexibility, installation and maintenance
cost reduction, it introduces new challenges which limit its
application.

Guaranteeing the control performance of the involved
dynamical systems, herein called subsystems, necessitates
devising a scheduling mechanism for sharing the wireless
network efficiently. This can be achieved by implementing
static scheduling mechanisms where the communication se-
quence is determined off-line, see, e.g., [3], [4]. To capture
the dynamic nature of WNCSs and allow for flexibility,
dynamic schedulers have been proposed where, at each
instance, a scheduling unit grants channel access based on
evaluation of some objective function. For instance, [5], [6]
use the discrepancy in state estimates as the objective, [7]–[9]
base their evaluation on the growth of the standard quadratic
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cost (penalizing the error from the deviation from the de-
sired state and the magnitude of the control action), while
[10], [11] consider the transmission power consumption in
calculations as well.

In many applications, similar to the case considered in
this paper, a central scheduling unit is non-existent and thus
a distributed resource allocation mechanism is required. In
such settings, the definition of the control objective function
is restricted to local information only. Moreover, a novel
mechanism should be devised by which the subsystems can
coordinate for channel access. In this regard, [12] proposed
a binary countdown technique which assigns communication
channels to the subsystems with the highest state-dependent
error. However, the method is prone to collisions in homoge-
neous systems with limited number of contention slots and
requires precise synchronization for explicitly identifying
the contention slots. To overcome such shortcomings, [13]
introduced the concept of local timers as a means for
prioritizing subsystems based on the growth they impose
on the quadratic cost and optimally allocate resources in a
collision-free manner. Nevertheless, it is designed for perfect
communication links and thus fails to account for packet
losses which are an inherent feature of the network, due to
the uncertain stochastic nature of the wireless medium.

In WNCSs, however, due to the dynamics of the subsys-
tems and the changing environment, the channel conditions
vary rapidly under the transmission of a single packet; such
systems are fast fading and only statistical Channel State In-
formation (CSI) acquisition is reasonable [14]. Statistical CSI
refers to the statistical characterization of the channel, e.g.,
the type of fading distribution and the average channel gain.
Such information is often used for transmission scheduling;
the main problem considered in this paper.

In this work, we first provide a distributed solution to the
transmission scheduling optimization problem over indepen-
dent and identically distributed (i.i.d.) packet dropping links
by introducing a modified version of the distributed channel
access mechanism in [13]. The next major contribution of
this work is introduction of a novel method for distributed
resource allocation for control over unknown unreliable
wireless channels. Unlike the aforementioned works [5]–[9],
we assume the realistic scenario where no prior information
of the first moment of the statistics of the wireless channels
is available. In this case, we cast the channel selection
problem as a multi-armed bandit (MAB). To the best of
our knowledge, this work presents the first distributed MAB
solution for channel access with respect to a control cost in
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Fig. 1. Example of the WNCS layout where N subsystems compete to
access a single wireless channel. Pi represents the plant of subsystem i ∈
{1, . . . , N}, Si its sensor, Ei its estimator, and Ci its controller. Note that
the timer is embedded in the sensor which is capable of local computations.

WNCSs. We apply the celebrated results obtained for single-
player MAB for prioritizing the available channels. Then, by
coupling these priorities with the associated control cost of
each subsystem in our timer setup, we ensure that channel
access is granted in a distributed collision-free manner with
respect to the control objective.

The rest of this paper is organized as follows. We first
provide the necessary preliminaries and system model in
Section II and then briefly describe the distributed channel
access mechanism in Section III. In Section IV, we use the
multi-player bandit model for learning the unknown channel
parameters and propose a novel method for distributed chan-
nel access. In Section V, we evaluate how the performance
is influenced by employing the proposed method. We draw
conclusions and discuss future directions in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

The setup of the WNCSs under consideration are depicted
in Fig. 1, where N decoupled subsystems, which exchange
no information between them, share a single wireless chan-
nel. Each subsystem i ∈ {1, . . . , N} consists of a plant (Pi)
which receives control inputs from local controller (Ci) and
its outputs are measured by the sensor (Si) which is capable
of computations. The resource allocation scheme determines
when measurements are transmitted to the corresponding
estimator Ei in a distributed manner.

A. Local Processes

We model the dynamics of each subsystem as linear time-
invariant stochastic processes evolving according to

xi,k+1 = Aixi,k +Biui,k + wi,k, (1a)
yi,k = Cixi,k + vi,k, (1b)

where xi,k ∈ Rni , yi,k ∈ Rpi and ui,k ∈ Rmi are the
local states, measurements and inputs of the actuators of
subsystem i at time step k, respectively. Moreover, the
stochastic disturbances and measurement noises are assumed
to be i.i.d. random sequences described by wi,k ∼ N (0,Wi)
and vi,k ∼ N (0, Vi), respectively. Moreover, we assume v
and w are mutually independent, i.e., E{wvT } = 0.

B. Imperfect Communication

Let N and M denote the index set of subsystems and
available channels, respectively, with |N | = N and |M| =
M , where the notation | · | in the case of sets stands for the
cardinality of the set. While the communication link between
the local controller and actuators is assumed to be perfect,
the sensors transmit measurements over lossy wireless links
to be received by their corresponding estimators. We assume
a time-slotted medium access protocol is implemented and
let the decision variable δi,j,k ∈ {0, 1} represent whether
subsystem i transmits on channel j at time step k or not as
follows

δi,j,k =

{
1, yi,k is transmitted on channel j,
0, otherwise.

Since wireless channels are unreliable, δi,j,k = 1 does not
guarantee successful reception of the data packet. Hence,
we define an additional binary variable γi,j,k to denote the
confirmation of successful delivery as

γi,j,k =

{
1, yi,k is successfully received over channel j,
0, otherwise,

which represents the acknowledgment signal. Typically, the
problem of scheduling arises when the shared communica-
tion resources are limited, as is the case for the considered
WNCS (i.e., M < N ). To avoid collisions, at a given time,
a channel can only be used by one subsystem∑

i∈N
δi,j,k ≤ 1, ∀j,∀k. (2)

Moreover, each subsystem can only use one channel at a
given time ∑

j∈M
δi,j,k ≤ 1, ∀i,∀k. (3)

We model packet delivery over each channel as i.i.d.
Bernoulli random sequences. Therefore, the probability of
successful transmission satisfies a Bernoulli distribution with
mean qi,j ∈ [0, 1]. Using the introduced decision variables,
the expectation of successful packet delivery is given by

P(γi,j,k = 1|δi,j,k = 1) = qi,j . (4)

C. Controller and Estimator

In this work, the standard quadratic cost over the infinite
horizon is chosen as the performance measure, which we
intend to minimize. This cost is defined as

J0 = E

{
lim
κ→∞

1

κ

κ−1∑
k=0

N∑
i=1

(
xTi,kQixi,k + uTi,kRiui,k

)}
, (5)

where Qi and Ri are positive definite weighing matrices of
appropriate dimensions. The control inputs for minimizing
this cost are computed by

ui,k = Lix̂k|k, (6)

where Li is the stabilizing feedback matrix given by

Li = −(BTi ΠiBi +Ri)
−1BTi ΠiAi, (7)



where Πi is the solution of discrete-time algebraic Riccati
equation. Furthermore, using Kalman filter as the local
estimator, the a posteriori state estimates, denoted by x̂i,k|k,
can be calculated recursively by [15]

x̂i,k|k−1 = (Ai +BiLi)x̂i,k−1|k−1, (8a)

Pi,k|k−1 = AiPi,k−1|k−1A
T
i +Wi, (8b)

Ki,k = Pi,k|k−1C
T
i

(
CiPi,k|k−1C

T
i + Vi

)−1
, (8c)

x̂i,k|k = x̂i,k|k−1 + (
∑M
j=1 γi,j,k)Ki,k(yi,k − Cix̂i,k|k−1),

(8d)

Pi,k|k = (I − (
∑M
j=1 γi,j,k)Ki,kCi)Pi,k|k−1, (8e)

where the covariance matrices and Kalman gain are denoted
by P and K, respectively. Initial conditions Pi,0 and x̂i,0 are
often chosen arbitrarily, or, based on prior knowledge from
available information by the respective process [16]. Note
that for each subsystem i ∈ N ,

∑M
j=1 γi,j,k ≤ 1, since i will

transmit to one of the available channels at a given time slot.

D. Timer-based Mechanism

The timer-based mechanism introduced in [13], denoted
by TBCoIL, provides a distributed solution for the channel
allocation problem in settings similar to our WNCS structure.
This mechanism is based on the idea of assigning local timers
to every subsystem. At each time step k, the timers are set
to

τi,k =
λ

mi,k
, (9)

where λ is a constant shared among all subsystems, which
can be fine-tuned for establishing the desired contention
period. Furthermore, mi,k is a measure of error which can be
chosen arbitrarily. By choosing a cost that can be calculated
according to the locally available information only as the
measure mi,k, all subsystems can compute (9) independently.
Since τi,k is inversely proportional to this cost, timers can
be viewed as a means for prioritizing channel access. At
the beginning of each transmission slot, the timers are set
and started. The subsystem that possesses the smallest timer,
i.e., the largest cost, has the highest priority for claiming
the channel. As the first timer expires, the corresponding
subsystem sends a short-duration flag packet on the network
which informs the remaining contestants to stop their timers
and back off. Then, data packet is transmitted during this slot
without any collision. As the next transmission slot begins,
the timers are reset to new values and the same procedure is
repeated.

III. DISTRIBUTED CHANNEL ACCESS MECHANISM

Here, we first modify TBCoIL to extend its application to
the case where multiple fading channels are present. This can
be achieved by assigning multiple timers to each subsystem.
More specifically, each subsystem possesses M independent
timers which correspond to M available channels. Similar to
the original approach, (9) is used for calculating τi,j,k where
the additional index j ∈ M corresponds to the considered
channel. Moreover, the local cost, denoted by mi,j,k, is
calculated individually for each channel.

In this framework, at any given time step k, the first
claimed channel j∗ and the corresponding subsystem i∗ are
determined by the first timer that expires (reaches zero), i.e.,
{i∗, j∗} = arg mini,j{τi,j,k}. This subsystem transmits a
short duration flag packet on channel j∗ immediately, thus
informing all other subsystems in the network to stop their
timers for this channel and back off. Simultaneously, i∗ stops
its remaining timers and thus withdraws from competition
for the remaining channels and starts to transmit on channel
j∗ without collision. Meanwhile, the rest of subsystems
compete for available resources until all M channels have
been allocated for. Similar to the original method, as the
time slot ends, all timers are reset and the whole procedure
is repeated.

Remark 1: Although, for ease of explanation, we assume
each subsystem possesses multiple timers, a single clock
suffices for implementation. The value of an imaginary timer
assigned to a specific channel can equivalently be represented
by a checkpoint on the elapsed time of the clock from the
beginning of that time slot. Consequently, as the clock hits
the first checkpoint, it can be interpreted as the smallest
timer reaching zero. Therefore, the corresponding channel
is claimed and all the remaining checkpoints are removed.
Furthermore, if a flag packet is received, the checkpoint of
that channel is neglected which is equivalent to backing off
and collision avoidance.

A. Timer setup

The main challenge in implementation of TBCoIL is quan-
tification of the local cost. In order to allow for distributed
implementation, this cost should be defined in a manner that
it could be determined by locally available information only.
In addition, our main goal is to minimize (5). Hence, the
local cost should be defined such that by implementing the
resulting channels access scheme, our goal is attained.

Optimal resource allocation results in minimization of (5).
Let Sk ⊆ N denote the set of subsystems that transmit their
measurement at k and define S̄k , N\Sk. Furthermore, we
define E0

i,k as a cost incurred by subsystem i in case it does
not receive measurement updates at k; similarly, E1

i,k is the
cost when this subsystem receives the observations. Hence,
over perfect communication links, the total cost at step k can
be written as [8]

Jk =
∑
i∈S̄k

E0
i,k +

∑
i∈Sk

E1
i,k. (10)

This cost can be defined for communication over unre-
liable channels in a similar manner [8]. Let j̄i : Sk →
{1, . . . ,M} denote the index j with δi,j,k = 1 for i ∈ Sk,
i.e., the index of the channel allocated to subsystem i for
transmission. The cost in this setup is defined as [8]

E{Jk|Sk} =
∑
i∈S̄k

E0
i,k +

∑
i∈Sk

(
E0
i,k(1− qi,j̄i) + E1

i,kqi,j̄i
)

=
∑
i∈N

E0
i,k +

∑
i∈Sk

(
E1
i,k − E0

i,k

)
qi,j̄i



=
∑
i∈N

E0
i,k −

∑
i∈Sk

CoILi,kqi,j̄i , (11)

where CoIL , E0
i,k − E1

i,k denotes the cost of information
loss. This cost can be construed as the increase in the
quadratic cost imposed by a subsystem, in case it does not
receive measurement updates. Minimizing (11) is equivalent
to maximizing the last term which can be interpreted as the
optimal resource allocation problem at k. This problem can
be formulated as

max
δi,j,k∈{0,1}

N∑
i=1

M∑
j=1

CoILi,kqi,jδi,j,k, (12)

constrained by (2) and (3). We aim at solving this problem in
a distributed manner. As aforementioned, if local information
is sufficient for determining the cost, implementing the timer-
based mechanism ensures that channel access is granted to
subsystems with the highest cost in a distributed fashion.

It has been proven in [8] that by considering the quadratic
cost (5), for decoupled dynamics, we can derive

CoILi,k = tr
(
Γi
(
Pi,k|k−1 − Pi,k|k

))
, (13)

where Γi is a weighting matrix and Pi,k|k−1 and Pi,k|k are
the a priori and a posteriori error covariance matrices as
defined in (8b) and (8e), respectively. Since all the needed
parameters for determining this cost are independent of the
measurements and all needed is the initial condition, the
updates of the error covariance matrices can be computed lo-
cally and away from the sensor that takes the measurements.
As a result, the product in (12) can be used as the local
measure for timer setup under the assumption that channel
parameters are known. Hence, by setting the timers to

τi,j,k =
λ

CoILi,kqi,j
, (14)

the first M timers which expire determine the transmitting
subsystems and the corresponding claimed channels. As a
result, utilizing this setup provides a distributed solution for
(12) and guarantees collision-free channel access, provided
that there are no collisions between the flag signals broad-
casted by the subsystems.

IV. CHANNEL ACCESS OVER UNKNOWN CHANNEL
STATISTICS

A. Problem Statement

Optimal resource allocation requires knowledge of the
exact values of qi,j . In slow fading channels, this parameter
can be approximated with estimation processes, e.g., instan-
taneous CSI acquisition. However, due to the dynamic nature
of the considered subsystems and the changing environment,
the coherence time of the channel is relatively small and
thus fast fading occurs. In such settings, learning methods
can be applied as an alternative for gaining knowledge of
the underlying channel parameters.

Despite the abundance of existing learning algorithms,
adopting a suitable one is challenging for two setup-related
reasons: (i) our WNCS structure allows no information

exchange among subsystems and thus the learning should
be accomplish in a distributed way; (ii) since the main
objective is minimizing the overall cost, the adopted algo-
rithm should be compatible with the proposed timer-based
mechanism. More specifically, channel statistics cannot be
learned separately without taking into consideration CoIL.
This is due to the fact that our main objective is to enable
the subsystems to optimally perform their control tasks
and ignoring CoIL would result in deterioration in control
performance. We aim at devising a novel distributed method
which takes into consideration the trade-off between learning
the channel statistics and control performance to address the
aforementioned challenges.

B. A MAB Approach

MAB problem refers to optimal sequential allocation in
unknown random environments. Due to the various advan-
tages they offer, there has been a recent surge in extending
the application of MAB methods to the field of wireless
communication in areas, such as relay selection [17], oppor-
tunistic spectrum access [18], cognitive radio systems [19]
and energy-efficient small cells planning in 5G networks
[20]. In classic single-player stochastic MAB, a player has
access to multiple, say M , independent arms. At each round,
this player can pull an arm j ∈ {1, . . . ,M} which yields
a random reward from an unknown probability distribution
specific to that arm. Since the player has no prior knowledge
of the reward distribution, he might play an inferior arm in
terms of reward. We define regret as the difference between
the reward achieved when the best arm is pulled and the
player’s choice. Let rj,k and Ik denote the instantaneous
reward obtained from arm j and the selected arm at round
k, respectively. Then, we define the (expected) regret up to
round κ as

Rκ = max
j∈{1,...,M}

E

[
κ∑
k=1

rj,k

]
− E

[
κ∑
k=1

rIk

]
. (15)

The objective is to find a policy for selecting the arms
in a way that (15) is minimized over the game horizon.
The performance of a policy relies on how it addresses
exploration/exploitation dilemma: searching for a balance
between exploring all arms to learn their reward distribution
while playing the best arm more often to gain more reward.

The channel selection procedure of a subsystem can con-
veniently be cast as a single-player MAB. In this scenario,
channels represent arms and pulling an arm corresponds to
packet transmission over the selected channel. We assume
a binary rewarding scheme (rj,k ∈ {0, 1}), where in case
of successful reception of the data packet, a unit reward
is obtained over that channel (rIk = 1), whereas failed
transmissions correspond to pulling an arm which offers no
reward (rIk = 0). The channels are independent and packet
dropouts are i.i.d. random sequences, or in other words,
the rewards are i.i.d. random. The mean of the Bernoulli
distribution of rewards over each channel correspond to
the probability of successful transmission (4). Therefore, by
adopting suitable policies, after the initial exploration phase,



the channel with the best quality is exploited for maximizing
the success rate or, equivalently, the reward.

A class of solutions to this problem are known as index
policies, which assign an index to each arm and the one
with the largest index is played. One of the main categories
of methods that belong to this class are based on upper
confidence bound (UCB). These policies estimate an upper
bound of the mean reward q̄j,k of each arm j at some fixed
confidence level and determine the indices according to the
estimated bounds. One of the celebrated results based on
this idea is UCB1 policy introduced in [21]. At each round
k, UCB1 first computes the upper confidence bound of the
mean reward, q̄j,k, as follows

q̄j,k = q̂j,k +

√
2 ln zk
zj,k

, (16)

where zk is the total number of plays, zj,k denotes the
number of plays of arm j and q̂j,k is the average reward
obtained from playing this arm up to k, i.e.,

q̂j,k =

∑k
s=1 rj,s1Is=j

zj,k
, (17)

where 1Ik=j is 1 when the index at time k, Ik, is assigned to
arm j. Then, once the upper confidence bound of the mean
reward is obtained for all arms, UCB1 assigns index Ik to
the arm with the maximum upper confidence bound, i.e.,

Ik = arg max
j∈{1,...,M}

q̄j,k. (18)

In addition to computational efficiency, under some mild
assumptions, this policy is order optimal over time [21].

The problem of distributed channel access in standard
wireless networks concerns maximizing the number of suc-
cessful transmissions, which can be cast as a multi-player
MAB. To define regret, we first determine the maximum
obtainable reward. Using the aforementioned binary reward-
ing scheme, maximizing the reward at every time step k
corresponds to optimal resource allocation, which is

max
δi,j,k∈{0,1}

N∑
i=1

M∑
j=1

qi,jδi,j,k, (19)

subject to constraints (2) and (3). Since the reward distribu-
tion over each wireless link is assumed to be time-invariant,
the optimal decision variables are likewise time-invariant.
Consequently, subscript k is dropped and we denote the
solution by δq∗i,j . As a result, regret is defined as

Rκ = κ

N∑
i=1

M∑
j=1

qi,jδ
q∗
i,j −

κ∑
k=1

∑
i∈Sk

qi,j̄i , (20)

which can be minimized by adopting distributed policies,
such as UCB1.

C. Distributed Channel Access Algorithm

In this section, we describe our proposed distributed
channel access mechanism. We first cast our problem as
a multi-player MAB. Then, we propose a novel indexing
policy for addressing the exploration/exploitation dilemma in
a collision-free distributed manner. More specifically, we use
time-varying weights, which reflect the control performance,
in index calculations. Furthermore, by implementing the
timers for coordination, we ensure that the players can access
the channels without collision. The detailed description of the
algorithm follows.

Since our goal is to minimize (5), with a slight abuse of
notation, we define the cost regret up to time step κ as

Rcost,κ =

κ∑
k=1

E{Jk} −
κ∑
k=1

E{J∗k}, (21)

where E{J∗k} is the minimum of (11), which can be achieved
by optimal resource allocation, i.e., (12). Although the cost
regret fundamentally differs from the standard regret defined
in (20), we propose a new method for exploiting the well-
established results for minimizing the latter in our favor.

While now the regret function has changed, we still apply
the aforementioned binary rewarding scheme in, e.g., (16),
assuming that at any given time k, in case subsystem i
transmits on channel j (δi,j,k = 1) and the transmission is
successful (γi,j,k = 1), a unit reward is obtained. Neverthe-
less, the indices are assigned with respect to the weighted
expected reward, i.e.,

Ii,k =

 arg max
j∈{1,...,M}

δ∗i,j,k, if ∃j : δ∗i,j,k 6= 0,

∅, otherwise,

where δ∗i,j,k is obtained by optimization

δ∗k ,
[
δ∗i1,1,k . . . δ∗iM ,M,k

]T
= arg max

δi,j,k∈{0,1}

N∑
i=1

M∑
j=1

CoILi,kq̄i,j,kδi,j,k, (22)

subject to the channel constraints (2) and (3). This ensures
correct estimation of the success probability of the channel,
while at the same time the slot is allotted (in a distributed
fashion) to the subsystem with the highest cost in order to
minimize the cost regret given in (21). This policy can be
enforced by implementing the timer-based mechanism for
solving (22). By using the weighted expected reward as the
local measure, (9) can be rewritten as

τi,j,k =
λ

CoILi,k q̄i,j,k
. (23)

As a result, assuming a negligible flag packet duration, this
mechanism provides collision-free channel access.

In case of standard wireless networks where regret is
defined as (20), in addition to UCB1, several distributed
algorithms have been proposed for improving performance,
e.g., rhoRand, RandTopM and MCTopM [19]. Nevertheless,
all the solutions with respect to (20) only maximize the num-
ber of successful transmission disregarding the dynamics and



control performance, which are the critical characteristics
of WNCSs. Despite the ineffectiveness of their standalone
implementation in our setup, manipulating their outcome in
our policy by the time-varying weights, i.e., CoIL, results in
significant improvements as shown by the numerical results
in Section V. Algorithm 1 illustrates the detailed distributed
implementation of our policy at each subsystem when UCB1
is used as the core policy.

Remark 2: UCB1 algorithm requires each arm to be
pulled at least once when initiating. For this reason, at
the beginning we adopt a pre-specified schedule in which
all N subsystems transmit to all M channels. This proce-
dures requires N steps. Afterwards, the generated set of
observations and cumulative rewards, denoted by Zi,1 ,
{zi,j,1|∀j ∈M} andRi , {Ri,j |∀j ∈M}, respectively, are
used for determining channel access according to (22).

Algorithm 1: Timer-based channel access mecha-
nism for subsystem i

Input: number of channels M , constant value for
timer setup λ, the set of observation history
Zi,1 and cumulative rewards Ri.

1 for k = 1, 2, . . . do
2 zi,k =

∑M
j=1 zi,j,k and q̂i,j,k =

Ri,j

zi,j,k

3 calculate q̄i,j,k (16) and CoILi,k (13)
4 start timers τi,j,k = λ

CoILi,k q̄i,j,k
(24)

5 initiate set of dummy indices Fi = {1, . . . ,M}
6 while |Fi| > 0 do
7 for j ← 1 to M do
8 if τi,j,k 6= 0 and timer is running then
9 listen for signals

10 if signal is received in channel j then
11 freeze τi,j,k and set fi,j = ∅
12 end
13 else if τi,j,k = 0 then
14 send flag on channel j
15 set Fi = ∅ and Ii,k = j
16 freeze all running timers
17 end
18 end
19 end
20 Zi,k+1 = Zi,k
21 if Ii,k 6= ∅ then
22 transmit on channel Ii,k
23 zi,Ii,k,k+1 = zi,Ii,k,k+1 + 1
24 if γi,Ii,k,k = 1 then Ri,Ii,k = Ri,Ii,k + 1
25 end
26 end

Remark 3: Although we adopted UCB1 in our proposed
setup due to its low computational complexity, our algorithm
provides the flexibility of using any indexing policy, which
has the capability of distributed implementation, as the
measure of channel quality.

V. NUMERICAL RESULTS

The following results have been obtained for WNCSs con-
sisting of two classes of homogeneous dynamical systems.
The unstable subsystems form class I, while class II consists
of stable subsystems. We consider the scenario where

AI =

[
1.2 0
0 1.1

]
AII =

[
0.9 0.1
0 0.9

]
, B = C = I2×2,

where I denotes the identity matrix. The state estimates and
feedback control law are determined as discussed and we
intend to minimize the quadratic cost defined in (5) with
Q = I2×2 and R = 0.01I2×2.

Example 1: Here, we demonstrate how the resources are
allocated in a small WNCS where three subsystems compete
for two available communication channels. Subsystem 1 is
chosen from class II while the rest are chosen from class I,
and hence they are unstable. The quality of each wireless link
for each subsystem is assumed to be according to Table I.

TABLE I
PROBABILITY OF SUCCESSFUL TRANSMISSION OVER EACH CHANNEL

FOR SUBSYSTEMS OF EXAMPLE 1

Subsystem 1 2 3
Channel 1 0.4 0.8 0.6
Channel 2 0.7 0.5 0.9

Fig. 2 depicts how the resources are allocated when
different costs are used as the local measure in (9). For the
first case, we use a slightly modified version of TBCoIL and
set the timers to

τi,j,k =
λ

CoILi,k q0
, (24)

where q0 = 0.5. This corresponds to assuming a 50%
chance of successful transmission over every wireless link.
As a result, when a timer reaches zero, the corresponding
sensor selects one of the available channels randomly for
transmission. As it can be seen, using this setup, the channels
are occupied by unstable subsystems more often. However,
the channels are selected randomly with no regards to the
real probability of successful transmission.

For the next case, the index assigned by UCB1, denoted by
q̄, is chosen as the local measure. In order to avoid collisions,
we assume all subsystems can communicate with a central
scheduler. Therefore, if the timers on the same channel
expire simultaneously for multiple subsystems, the scheduler
assigns the channel to one of them randomly. After the initial
exploration phase, Subsystems 2 and 3 exploit Channels 1
and 2, respectively. Since only the channel quality determines
the priorities, resources are dedicated to subsystems which
have the highest probability of successful transmission ac-
cording to the past observations. Therefore, mainly the two
aforementioned subsystems claim the channels. Implement-
ing CoILq̄ in (9), however, leads to a combination of the
outcomes of the previous cases. The unstable subsystems
claim the channels more often, while they tend to occupy
the channel which offers the highest probability of success.
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Fig. 2. Resource allocation for the case of three subsystems competing
over two available channels using timers set by various measures.

The solution to the optimal resource allocation problem
(12) can be interpreted as pairing the subsystems with
the largest CoIL with channels with highest probability of
success. Hence, intuitively, it is expected that Subsystems 3
and 2 transmit more often on Channels 3 and 2, respectively,
since they offer a higher chance of successful packet delivery.
Furthermore, due to its stability in addition to lower success
rate of wireless links, Subsystem 1 is expected to occupy
the channels less frequently. The results obtained for the last
case, where the timers are set to (23), follow this intuition
closely.

The performance of the discussed setups in terms of
average regret over a large horizon is depicted in Fig. 3.
Here, we consider two additional setups where the channel
parameters are known a priori and a central scheduler
allocates the resources for maximizing the reward. These
setups lead to the optimal solution of (19) and (12), where the
local measure is set to q and CoILq, respectively. As it can
be seen, the regret while using the setup with UCB1 indices
as the local measure converges to zero. Moreover, allocating
the resources without considering the channel statistics, using
(24), leads to the largest regret. However, considering the
cost regret, this setup outperforms the cases where control
performance is neglected. Moreover, the average cost regret
of our proposed policy converges to zero fast indicating
satisfactory performance.

Remark 4: The unstable subsystems require communica-
tion resources more frequently and since the indices are as-
signed with respect to CoIL, they are chosen for transmission
infinitely often1 and hence eventually the channel statistics
are learned accurately. In contrast, stable subsystems rarely
transmit and thus they might learn the statistics with less
accuracy. Subsequently, the unknown parameters which are
essential for guaranteeing control performance are learned
accurately, which implies that over time, the resources are
allocated similarly to the optimal case where the channel

1Let {An}∞n=1 be an infinite sequence of events. We say that events in
the sequence occur “infinitely often” if Ai holds true for an infinite number
of indices i ∈ {1, 2, . . .}. See also Borel-Cantelli lemma.

statistics are known. Although this approach is reminiscent
of those in [22], [23], in our case, the rewards are weighted
by a function of the corresponding covariance matrix, namely
CoIL, and due to the time-varying nature of CoIL providing
bounds on convergence rate is still a challenging open
problem.
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Fig. 3. Average regret and cost regret of three subsystems competing
for two available wireless channels. Each line corresponds to a different
measure used in the timer setup.

Example 2: Here, we use the modified version of TB-
CoIL (24) as the benchmark for comparing different sce-
narios. We demonstrate the performance of our proposed
method in real applications where the channel parameters are
unknown by implementing various indexing policies. More
specifically, we use four different UCB algorithms, namely
UCB1 and UCB-Tuned [21], kl-UCB [24] and UCB-V [25].

Here, we consider WNCSs where half of the subsystem
are from class I and the rest are stable and only 1/4 of them
can transmit at each time step. Fig. 4 shows the percentage
of cost reduction achievable by different setups compared
to the benchmark (24). The depicted results are the average
over 50 simulations and the rewards in UCB algorithms are
offered similar to Example 1. Furthermore, we model the
unreliability of each communication link as random dropouts
satisfying a Bernoulli distribution with a unique random
mean qi,j ∈ [0.4, 0.8] for each user.

As expected, the best cost reduction is achieved when
the mean of the reward distribution, i.e., the expectation
of successful transmission, is known. This setup results in
9.75% up to 18.76% lower cost compared to applying (24).
These results are closely followed when UCB algorithms
are adopted for prioritizing channel access. Although these
algorithms have specific features and growth rate of regret in
original MAB problems, their performance is not consider-
ably different in the timers framework. However, all of them
lead to significant cost reduction compared to the case where
no learning is applied.
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Fig. 4. Reduction in the standard quadratic cost achieved by applying
various core policies in timer-base mechanism compared to (24) when M =
N/4.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

A. Conclusions

In this paper, we presented a novel solution for distributed
resource allocation in WNCSs with imperfect communi-
cation links. We adopted the concept of local timers for
prioritizing channel access and proposed a novel method
for improving performance when channel parameters are
unknown. We cast the optimal resource allocation problem
as a MAB and proposed a novel policy for granting channel
access. This policy utilizes well-known indexing policies for
estimating the success probability of channels and weighs
them by a time-varying control measure, namely CoIL. These
weighted values are then used for setting the timers in the
timer-based channel access mechanism. As a result, channel
parameters are learned while desired control performance is
ensured. The simulations showed that the best performance
with the timer-based mechanism is achieved when the chan-
nel parameters are known a priori. When the parameters are
unknown, however, implementing our proposed policy leads
to significant improvements when compared to policies in
which the channel conditions are ignored.

B. Future Directions

Interesting future research directions include investigating
the case where the duration of flag packet is not negligible.
Therefore, the possibility of collisions in the flag signals can
lead to collision during data transmission. Furthermore, this
work can be extended to the case where temporal correlation
of the variation in channel states are considered.
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