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Summary

This paper presents algorithm improvements that reduce the numerical noise
and increase the numerical stability of the material point method formulation.
Because of the linear mapping required in each time step of the material point
method algorithm, a possible mismatch between the number of material points
and grid nodes leads to a loss of information. These null-space related errors
may accumulate and affect the numerical solution. To remove the null-space
errors, the presented algorithm utilizes a null-space filter. The null-space filter
shown removes the null-space errors, resulting from the rank deficient map-
ping and the difference between the number of material points and the number
of nodes. The presented algorithm enhancements also include the use of the
explicit generalized-α integration method, which helps optimizing the numer-
ical algorithmic dissipation. This paper demonstrates the performance of the
improved algorithms in several numerical examples.
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1 INTRODUCTION

Since the proposal of the material point method (MPM) by Sulsky et al,1 as an extension of a particle-in-cell method2 and
a fluid implicit particle (FLIP) method3 for solids, MPM has been used to simulate dynamic problems involving large
deformations.4-7 However, in the simulations made with the original MPM, there are numerical noises when material
points crossing the cell boundaries. These numerical inaccuracies led to the development of other MPM variants, includ-
ing the generalized interpolation material point method (GIMP),8 the dual domain material point method (DDMP),9 and
the B-spline MPM.10-13 Those implementations improved the errors directly related to cell-crossing, yet some high fre-
quency noises are still present in the solutions. A simple approach to reduce those spurious noises is to add a nonviscous
damping to the linear momentum balance equations such as described in the implicit14 or two-phase formulations.15,16
However, the local damping leads to energy dissipation, inaccuracies in the time-dependent simulations, such as in the
consolidation process15 and, in extreme cases, to an over-damped system with qualitatively different characteristics. To
avoid these severe limitations, for example, Lu et al17 and Renaud et al18 combined the time-discontinuous Galerkin
method to the MPM to control the spurious noises. Furthermore, Jiang et al19,20 have shown that the use of the PIC
scheme can filter the spurious noises in the velocity but leads to an excessive dissipation. It leads to the development
of the PIC variants such as affine PIC,19,20 which employs locally affine velocity gradients, and extended PIC,21 which
replaces the transpose mapping by the Moore-Penrose inverse mapping. These PIC variants retain the filter properties of
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PIC and attempt to preserve the information, somewhat reducing energy dissipation. In this paper, a generalized-α dissi-
pative scheme22 is adopted in the framework of theMPM. The generalized-α scheme simply damps out the high-frequency
noises only. Therefore, it avoids the dissipation present in the PIC schemes without cumbersome coupling with other
numerical methods.
Furthermore, the MPM formulation requires transfer of the state variables between the material points and the back-

ground grid. This frequent mapping between material points and grid nodes can cause significant numerical errors and
lead to instabilities, such as ringing instability (presented in detail by Brackbill3 for PIC methods), which relates to a
null-space problem.23 Similar to the PIC methods, the null-space in the mapping is also presented in MPM, which leads
to spurious numerical oscillations in the solution. In general, the null-space related errors may grow continuously over
multiple time steps, and, consequently, the numerical solutions may diverge.23,24 Tran et al24 have shown that, if there
are more material points than nodes, null-space errors exist despite the choice of the shape function. Therefore, as the
null-space existence is due to the larger number of the material points than the grid nodes, the null-space error is present
in all the variants of the MPM, including GIMP,8 DDMP,9 and B-spline MPM.10-13 To remove the null-space errors,
Gritton et al23,25 proposed a null-space filter using the single-value-decomposition (SVD) operator in the 1D formulation of
the originalMPM. This paper shows how to apply a null-space filter to higher-order interpolation function, for example, in
the GIMP or DDMP formulations of the MPM. The presented general formulation also removes the null-space instability
at lower computational cost, when compared with the SVD.23,25 Furthermore, the paper extends the null-space filter to a
two-phase hydro-mechanically coupled formulation of MPM. The potential of the proposed formulation is demonstrated
in several numerical examples in both one-phase and two-phase simulations.

2 GENERALIZED-� INTEGRATION SCHEME FOR MPM

The MPM algorithm has been described in detail by many researchers1,4 and summarized in Figure 1. In the MPM
framework, the velocity update scheme is based on the acceleration, stemming from the FLIP scheme26 as follows:

atp =
�

i
Sipatidt (1)

vt+1p = vtp + atp (2)

The other approach is to overwrite the velocity at material points by the nodal velocity using the PIC scheme2

vt+1i = vti + atidt (3)

vt+1p =
�

i
Sipvt+1i . (4)

FIGURE 1 Material point method formulation for a single time step
[t; t + 1]
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Jiang et al19,20 showed that the PIC scheme can filter the spuriousmodes but exhibits an excessive energy dissipation. In
contrast, the FLIP scheme used in MPM is energy conservative, but the spurious modes are preserved and accumulated.
Stomakhin et al27 and Nairn28 updated the velocity by combining the PIC and FLIP scheme velocity update, with PIC
component as a damping factor. In this paper, we apply the explicit generalized-α time integration scheme proposed by
Hulbert and Chung,22 a pure FLIP scheme, but the acceleration is evaluated both in the beginning and the end of the
time step. This approach is shown to be able to damp out the high frequency modes only without causing excessive
numerical dissipation for structural engineering.29 Kontoe30 has shown that the generalized-α algorithm is more accurate
and has better numerical dissipation characteristics than other dissipated time integration schemes.31,32 Moreover, the
generalized-α algorithm can mitigate the spurious high frequency mode but does not affect the lower modes strongly.
Additionally, it allows controlling the numerical dissipation with a single parameter, which is more appropriate than
damping related to the numerical time step size.29 In the generalized-α algorithm,33 the acceleration is updated as follows:

mtat+1−αm = f t+1−αf (5)

at+1−αm = (1 − αm) at+1 + αmat (6)

f t+1−αf = (1 − αf ) f t+1 + αff t, (7)

where αm and αf are time integration parameters, at+1−αm is the nodal acceleration evaluated at t = (1 − αm)tt+1 + αmtt,
and f = fint + f ext is the sum of internal and external forces and evaluated at t = (1 − αf)tt+1 + αftt. For the update of
displacements and velocities, the original Newmark's equations are

vt+1 = vt +
�
(1 − γ) at + γat+1

�
dt (8)

xt+1 = xt + vtdt +
��1
2
− β

�
at + βat+1

�
dt2, (9)

where γ and β are time integration parameters. Chung and Hulbert33 showed that the generalized-α method is second-
order accurate, provided

γ = 1
2
− αm − αf . (10)

Moreover, the generalized-αmethod is unconditionally stable, provided

αm � αf � 1
2
; β � 1

4
+ 1
2
(αf − αm) . (11)

To derive the explicit generalized-α method, Hulbert and Chung22 selected αf = 1 and rederived the numerical
algorithmic parameters. Because αf = 1, the explicit scheme becomes conditionally stable and Equation (5) becomes

at+1−αm = f t∕mt. (12)

Hilber and Hughes29 showed that the stability of a time integration scheme depends on the natural frequency
ω =

	
K∕M, where K and M are stiffness and mass, respectively, and time step is dt. Therefore, Ω = ω * dt is considered

to evaluate the stability of the scheme. The explicit generalized-α integration22 is stable with Ω ∈ [0,Ωs], where Ωs is the
critical limit. The maximum dissipation is obtained at a bifurcation limit Ωb. The spectral radius at the bifurcation limit
ρb is a user-specified parameter to control the algorithmic dissipation. If ρb is equal to 1, there is no dissipation. When the
spectral radius ρb reduces, the numerical damping increases and gets to maximum values at ρb = 0 (see Figure 2). The
bifurcation limit Ωb and the critical limit Ωs are the function of ρb as follows:

Ωb = (1 + ρb)
	
2 − ρb (13)

Ωs =



12(1 + ρb)3 (2 − ρb)

10 + 15ρb − ρ2b + ρ3b − ρ4b
. (14)
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FIGURE 2 Evolution of spectral radius for explicit generalized-αmethod22

Other algorithm parameters could be linked to ρb as follows:

αm =
2ρb − 1
1 + ρb

(15)

β =
5 − 3ρb

(1 + ρb)2 (2 − ρb)
(16)

γ = 3
2
− αm. (17)

Overall, the generalized-α method requires to compute the nodal accelerations twice, first at the beginning ati and
then at the end of the time step at+1i . This scheme doubles the amount of computations needed, hence we apply another
approach for MPM based on tracking the acceleration atp at material points. Therefore, each material points have two
kinetic variables: velocity vtp and acceleration atp, which are mapped to the grid as follows:

vti =

�
�

i
Sipmpvtp

� 
mt

i (18)

ati =

�
�

i
Sipmpatp

� 
mt

i. (19)

The nodal accelerations at+1−αmi and at+1i and nodal velocities vt+1i are now computed explicitly as follows:

at+1−αmi = f ti ∕m
t
i (20)

at+1i =
�
at+1−αmi − αmati

� �
(1 − αm) (21)

vt+1i = vti +
�
(1 − γ) ati + γat+1i

�
dt. (22)

Finally, the velocity, position, and acceleration of material points are updated, ie,

vt+1p = vtp +
�

i
Sip

�
(1 − γ) ati + γat+1i

�
dt (23)

xt+1p = xtp +
�

i
Sipvt+1i dt +

�

i
Sip

��1
2
− β

�
ati + βat+1i

�
dt2 (24)

at+1p =
�

i
Sipat+1i . (25)

The algorithm is controlled by only a single parameter ρb, as all the other parameters αm, β, γ are automatically updated
(see Equations 15-17). In the numerical examples, ρb was set to be 0.818, as recommended by Kontoe et al.32
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FIGURE 3 Schematic of different mapping scheme in material
point method (MPM). DDMP, dual domain material point method;
GIMP, generalized interpolation material point method

3 NULL-SPACE FILTER FOR MPM

3.1 Choice of shape functions gradient ∇Sip
The original MPM1 selects the gradient of the shape function ∇Sip such that the sign of the internal force changes when
material points cross to a new cell. Consequently, cell-crossing creates unphysical noise and possibly leads to numerical
instability. The cell-crossing can be mitigated by using characteristic functions in the GIMP.8 The characteristic functions
in GIMP give the material points domains (red square in Figure 3) and continuous gradients. Another approach, which
reduces the cell-crossing errors, is DDMP.9 The DDMP replaces the gradient∇Sip with a continuous function between the
grid cells while leaving the shape functions intact. The shape function gradient in the cell, which contains the material
points, is the shape function gradient of the original MPM, denoted ∇Si, whereas the shape function gradient in the
neighbor-node cells is the node-based function, denoted�∇Si. TheDDMP enlarges the influence domain ofmaterial points
through dual domains, a cell contains the material points (gray cell in Figure 3) and neighbor-node cells (blue dash cell
in Figure 3), without using the characteristic functions to track the domain of the material points.
In DDMP, the gradient of the shape function is modified to

∇Si (x) = α (x) ∇Si + [1 − α (x)]�∇Si, (26)

with the node-based function�∇Si being

�∇Si (x) =
Nn�

j=1

Sj (x)
Vj �Ω

Sj∇Sidv, (27)

where Vj = �Ω Sjdv is the nodal volume at node j. In Equation (27), the integral �Ω Sj∇Sidv is calculated as a convolution
of the gradient of the shape function (∇Si) and the shape function of neighbor nodes j (Sj). Therefore, it can be solved
analytically, as the background grid remains unchanged during the calculation.
Figure 4 shows the gradient of the shape function in a 1D case. On the right-hand side in Equation (26), the first term

represents the mapping of material points to particle-based nodes (defined as particle-based mapping) and the second
term represents the mapping of material points to node-based nodes (defined as node-based mapping). Both mappings
are weighted by α, a weighting function. The gradient of the shape function is continuous only if α is continuous and α= 0
at cell boundaries. The choice of α can retrieve the gradient of the shape function of other versions of MPM as follows:

∇Si =
�
�
�
�
�

∇Si for MPM, α = 1
∇Si for DDMP, α = α1

∇Si for cpGIMP, α = α2.
(28)

The Appendix gives more details related to function α. In this paper, the dual domain technique is used to switch the
shape function gradient between MPM, cpGIMP, and DDMP by the choice of weighted function α in Equation (28).
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FIGURE 4 Gradient of the shape function in 1D. DDMP, dual domain
material point method; GIMP, generalized interpolation material point
method; MPM, material point method

3.2 Null-space instability in the gradient mapping matrix ∇S
Considering a mapping from a material point stress p to a grid node force i, the mapping can be written as follows:

�
fi,x fi,y fi,z

�
=

�
∇Si,x

�
xp

�
∇Si,y

�
xp

�
∇Si,z

�
xp

� �
· Vp

� σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

�

. (29)

For a global mapping from all Np material point's stress to all Nn grid node's internal force, the global mapping can be
written as follows:

�
�
�
�
�

f1
f2
�
fNn

�
�
�
�
�

=

�
�
�
�
�
�

∇S1(x1) ∇S1(x2) · · · ∇S1(xNp)
∇S2(x1) ∇S2(x2) · · · ∇S2(xNp)

� � � �
∇SNn(x1) ∇SNn(x2) · · · ∇S1(xNp)

�
�
�
�
�
�

·
�
�
�
�
�

V1�1
V2�2

�
VNp�Np

�
�
�
�
�

, (30)

where Nn and Np are the total number of the nodes and particles, respectively. Equation (30) can be written in the
matrix form

Fint = ∇S ·
�
�pVp

�
, (31)

where Fint is the vector of all nodal internal forces and (�pVp) is the product of the material point stress tensor and the
corresponding material point volume, for all material points. The gradient mapping matrix ∇S depends on the value of
the shape function gradient ∇Si(xp), with the size of the matrix ∇S being Nn x Np in 1D case. In reverse, the velocity
gradient vector at material points is computed by the transpose of ∇S as follows:

∇vp = ∇ST · vi, (32)

where ∇vp is the velocity gradient vector of all material points and vi is the nodal velocity vectors of all grid nodes. The
null-space of the gradient mapping matrix ∇S, written as null(∇S), is the set of all nonzero independent vectors �nullp ,
which satisfy that ∇S · �nullp = 0, ie,

null (∇S) =
�
�nullp ∈ RNp ,�nullp � 0�∇S · �nullp = 0

�
. (33)

The presence of the null-space may lead to infinite solutions. Hence, the mapping in Equation (31) may result in a
nonunique solution. In other words, there possibly exists a set of stress vectors �nullp at material points, which leads to
zero internal forces after mapping with Equation (31). Because the balance equations are solved at the grid, the �nullp
in the null-space of ∇S cannot be detected on the background grid and represents the null-space noise. This noise can
accumulate and leads to instability in the solution.
The rank of the gradient mapping matrix ∇S, written as rank(∇S), is the set of linearly independent column vector

spaces. Equation (31) and Equation (32) give the gradient mapping based on the∇S and its transpose∇ST, which transfer
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the data between material points and grid nodes and vice versa. Therefore, the following four fundamental subspaces
are considered:

• the row space, rank(∇ST), a subspace of RNn;
• the column space, rank(∇S), a subspace of RNp ;
• the right null-space, null(∇S), a subspace of RNp ;
• the left null-space, null(∇ST), a subspace of RNn .

Since the column rank is equal to the row rank,34 we have rank(∇S) = rank (∇ST). According to the rank-nullity
theorem,34 the sum of column space and null-space is equal to the column numbers of the matrix as follows:

rank (∇S) + null (∇S) = Np (34)

rank (∇S) + null
�
∇ST

�
= Nn. (35)

In case there aremore grid nodes thanmaterial points, the linear equationsmay lead to rank-deficiency problem. A sim-
ilar problemmay be encountered in the finite element method using a low order of quadrature rules (see rank-deficiency,
page 239, in the work of Hughes35). This issue can be mitigated in finite element method (and, in theory, in MPM) by
using a high-order interpolation. Commonly, there are more material points than grid nodes, therefore, we only consider
that Np > Nn in the analysis. Considering Np > Nn, as can be seen from Equation (34) and Equation (35), when ∇S is
full rank, rank(∇S) is maximum and is equal to the number of grid nodes Nn. In contrast, if ∇S is rank-deficient, that is,
rank(∇S) = r < Nn, the left null-space exists and null(∇ST) = Nn − r.
In the original MPM, the gradient mapping is rank-deficient24 when there are more material points than nodes

Np > Nn. In such case, ∇S could have rank(∇S) = Nn (ie, full rank) by using higher-order shape function (for example
cubic B-spline) so that the left null-space is equal to zero null(∇ST) = 0. For example, MPM, DDMP, and GIMP con-
tain rank-deficient mappings, whereas cubic B-spline MPM24 is full-rank mapping. However, right null-space still exists
null(∇S) > 0 despite the choice of the shape function even for cubic B-spline MPM because it depends only on the dif-
ference between the number of material points and the number of nodes rather than on the order of the interpolating
function. As such, a higher number of material points than the number of grid nodes in a cell leads to a right null-space
and associated instability. That may be the reason why using one material point per cell could give less errors than a
higher number of material points per cell8 because Np < Nn. As the null-space instability exists when Np > Nn, one can
enhance the stability of the solution with an application of a null-space filter, which removes the null-space error. The
next section presents how to detect the null-space components of velocity gradients.

3.3 Detect null-space components of velocity gradients
To detect the null-space component, the transpose of the gradient mapping matrix needs to be decomposed in the QR
form first, ie,

�
�
�
�
�
�

s1

         

s2

         

· · ·

         

sNp

�
�
�
�
�
�

=

�
�
�
�
�
�

q1

         

q2

         

· · ·

         

qNp

�
�
�
�
�
�

·

�
�
�
�
�
�

r11 r12
r21 r22 · · · r1Nn

r2Nn
� � � �
� �
0 0 0

rNnNn
0

�
�
�
�
�
�

(36)

∇STNp x Nn
= QNp x Np · RNp x Nn

where R is the upper triangular matrix with rij are nonzero if ∇S is full rank. If ∇S is rank-deficient, the zero rows will
develop from the bottom of matrix R and contribute to the left null-space (see Equation (36)). Q is the unitary matrix, in
which the columns qi are orthonormal vectors that satisfy qiTqj = �ij and span in the space RNp . Figure 5 shows the QR
decomposition for the gradient mapping matrix. The unitary matrix Q is divided into the column space Q�

Nn x r and the
null-space. The null-space includes the left null-space, null(∇ST) = Nn − r, and the right null-space null(∇S) = Np − Nn.
The velocity gradient vector of all the material points ∇vp ∈ RNp can be expressed as a linear combination of the
orthonormal vector qi with the coefficients ai, ie,

∇vp = a1q1 + · · · + arqr
���������������������

rank(∇S)=r

+ ar+1qr+1 + . . aNnqNn
�������������������������

null(∇ST)=Nn−r

+ aNn+1qNn+1 + · · · + aNpqNp
�������������������������������������

null(∇S)=Np−Nn

. (37)
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FIGURE 5 QR decomposition of gradient mapping ∇S (Np > Nn)

In Equation (37), the solution of the velocity gradient vector of the material points consists of a linear combination
of column space and null-space. The left null-space, null(∇ST), represents the loss of information due to rank-deficient
mapping, whereas the remaining components, null(∇S) − null(∇ST) = Np − Nn, represent the loss of information due
to the difference between the number of material points and the number of nodes. The nonnull-space component, after
removing the null-space errors, is

∇v∗p = a1q1 + · · · + arqr. (38)

3.4 Null-space filter algorithm for MPM
This section presents the null-space filter algorithm in greater detail. The null-space filter algorithm requires two steps.
First, the algorithmcomputes the orthonormal basis of column space {q1,q2,… ,qr}, as described in sectionA.Afterwards,
it projects the velocity gradients to the orthonormal basis of the column space, as described in section B.

3.4.1 Compute the orthonormal basis of column space {q1, q2,… , qr}
Although Equation (36) is written for the global case, ie, for ∇SNn x Np , where Np and Nn are the total number of material
points and nodes, respectively, in practice, the null-space filter can be done locally with the use of the local QR algorithm
gradient mapping for each cell is ∇Sc. The size of ∇Sc is ni by np, with ni being the number of the nodes of the cell and
np the number of the material points inside this cell.
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FIGURE 6 Computational efficiency of null-space filter. DDMP, dual
domain material point method; SVD, single-value decomposition [Colour
figure can be viewed at wileyonlinelibrary.com]

Because the grid is not deformed during the calculation, the value of the gradient of the linear basis function is constant
within the grid cell and independent from thematerial point coordinates in one dimension. Therefore, the rank of the local
∇Sc can be computed analytically. As such, we can optimize the computational efficiency, with given r = rank (∇Sc), by
modified householder algorithm (see Algorithm 1). Instead of computing all the np columns of matrix Q and ni columns
of matrix R, the modified householder only computes the column space of Q up to order of r. Therefore, the modified
householder algorithm reduces the computational cost compared to the SVD23 or QR decomposition24 (see Figure 6 for
numerical example 6.1). In a 3D case, with a structured grid, the rank r is computed, and then Algorithm 1 calculates
three sets of orthonormal basis that are calculated separately for each dimension, leading toQx

c,Q
y
c, andQz

c. Note that, in
this case, the values of the gradient ∇Sc depend on the position of the material points.

3.4.2 Project the velocity gradients to the orthonormal basis of column space
To implement the projection for local null-space filter, we consider a cell that contains ni nodes and np material points
with the gradient mapping matrix ∇Sc. Then, the velocity gradient is computed by the particle-based mapping, ie,

∇vp = ∇STc · vi. (39)

Afterwards, the nonnull-space components of velocity gradients, ∇v∗p, could be extracted by a projection with the
orthonormal basis of column spaces {q1,q2,… ,qr}34 by

∇v∗p = ProjQ�

�
∇vp

�
= Q� ·

�
Q�T · ∇vp

�
. (40)

In the 3D case, with a structured grid, the projection of the velocity gradient ∇vp =
�
∇vxp; ∇v

y
p; ∇vzp

�
is done for each

dimension as follows:

∇v∗,xp = Qx
c ·

�
Qx∗T
c · ∇vxp

�
; ∇v∗,yp Qx

c ·
�
Qy∗T
c · ∇vyp

�
; ∇v∗,zp = Qz

c ·
�
Qz∗T
c · ∇vzp

�
, (41)

where Qx
c, Qx

c, Qx
c are the sets of orthonormal basis in each dimension and ∇v∗p =

�
∇v∗,xp ; ∇v∗,yp ; ∇v∗,zp

�
is the filtered

value of the velocity gradient. Finally, the velocity gradient is weighted between ∇v∗p and the velocity gradient using the
node-based mapping �∇vp, based on Equation (26), as

∇vp (x) = α (x) ∇v∗p (x) + [1 − α (x)] �∇vp (x) . (42)

The selection of α in Equation (49) leads to replication of the shape function gradient of different MPM formulations.
Setting (α = 1) recovers the original formulation of MPM, GIMP is obtained with (α = α2), and DDMP with (α = α1) with
the choice of α described in the Appendix.

http://wileyonlinelibrary.com
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FIGURE 7 Schematic of double-point material point method

4 DOUBLE-POINT MPM FORMULATION WITH NULL-SPACE FILTER

In this paper, the two-phase formulation bases on a double-point formulation of MPM,24,36 in which each phase is rep-
resented by a set of two material points, one for the liquid phase and one for the solid phase. The information from the
material points is projected to the grid separately for the solid and liquid phases (see Figure 7). The algorithms mapping
the data from the material points to the grid and back are the same for both liquid and solid phases. The solid and liquid
phases are interacting with each other via dragging forces. The governing and time discretization equations are presented
in detail by Bandara and Soga36 and Tran and Sołowski37 and summarized in Figure 8. Note that the gradient map-
ping matrix ∇S is used to compute the nodal internal forces and the material point's strain. Therefore, to implement the
null-space filter into the two-phase double-point formulation, the calculation of the nodal internal forces and thematerial
point's strain is modified using the dual domain technique and the null-space filter and presented in the next section.

4.1 Calculation of nodal internal forces
The vectors of the internal forces for the solid and liquid phase f int,tαi (with α = s, w) are calculated using the dual domain
technique, which, when used with specific values of coefficients, can replicate DDMP, GIMP, and the original MPM
formulation, ie,

f int,tsi =
Nsp�

sp=1
∇Si

�
xtsp

�
α

�
xtsp

�
�tspVt

sp −
Nn�

j=1
�tsj · �Ωs

Sj∇Sidv (43)

f int,twi =
Nwp�

wp=1
∇Si

�
xtwp

�
α

�
xtwp

�
ptwpVt

wp −
Nn�

j=1
ptwj · �Ωw

Sj∇Sidv, (44)

where �tsp and ptwp =
�
ptwpI

�
are the effective stress and pore water pressure tensor, Vt

sp and Vt
wp are the solid and liquid

volume. α
�
xtαp

�
is aweighted function evaluated at thematerial point xtαp, and the choice ofweighted function is described

in the Appendix to switch different version of MPM including MPM, GIMP, and DDMP. The first term in the right-hand
side of Equation (43) and Equation (44) is the MPM particle-based mapping for the node i and the second term, in the
right-hand side of Equation (44), corresponds to the node-based mapping from the neighbor nodes j. The nodal effective
stresses for the solid phase �tsj or nodal pore water pressures for the liquid phase p

t
wj at the neighbor nodes j are calculated

as follows:

�tsj =
1
Vsj

Nsp�

sp=1
Sj

�
xtsp

� �
1 − α

�
xtsp

��
�tspVt

sp (45)

ptwj =
1
Vwj

Nwp�

wp=1
Sj

�
xtwp

� �
1 − α

�
xtwp

��
ptwpVt

wp. (46)

4.2 Calculation of the material points strain with null-space filter
The strain increment vectors Δεk+1αp,1 using MPM particle-based mapping at the solid and liquid material points (xkαp) are
calculated as follows:

Δεt+1αp,1 =
Nn�

i=1

�
∇Si

�
xtαp

�
vLαi +

�
∇Si

�
xtαp

�
vLαi

�T� . (47)
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FIGURE 8 Double-point material point
method formulation for a sing time step

The strain increment is filtered with null-space filter, using Equation (40). The filtered components using MPM
particle-based mapping Δε∗k+1αp,1 is

Δ�∗t+1αp,1 = Q∗ ·
�
Q∗T · (Δ�t+1αp,1

�
. (48)

The strain increment using node-based mapping Δ�k+1αp,2 is

Δ�t+1αp,2 =
Nn�

i=1
Si

�
xtαp

�
Δ�tαj, (49)



TRAN AND SOŁOWSKI 339

where nodal strain increments Δ�tαj calculated as follows:

Δ�tαj =
1
Vαj

Nn�

i=1
vLαi �

Ωα

Sj∇Sidv. (50)

The final strain increment vectors Δ�k+1αp is calculated with the weighted function α(x), ie,

Δ�t+1αp = α
�
xtαp

�
· Δ�t+1αp,1 +

�
1 − α

�
xtαp

��
Δ�t+1αp,2. (51)

5 NUMERICAL EXAMPLES: APPLICATION OF THE TEMPORAL FILTER

5.1 Square wave in an elastic bar
The first numerical example is a simulation of an elastic bar under compression. Figure 9 presents the boundary and
loading condition of the numerical model. The length of the bar L = 1 m, the Young's modulus E = 10e6 Pa, and the
density ρ = 1000 kg/m3. The elastic wave velocity is calculated as c =

	
E∕ρ = 100m/s. The compression force f is applied

to the material points at the right boundary to replicate the square stress wave in the elastic bar as follows:

f =

!
1, t < 0.5L∕c (s)
0, t � 0.5L∕c (s) .

(52)

FIGURE 9 Compression impact of an elastic bar

FIGURE 10 Stress wave along the bar using material point method with
particle-in-cell (PIC) scheme [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 11 Stress wave along the bar using material point method with
fluid implicit particle (FLIP) scheme [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 12 Stress wave along the bar using generalized interpolation
material point method (GIMP) with fluid implicit particle scheme [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Stress wave along the bar using dual domain material point
method (DDMP) with fluid implicit particle scheme [Colour figure can be
viewed at wileyonlinelibrary.com]

The 1-m long bar is discretized by 1000 equally distributed material points located in 500 equal-sized grid cells. That
leads to the cell size of 0.002 m (li = 0.002 m). The time step is set to be equal to 5% of the Courant-Friedrichs-Lewy (CFL)
critical time step (Δt = 0.05 li/c = 10e−6 s). In all shown numerical results, the numerical models are compared with the
analytical solutions at t = 0.75 L/c = 0.0075 s. Figure 10 shows that MPM, using PIC scheme (Equation (4)), can filter the
velocity oscillations, hence, filter the stress/strain oscillations, whereas MPM, GIMP, and DDMP show stress oscillations
(see Figure 11, Figure 12, andFigure 13). Similar oscillationswere reported in the literature.17,38 The generalized-α scheme
can remove the oscillations for all methods including MPM, GIMP, and DDMP. In this example, the null-space filter
does not change the results significantly because the errors are mainly stemming from the spurious noises from the
high-frequency mode. To check the energy conservation, the total energy E is the sum of the strain U and the kinetic
energy K are computed in each time step as follows:

K = 1
2

�

p
mp""vp""

2 (53)

U = 1
2

�

p
σp,ijεp,ijVp (54)

E = U + K. (55)

Figure 14 shows the total energy after releasing the compression forces at 0.005 s. The oscillations in MPM using
FLIP scheme induces the increase of the total energy, whereas both MPM using PIC scheme and generalized-α scheme
demonstrate approximately constant total, energy after releasing the compression force.

5.2 Colliding disks
The second example is the colliding impact of two elastic disks, replicated the simulation by Sulsky et al1 with given
geometry and parameters in Figure 15. The background grid is discretized with the cell size of 0.05 m in plane strain
condition and there are total 896 material points and no contact law is applied. The time step is 0.005 s to be equal to 10%

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 14 Total energy after releasing the compression force. FLIP, fluid
implicit particle; PIC, particle-in-cell [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 15 Colliding disks problem. GIMP, generalized interpolation material point
method

FIGURE 16 Initial condition (velocity colorbar)

FIGURE 17 Colliding Impact (t = 1.7 s)

of CFL critical time step. Figure 16, Figure 17, and Figure 18 show the visualization of the disk impact with the velocity
colorbar at initial condition, 1.05 s and 2.5 s. Figure 19, Figure 20, and Figure 21 present the evolution of the kinetic, strain,
and total energy for the cpGIMP using PIC scheme, FLIP scheme, and generalized-α scheme, respectively. As can be seen,

http://wileyonlinelibrary.com
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