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We explore the effect of inhomogeneity on electronic properties of the two-dimensional Hubbard model on
a square lattice using dynamical mean-field theory (DMFT). The inhomogeneity is introduced via modulated
lattice hopping such that in the extreme inhomogeneous limit the resulting geometry is a Lieb lattice, which
exhibits a flat-band dispersion. The crossover can be observed in the uniform sublattice magnetization which
is zero in the homogeneous case and increases with the inhomogeneity. Studying the spatially resolved
frequency-dependent local self-energy, we find a crossover from Fermi-liquid to non-Fermi-liquid behavior
happening at a moderate value of the inhomogeneity. This emergence of a non-Fermi liquid is concomitant
of a quasiflat band. For finite doping the system with small inhomogeneity displays d-wave superconductivity
coexisting with incommensurate spin-density order, inferred from the presence of oscillatory DMFT solutions.
The d-wave superconductivity gets suppressed for moderate to large inhomogeneity for any finite doping while
the incommensurate spin-density order still exists.

DOI: 10.1103/PhysRevB.100.125141

I. INTRODUCTION

In his famous 1989 paper [1], Lieb considered Hubbard
models on certain bipartite lattices with highly degenerate
single-particle states, which he showed to have ground states
with nonzero spin. Magnetism in such flat-band models has
later been the subject of many theoretical and computational
studies [2–9]. Another type of order studied in connection
with flat bands is superconductivity, where electronic pairing
can be enhanced by the high density of states [10–13]. While
flat-band models such as the Lieb lattice were originally
intended as theoretical toy models, developments in exper-
imental techniques in ultracold gases and condensed matter
systems now allow them to be created and studied. A striking
example of how flat bands can enhance correlation effects
is twisted bilayer graphene [14–16], where certain “magic”
twist angles lead to superconductivity and insulating states
whose precise nature is not yet understood. Flat-band systems
have also been engineered by manipulating the electronic
surface states of a copper crystal using adsorbed molecules
[17–19] and using optical potentials for bosonic [19–21] and
fermionic [22] ultracold quantum gases. The advantage of
these experiments is the high degree of tunability in the lattice
parameters.

In both electronic and optical lattice experiments, the most
commonly used flat-band model system is the Lieb lattice
[19], whose simple structure makes it relatively easy to be im-
plemented. However, because of experimental imperfections,
exactly flat bands are difficult to achieve. This motivates us to
introduce a model, pictured in Fig. 1, that is an interpolation
between the Lieb lattice and the simple square lattice, and

exhibits a band with a tunable bandwidth. This can also be
compared to twisted bilayer graphene where the width of
the low-energy bands can be tuned by changing the twist
angle [23]. A related idea, where suitably chosen next-nearest-
neighbor hoppings lead to partially flat bands and typical
flat-band effects such as enhanced superconducting transition
temperatures and non-Fermi-liquid behavior, has been studied
in recent works [24,25]. A π -flux lattice model [26] exhibiting
Dirac fermions with a tunable velocity has also been consid-
ered. Our main goal here is to study the crossover between the
flat-band physics and normal dispersive behavior, allowing us
to build a general picture of how flat-band effects on magnetic
states would be observed in experiments. Interestingly, the
model also provides a new perspective to flat-band ferromag-
netism on the Lieb lattice: We find that the ground state as
a whole is always antiferromagnetic with no total magnetic
moment. However, as the model is tuned toward the Lieb-
lattice limit, a subset of the lattice sites carrying a magnetic
moment becomes weakly coupled to the rest of the lattice.
Thermal fluctuations easily reduce the magnetization of the
weakly coupled part, thus leading to a total magnetization that
increases with temperature.

Another motivation for our work is to study how the
d-wave superconducting states of the square-lattice model
[27] interact with the flat band. While the general idea is
that flat bands can boost interaction effects by decreasing
the competition from kinetic energy, leading to strong cor-
relations and high critical temperatures for ordered states,
this is not the whole story: For ordered states resulting from
strong correlation effects beyond the mean-field level, the
single-particle band structure may be rather irrelevant. In fact,
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FIG. 1. Upper panel: schematic representation of the inhomo-
geneity introduced by modulated hopping. The solid lines represent
the hopping amplitude (1 + α)t , while the dashed lines represent
(1 − α)t . The square drawn by the solid line is the smallest pos-
sible unit cell that captures magnetic and superconducting order
parameters emerging at finite Hubbard interaction. In the limit α =
1, the square lattice with modulated hopping turns into the Lieb
lattice. Lower panel: the noninteracting density of states (DOS) of
the inhomogeneous lattice as a function of the normalized energy
parameter ω̃ (see text) for different choices of α. The density of states
evolves from square-lattice behavior to Lieb-lattice one. In the inset:
DOS for the pure Lieb lattice.

we show that the d-wave superconductivity is monotonically
suppressed as the model is tuned toward the Lieb-lattice limit,
which is apparently because the asymmetry between the A and
D sites is incompatible with the local, correlated mechanism
leading to the d-wave pairing. In this context, the model is
best seen as a type of inhomogeneous square-lattice model,
meaning a model where the hopping amplitudes or onsite
potentials can vary spatially. Motivation for such models is
related to the so-called stripe order, i.e., spatially nonuniform
spin-density or charge-density order, which has been found
in several families of the cuprates [28,29] and also in ul-
tracold atom experiments recently [30], albeit only in one-
dimensional (1D) systems. Other examples of inhomogeneity
include quasiperiodic systems [31], fermionic ultracold atoms
in harmonic traps [32], electron systems on surfaces [33],
interfaces [34], and topological insulating systems [35,36].

Whether the presence of incommensurate spin and density
order competes with or helps the emergence of superconduc-
tivity (SC) in real materials is in general unsettled [37,38].

Theoretical studies report both suppression and enhancement
of d-wave superconductivity (dSC) order with inhomogene-
ity [39–44], depending on the inhomogeneity pattern and
strength, interaction strength, and doping of the system. A
much studied inhomogeneity pattern is the 2D Hubbard model
on a checkerboard lattice where the strong and weak nearest-
neighbor hopping amplitudes alternate along both directions
[41,43–46]. A stripe version of the model, where the nearest-
neighbor hopping amplitude is modulated along one direction,
has also been considered [43]. Other inhomogeneity patterns
are checkerboardlike and stripelike variations in the local
onsite potential on 2 × 2 plaquettes [39]. To study the inho-
mogeneous square-lattice Hubbard model introduced here, we
employ dynamical mean-field theory (DMFT) and its cluster
extensions. In Sec. II, we introduce the model as an interpola-
tion between the square and the Lieb lattices, followed by the
formalism of real-space DMFT to capture spatially resolved
local order parameters and cellular DMFT that can capture
the nonlocal correlations essential to dSC. In Secs. III A and
III B, we discuss the effect of the inhomogeneity and the
quasiflat band on the emergent magnetic order and the double
occupancy, respectively. The breakdown of the Fermi-liquid
behavior in the crossover from dispersive to flat-band behavior
is discussed in Sec. III C. Finally, we discuss the effect of the
inhomogeneity on the behavior of dSC and incommensurate
spin- and density-wave order in Sec. III D.

II. MODEL AND METHOD

The grand canonical Hamiltonian of the Hubbard model
for an inhomogeneous square lattice as shown in Fig. 1(a)
can be expressed as H = Ht − μN + HU , where the first
term is the tight-binding part represented in standard second
quantized notation as

Ht = −
∑
〈i j〉,σ

[(ti jc
†
i,σ c j,σ + H.c.)], (1)

where c†
j,σ is the creation operator corresponding to differ-

ent sites of the unit cell at j = (x, y) and σ labels spin.
We have introduced the inhomogeneity via the modulated
next-nearest hopping by setting tx = t[1 + (−1)yα] and ty =
t[1 + (−1)xα], where α = 0 corresponds to the homogeneous
square lattice and α = 1 represents the Lieb lattice as shown
in Fig. 1. The Lieb lattice resembles the CuO2 planes of
the high-Tc cuprate superconductors with blue (red) circles
representing copper (oxygen) ions [12]. However, there is a
huge onsite energy difference between the copper and oxygen
orbitals, violating one of the criteria of Lieb’s theorem [1].
Additionally, the ground state of the cuprates is aniferromag-
netic unlike the ferromagnetic ground state of the Lieb lattice.
The second term μN of the full Hamiltonian introduces
the chemical potential, where the total particle number is
N = ∑

j,σ
c†

j,σ c j,σ .

The last term is the onsite Hubbard interaction which can
be defined as

HU = U
∑

j

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)
, (2)
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where U is the interaction strength with U > 0 for the re-
pulsive Hubbard model. To account for the aforementioned
inhomogeneity, the smallest possible unit cell has four sites
as shown by the solid square in Fig. 1. The tight-binding
Hamiltonian in momentum space can be written as

Ht =
∑
k,σ

ψ
†
kσ Ht(k)ψkσ ,

where ψkσ = (cAσ cBσ cCσ cDσ )T and

Ht (k) = −2

⎛
⎜⎝

0 t+ cos kx t+ cos ky 0
t+ cos kx 0 0 t− cos ky

t+ cos ky 0 0 t− cos kx

0 t− cos ky t− cos kx 0

⎞
⎟⎠

with t± = (1 ± α)t . The energy eigenvalues of the tight-
binding Hamiltonian can be given as

Ek = ±2t

√
(1 + α2)S+ ±

√
(1 + α2)2S2+ − (1 − α2)2S2−,

(3)

where S+ = cos2 kx + cos2 ky and S− = cos2 kx − cos2 ky. For
α = 1, the resulting geometry is the Lieb lattice with Ek = 0
and Ek = ±2

√
2t

√
cos2 kx + cos2 ky. In the lower panel of

Fig. 1, we show the DOS vs ω̃, where ω̃ = ω/t (1 + α), for
the tight-binding part of the Hamiltonian for different choices
of α. The DOS has a Van Hove singularity at zero energy for
α = 0, which grows with increasing inhomogeneity parameter
α into a narrow peak structure, ultimately turning into a δ

function representing the flat band of the Lieb lattice for α = 1
(see inset of Fig. 1).

To investigate the effects of correlations and inhomogene-
ity at half-filling, we have employed real-space dynamical
mean-field theory (RDMFT) [47,48] for finite Hubbard in-
teractions. DMFT maps a lattice problem into an effective
single-impurity problem taking into account the lattice effects
in a self-consistent manner [49]. Within single-site DMFT
the self-energy �i jσ (iωn) is assumed to be spatially local
and uniform, so that �i jσ (iωn) ∼ δi j�σ (iωn). The i and j
are the lattice site indices, ωn = π (2n + 1)T , where T is the
temperature, are the Matsubara frequencies, and σ is the spin
index. For the inhomogeneous case, however, the uniformity
assumption is relaxed. Hence, we use RDMFT where the
self-energy is still local but varies spatially, i.e., �i jσ (iωn) =
�i

σ (iωn)δi j [47].
The RDMFT method for a given unit cell can be described

as follows. The local Green’s function of the lattice system
can be calculated as

Gσ (iωn) = 1

Nk

∑
k

(
G0

kσ (iωn)−1 − �σ (iωn)
)−1

, (4)

where the bold quantities are matrices of the dimension 4 × 4
and Nk is the number of k points. Thus, the matrix element
Gσ (iωn)i j is the Green’s function between sites i and j of the
unit cell. The noninteracting Green’s function G0

kσ (iωn)−1 =
μσ + iωn − Tk, where Tk is the superlattice Fourier transform
of the hopping matrix. The self-energy is assumed to be
diagonal in the site indices. For each site i in the unit cell,
there is an effective single-impurity Anderson model, which

is defined by the dynamical Weiss mean field

G i
σ (iωn)−1 = (Gσ (iωn)ii )−1 + �i

σ (iωn)ii. (5)

Using the Weiss function G i
σ , we calculate the self-energy of

each of the impurity problems using an impurity solver. These
new self-energies are supplied again to Eq. (4) and the process
is iterated to find a converged solution.

We use exact diagonalization (ED) and continuous-time
quantum Monte Carlo (CT-INT) as impurity solvers at zero
temperature and finite temperature, respectively. [27,50]. We
define the local magnetization mi = ni,↑ − ni,↓, where ni,σ =
Gi,σ (τ → 0−) is the density of spin-σ particles for a given
site of the unit cell. Another important quantity to measure the
effects of correlation is the double occupancy D = 〈ni,↑ni,↓〉,
representing the tendency of two particles to occupy the same
site. It is 0.25 in the zero interaction limit while it vanishes in
the Mott insulating large-U limit for the repulsive Hubbard
model for a homogeneous system at half-filling. It can be
directly calculated using DMFT+CT-INT as

D = ni

2
− 〈k〉MC

β|U | − 1

4
, (6)

where ni = ni,↑ + ni,↓ = 1 for half-filling and kMC is the
Monte Carlo perturbation order [50]. Additionally, the double
occupancy for a site can be directly compared with the local
moment m2

i measured in the experiments [51], given as〈
m2

i

〉 = 1 − 2〈ni↑ni↓〉. (7)

To study superconductivity within DMFT, we use the
Nambu formalism [42,52], where the Green’s function can be
written in the Nambu-spinor notation as

Gi j (τ ) = −〈T ψi(τ )ψ†
j (0)〉, (8)

where ψi(τ ) ≡ (ci↑, c†
i↓)T and its matrix notation can be

given as

G(τ ) =
(

Gσ (τ ) F(τ )
F†(τ ) −Gσ̄ (−τ )

)
,

where τ is imaginary time, and Gi jσ (τ ) ≡ −〈T ciσ (τ )c†
jσ (0)〉

and Fi j (τ ) ≡ −〈T ci↓(τ )c j↑(0)〉 are the normal and anoma-
lous Green’s functions, respectively. To capture a nonlo-
cal dSC order parameter, emerging away from half-filling,
we employ cellular dynamical mean field theory (CDMFT).
Within CDMFT, a lattice problem is mapped to a finite cluster
coupled to a noninteracting bath. In our case the cluster is a
four-site 2 × 2 plaquette as shown in Fig. 1, which has been
used to study the dSC order in the canonical square-lattice
Hubbard model [27,53,54]. The local cluster Green’s function
of the lattice system is given by the matrix equation

Gc(iωn) = 1

Nk

∑
k

(G0(k, iωn)−1 − �c(iωn))−1, (9)

where Nk is the number of k points. The noninteracting
Green’s function G0(k, iωn)−1 = iωn + μσz − T(k)σz, where
Tk is the superlattice Fourier transform of the hopping matrix
with dimension equal to the number of sites in the cluster, i.e.,
4 × 4. The cluster self-energy �c(iωn) can be given as

�c(iωn) =
(

�↑(iωn) S(iωn)
S(iωn) −�∗

↓(iωn)

)
,
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where �i jσ (iωn) [Si j (iωn)] is the normal (anomalous) part of
the self-energy matrix of dimension 4 × 4.

Similar to the the single-site DMFT, there is an effective
impurity problem for the cluster, which can be defined by the
Weiss mean field

G0
c (iωn)−1 = G−1

c (iωn) + �c(iωn). (10)

This quantity is also known as the “bath function” and rep-
resents the noninteracting Green’s function of the impurity
problem. Given the mean field G0

c , we calculate the cluster
propagator and the self-energy �c(iωn) from the above Weiss
mean field using ED as an impurity solver [27]. The process
is iterated similar to single-site DMFT to find the solution. We
define the average magnetization for the cluster as

mavg =
∑

i

|mi|
4

, (11)

where mi is the local magnetization of a given site calculated
from the normal Green’s function. Additionally, we can define
the average dSC order for the given four-site cluster as

�avg = �AB + �BD + �DC + �CA

4
, (12)

�i j = Si j (〈ci↓c j↑〉 − 〈ci↑c j↓〉)/2 with 〈ci↓c j↑〉 = Fi j (τ →
0−) and Fi j (τ ) is the nonlocal anomalous Green’s function of
the unit cell. For the singlet dx2−y2 pairing on a square lattice
we have

Si j =
{

1 if i − j = ±x̂,
−1 if i − j = ±ŷ,

where x̂ and ŷ are unit lattice vectors.

III. RESULTS

In this section, we discuss the effect of the inhomogeneity
and Hubbard interaction for two cases: (1) half-filling, where
number of particles per site is one, and (2) away from half-
filling with finite doping x = 1 − navg, where navg = ∑

i
ni
4

is the average density over the unit cell. At half-filling, the
interplay of inhomogeneity and interaction is visible in the
local magnetism and the double occupancy. One of the key
purposes of this work is to study the quasiparticle behavior
in the inhomogeneous system. We calculate the local self-
energy and show breakdown of Fermi-liquid behavior with
increasing strength of the inhomogeneity. The result that we
find can be associated to the (quasi)flat band present in the
inhomogeneous system. Away from half-filling, we present a
phase diagram as a function of inhomogeneity α and chemical
potential μ, showing �(μ, α) at U = 6.0. We also show the
averaged magnetic order mavg for different set of μ and α. The
dSC order parameter decreases with α and vanishes further for
moderate to large α. The magnetic order coexists with dSC for
small values of α. For a moderately inhomogeneous system,
incommensurate magnetic order is present with no dSC.

A. Magnetism

Due to the spatial inhomogeneity introduced by the modu-
lated hoppings, the local magnetic order is nonuniform across
different sites. We show the spatially resolved magnetic or-
der m evaluated using ED+RDMFT at zero temperature for

0 2 4 6 8 100
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0.8

m

α=0.0
α=0.4
α=0.6
α=0.95
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-0.2

0

m
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B/C

0 2 4 6 8 100

0.2
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0.8

1

m

Ũ

D

FIG. 2. Magnetic order parameter m for A site (upper panel), B
and C sites (middle panel), and D site (lower panel) for varying Ũ
and different inhomogeneity α at zero temperature. The Hubbard
interaction U has been scaled by t+ = (1 + α)t .

varying interaction strength Ũ = U/t+ at different α in Fig. 2.
We allow the breaking of the SU(2) spin-rotation symmetry
to capture the magnetically ordered state. An initial self-
energy that is constant in the Matsubara frequency is added
in way that it breaks SU(2) symmetery of the Hamiltonian.
For a homogeneous system, i.e., α = 0, local magnetic order
gradually develops with finite Hubbard interactions such that
mA = −mB/C = mD for any Ũ > 0. For weak interaction, the
behavior of the magnetic order is consistent with Hartree-Fock
mean-field theory [55] and saturates to unity in the Heisenberg
limit for strong interactions. For any small but nonzero U ,
the absolute value of mB/C increases with increasing α such
that |mB/C | ∼ 0.5 for α → 1. Such finite local magnetization
at B/C sub-lattice for infinitesimal interaction is caused by a
flat-band state with constant energy dispersion Ek ≈ 0 located
at the Fermi level. The high spin degeneracy is lifted already
by the infinitesimal U , and magnetization develops at the B/C
sites that carry the flat band [56]. For α → 1, the local mag-
netization at sublattice D saturates to unity for infinitesimal U
since the D sites get weakly coupled to the rest of the lattice.
It is important to note that at T = 0 the total magnetization
summed over the unit cell is zero for α ∈ [0 1) and finite
U although the absolute value of magnetization at different
sites is different. For α = 1, sublattice D gets isolated from
the rest of the lattice showing zero local magnetization for
any finite U and we get a ferromagnetic ground state which
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FIG. 3. Upper panel: phase diagram of the inhomogeneous Hub-
bard model showing staggered magnetization ms for different in-
homogeneity parameter α and interaction U . Lower panel: uniform
magnetization for the set of α and U . Here, mF is maximal for α → 1
and U → 0.

is consistent with the Lieb theorem [1]. At finite temperature,
thermal fluctuation suppresses the local magnetic order of the
weakly coupled sublattice D giving rise to a nonzero total
magnetization summed over the unit cell also for α → 1.
For the weakly interacting regime, the behavior of mB/C vs
Ũ changes from exponential to linear for α ∼ 1 due to the
flat band [56]. Linear behavior of the order parameter with
the Hubbard interaction in the weakly interacting regime can
be explained with a simple mean-field gap equation with a
δ-function density of states [57]. Local magnetizations for all
sites coalesce to single curves for all values of α in the strong
coupling regime, where the fermions are completely localized
so that the system can be described by an effective Heisenberg
model and the lattice geometry is insignificant to the behavior
of local magnetic order.

In the upper panel of Fig. 3, we show the phase diagram
for staggered magnetization, i.e., ms = mA + mD − 2 mB/C ,
obtained using ED+RDMFT for varying interaction U and
inhomogeneity 0 � α < 1. For smaller interactions, e.g., U <

2, staggered magnetization assumes a finite value for moder-
ate inhomogeneity such that ms ∼ 2 for U → 0+ and α → 1.
In the strong coupling Heisenberg limit, absolute value of
the local magnetization at different sublattices asymptotically
goes to unity for all inhomogeneities and thus ms ≈ 4, as
evident from Fig. 2. In order to understand the effect of
inhomogeneity on spatial distribution of the magnetic order,

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

m
F

=0.0
=0.4
=0.6
=0.8
=0.95

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

m
F

U=0.25
U=0.5
U=1.0
U=2.0
U=5.0

FIG. 4. Upper panel: uniform magnetization mF for varying Ũ
and different α. Lower panel: mF for varying α for different U .

we show the behavior of uniform magnetization, i.e., mF =
−(mB/C + mA), in the lower panel of Fig. 3. The uniform
magnetization mF is zero for the homogeneous system for
any finite interactions. Also mF is zero and independent of
α in the strongly interacting regimes. However, it gets finite
for moderate α and finite but moderate values of U . It has
maximum value for α → 1 and U → 0+. We also show mF vs
Ũ for a set of α values in the upper panel of Fig. 4. For finite
α, mF increases initially with increasing Ũ , peaks at a given
Ũp(α), and then decreases with increasing Ũ . The Ũp(α) shifts
to lower Ũ with increasing α, and Ũp(α) → 0 for α → 1. In
the strong coupling regime, the mF (Ũ ) vs Ũ curves merge
together for all values of the inhomogeneity and approach zero
asymptotically. Further, we show the uniform magnetization
mF for varying inhomogeneity at different Hubbard interac-
tions in the lower panel of Fig. 4. Below a given interaction
strength, mF increases with increasing α, but the uniform
magnetization curve goes to an inflection point. The inflection
point shifts to higher α with decreasing U . The inflection in
the curve appears at α → 1 in the limit U → 0, indicating
a sharp crossover to ferromagnetic state in the Lieb-lattice
limit. Such magnetic behavior can be assigned to the flat-band
ferromagnetism. For the Lieb-lattice limit (α → 1), B and C
sublattices (sites with flat bands) are polarized, with vanishing
magnetization at A sublattice, for infinitesimal strength of the
interaction. Above the crossover interaction strength the cur-
vature of staggered magnetization is positive and the magnetic
behavior is determined by local interactions mainly. Emer-
gence of such uniform magnetization is detrimental to the
singlet dx2−y2 pairing superconductivity defined in Eq. (12).
We will discuss the influence of the inhomogeneity on the
superconducting order in Sec. III D.

B. Double occupancy

In this section, we study the interplay of the inhomogeneity
and the Hubbard interaction in double occupancy at a given
site, i.e., 〈n̂↑n̂↓〉 using RDMFT+CT-INT. Double occupancy

125141-5
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FIG. 5. Upper panel: double occupancy of B/C sites for varying
interaction Ũ and different α at β = 1/T = 20. Lower panel: double
occupancy of A sites.

can be a direct measure of local moment formation 〈m2
z 〉 =

〈(n̂↑ − n̂↓)2〉 = 〈(n̂↑ + n̂↓ − 2 n̂↑n̂↓)〉 = n − 2 〈n̂↑n̂↓〉. In the
noninteracting limit, the up and down electrons are decou-
pled, 〈n̂↑n̂↓〉 = 〈n̂↑〉〈n̂↓〉. In Fig. 5, we compare the spatially
resolved double occupancy for different inhomogeneities α

at small finite temperature β = 1/T = 20. The double oc-
cupancy of the B/C sites is shown in the upper panel and
that of the site A is shown in the lower panel. At B/C
sites the double occupancy sharply decreases with increasing
α for moderate values of Ũ . The presence of a flat band
favors single occupancy even for infinitesimal interactions as
indicated by the sharp decrease of the double occupancy. Kink
in the double-occupancy variation corresponds to the critical
interaction Uc for the magnetic transition at given temperature.
Uc → 0+ for Lieb-lattice limit at zero temperature [6,56]. The
double occupancy DB/C → 0.1875 for α → 1, U → 0+, and
T → 0. This limiting case can be explained as follows. The
local magnetization at the B/C sites at T = 0 and U → 0+ is
0.5 for the Lieb lattice at half-filling, i.e., the average number
of particles per site is one [6], and thus we can write

nB/C↑ + nB/C↓ = 1.0; nB/C↑ − nB/C↓ = 0.5, (13)

giving 〈n̂B/C↑〉 = nB/C↑ = 0.75 and 〈n̂B/C↓〉 = nB/C↓ = 0.25,
and thus DB/C = 〈n̂B/C↑〉〈n̂B/C↓〉 = 0.1875 in the U → 0+
and T → 0 limits. In the strong coupling limit, for large Ũ ,
double occupancy for different inhomogeneities coalesces and
goes to zero asymptotically. At site A the double occupancy
coalesces to a single decreasing curve with varying Ũ for
moderate to large inhomogeneity.

C. Non-Fermi-liquid behavior

We explore the effect of inhomogeneity on quasiparticle
behavior in the weak coupling regime in the nonmagnetic
region at small finite temperatures using RDMFT+CT-INT.
We find breakdown of the usual Fermi-liquid behavior occurs
beyond a critical strength of the inhomogeneity, which is

evident from the scattering rate, i.e., the imaginary part of the
local self-energy, for different sites within the unit cell. There
have been a few theoretical proposals for the origin of non-
Fermi-liquid behavior linked to the presence of singularities
in the dispersion of the noninteracting part of the Hamiltonian
[58–62]. Non-Fermi liquids have also been observed within
theories which include nonlocal correlations [63,64]. For a
well-defined Fermi liquid, the self-energy for low Matsubara
frequencies ωn can be written as

�(iωn) ≈ iωna + b, (14)

where a and b are real constants. The quasiparticle weight Z =
m/m∗, where m is the bare mass and m∗ is the mass in the
presence of many-body effects, can be defined in terms of the
self-energy as

Z =
(

1 − ∂Im�(iωn)

∂ωn

∣∣∣∣
n=0; T →0

)−1

(15)

and 0 < Z < 1 for the Fermi liquid. We observe the imaginary
part of the self-energy at the lowest numerically calculated
Matsubara frequency ω0 and at the next consecutive frequency
ω1 and define (a = |Im�(iω0)| − |Im�(iω1)|) such that a <

0 signifies a Fermi liquid while a > 0 is characteristic of
a non-Fermi liquid. In the upper panel of Fig. 6, we show
the imaginary part of the self-energy at B/C for different
inhomogeneities. For small to moderate values of the inho-
mogeneity, the system is a Fermi liquid with a < 0 and well-
defined quasiparticle weight Z . For large inhomogeneity, say
α = 0.80, the self-energy for the B(C) sites, which carry the
flat band, diverges for small frequencies |ωn| and we observe
non-Fermi-liquid behavior with a > 0 where quasiparticle
weight cannot be well defined. In the lower panel of Fig. 6,
we show the self-energy for the A site. The quasiparticle
weight can be defined for all inhomogeneities since a < 0
although it increases with increasing α.

In Fig. 7, we present Im�(iωn=0) which is an estimate of
the inverse of the scattering time τ−1 ≈ −Im�(iωn=0). For
Fermi-liquid behavior (conventional metallic behavior) the
inverse of the scattering time, which is proportional to the
resistivity, decreases with decreasing temperature. As shown
in the main panel of Fig. 7, we find breakdown of Fermi-
liquid behavior as Im�B/C (iωn=0) increases with decreasing
temperature for α → 1 and finite interaction U = 2.0 while
Im�A(iωn=0) decreases with decreasing temperature display-
ing Fermi-liquid behavior. In the inset of Fig. 7, we show
Im�(iωn=0) vs T for moderate strength of the inhomogeneity,
say α = 0.4. Im�(iωn=0) decreases with decreasing tempera-
ture for both B/C and A sites and the system displays Fermi-
liquid (FL) behavior. Non-Fermi-liquid (NFL) behavior in
the presence of a flat band has been discussed previously
for the multiband Hubbard model with repulsive interaction
[65,66]. Doping-driven FL to NFL change has been found us-
ing DMFT calculations combined with first-principles density
functional theory [65,66]. The origin of such NFL behavior
was the nearly flat dispersion present in the given material.
Also, a multiorbital Hubbard model with orbital-dependent
hoppings has been studied in the context of orbital-selective
[67] Mott transition, where the origin of NFL behavior is due
to the lattice structure. In our study, we have systematically
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FIG. 6. Upper panel: imaginary part of the local self-energy,
i.e., −Im�(iωn) vs Matsubara frequency ωn, for sites B and C, for
different α, T = 0.05 and U = 0.75. For these parameters the system
is in the nonmagnetic metallic regime [68]. Lower panel: −Im�(iωn)
vs Matsubara frequency ωn, for site A, for the same parameter as
upper panel.

tuned the lattice model from dispersive to flat bands to show
how the non-Fermi-liquid behavior emerges.

D. Doped Hubbard model

To explore the possible dSC in the presence of finite
inhomogeneity away from half-filling, we have carried out
cellular DMFT+ED calculations using a 2 × 2 cluster. Since
the present choice of the inhomogeneity expands the unit cell
by a factor of 2 in each direction, the four-site plaquette actu-
ally comprises a single unit cell of the model. This plaquette
DMFT approximation is equivalent to the single-site DMFT
for a four-band model in the sense that we get one impurity
problem with four spin-degenerate orbitals. We uniformly
dope the system by choosing a finite chemical potential μ

independent of the lattice site in the unit cell. We allow
breaking of the SU(2) spin symmetry and thus long-range
antiferromagnetic order. We show the dSC order for different
values of chemical potential μ and inhomogeneity α in the
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A

FIG. 7. In the main panel: Im�(iωn=0 ) vs T at different sites for
α = 0.95 and U = 2. A similar plot is shown for α = 0.4 in the
inset. For these parameters the system is in the nonmagnetic metallic
regime [68].

upper panel of Fig. 8. We observe a region with finite dSC
order parameter for moderate inhomogeneity, while dSC is
not present for inhomogeneity α � 0.4 for any finite μ. We
also observe a region where the dSC order parameter is finite
but nonconvergent and oscillates with the DMFT iteration
with a period longer than two iteration steps as shown by the
circles. We also present the behavior of local magnetization
averaged over the unit cell for different μ and α. We obtain
a magnetic to nonmagnetic crossover going through a region
with magnetic order oscillating with the DMFT iteration in the
lower panel of Fig. 8. In this case, such oscillatory solution is
observed for 0 < α < 1 with varying μ.

An example of the DMFT calculations in the region with
oscillatory solutions can be seen in Fig. 9. We show the results
for two values of the inhomogeneity, i.e., α = 0.05 in the
upper panel and α = 0.5 in the lower panel. For α = 0.05,
the different order parameters such as dSC, magnetic and
density order oscillate with the DMFT iteration with a period
longer than two and a convergent solution cannot be achieved.
Motivated by the observations in doped 2D homogeneous
Hubbard model [69–72], such a behavior has been interpreted
as indication that an incommensurate spin density wave is
the proper state [73,74] and consequently calculations do not
converge in this parameter region. Although there is no direct
mathematical foundation for such an interpretation, we have
previously reported presence of spatially nonuniform mag-
netic and charge order coexisting with dSC using an extended
plaquette DMFT approximation for the canonical 2D Hubbard
model. In that case, calculations were carried out for unit
cells with a large number of sites by taking one-dimensional
slices of the lattice [27]. There, incommensurate orders coex-
isting with dSC were reported, such as the spin-density wave
(SDW) coexisting with inhomogeneous dSC of wavelength
12 plaquettes which was found to have the lowest energy
for μ = 1.40 and U = 6.0. Such spatially nonuniform SDW
orders reported in several recent works [29,30,74] brace the
interpretation. The oscillatory solutions obtained using DMFT
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FIG. 8. Upper panel: average dSC order parameter for set of
inhomogeneity α and chemical potential μ for the two-dimensional
Hubbard model on the inhomogeneous square lattice with modulated
hopping at U = 6.0. The circles are the data points where we have
carried out the plaquette DMFT+ED calculations. The dashed lines
are guides to the eye separating different regions. The lines are only
qualitative and do not actually correspond to a phase boundary. For
solid circles, we obtain a converged DMFT solution while open white
circles represent the data set for which DMFT solutions are finite and
oscillatory. The color code assigned to the solid circles represents
the magnitude of the dSC order parameter. Lower panel: averaged
magnetic order as a function of inhomogeneity α and chemical
potential μ.

can be made to converge using different mixing techniques,
but this is likely to lead to a metastable solution given that a
long-wavelength SDW is not allowed for the simple plaquette
DMFT approximation. For moderate inhomogeneity α = 0.5
shown in the lower panel of Fig. 9, we observe the oscillations
only for the magnetic and density orders while the supercon-
ducting order converges to �avg = 0. This behavior prevails
for moderate to large inhomogeneity. It is also possible that
other types of orders such as phase separation could exist in
the region where nonconvergent solutions are found [75]. A
typical sign for phase separation is a first-order jump in the
density with tuning μ [73], and such sensitivity to μ is also
associated with the region of oscillatory solutions.
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FIG. 9. Upper panel: the order parameters mavg, navg, and �avg

for varying DMFT iterations for α = 0.05. All quantities show
oscillatory behavior. Lower panel: same order parameters for varying
DMFT iterations for α = 0.5. Here, mavg and navg oscillate with the
DMFT iteration, while �avg converges to zero.

The results for the uniform dSC order parameter corre-
sponding to converged DMFT solutions, for several values
of inhomogeneity α displayed in Fig. 10, exhibit interesting
features. We find that the strength of dSC decreases mono-
tonically as a function of α over the entire doping range.
Our findings complement the results of previous studies of
interplay of lattice inhomogeneity and interactions in the con-
text of dSC on the checkerboard lattice using CDMFT [42].
CDMFT calculations show a monotonic decrease in the dSC
order with inhomogeneity, i.e., the ratio of the interplaquette
to intraplaquette hopping. Dynamical cluster approximation
(DCA) finds monotonic decrease of the critical temperature
with strength of the inhomogeneity [41]. In contrast, DQMC
calculations for similar inhomogeneity pattern find an optimal
value for which the pair vertex is most attractive [40]. In
both approaches, the dSC order eventually vanishes for large
inhomogeneity. In this study, dSC is completely destroyed
for α � 0.25. A few other patterns of inhomogeneity where
an onsite potential of one fourth of the lattice sites of the

125141-8



MAGNETIZATION, D-WAVE SUPERCONDUCTIVITY, … PHYSICAL REVIEW B 100, 125141 (2019)

0.14 0.15 0.16 0.17 0.18
0.02

0.04

0.06

0.08

0.1

=0.05
=0.15
=0.20

0 0.1 0.2
0.045

0.06

0.075

0.09

x~0.135

avg

avg

FIG. 10. Main panel: uniform dSC order parameter for con-
verged DMFT solutions �avg vs doping x for different values of α and
U = 6.0 at T = 0. Uniform dSC order monotonically decreases with
increasing x. Magnitude of dSC is smaller for larger inhomogeneity
at given x and is zero for α � 0.25. In the inset: uniform dSC order
parameter for varying α for given x = 0.135.

square lattice is raised by an amount V0 such that in the limit
V0 → ∞, the lattice maps onto the “Lieb-lattice” Hamiltonian
have been studied [40]. It has been found that this kind
of inhomogeneity rapidly, and monotonically, suppresses the
dSC pairing.

IV. CONCLUSIONS

To understand the spatial nonuniformity of the various
order parameters in systems ranging from real materials to
cold atom systems, Hubbard Hamiltonians with different in-
homogeneity patterns have been proposed. The pattern of
inhomogeneity explored in this work leads to the Lieb-lattice
geometry as a limiting case. Importantly, this allows the study
of the effect of an emerging flat-band singularity. We have
applied RDMFT to explore the influence of inhomogeneity on
different physical properties at half-filling and finite Hubbard
interactions. The inhomogeneity changes the magnetic be-
havior of the system, interpolating between the square-lattice
and Lieb-lattice cases. Below a given interaction strength, the
uniform magnetization displays a sharp crossover to a ferro-
magnetic state with increasing the inhomogeneity. There is
an associated inflection point in the uniform magnetization vs
the inhomogeneity parameter, with the sharp crossover. Such
a behavior is due to a flat-band dispersion appearing when
tuning of the inhomogeneity. We also observe a breakdown of
Fermi-liquid behavior when the inhomogeneity is increased,
signaled by the inverse scattering time defined by the local
self-energy.

To capture the nonlocal d-wave superconductor (dSC)
order parameter away from half-filling, we employ cellular
dynamical mean-field theory (CDMFT) combined with an ED
impurity solver for a cluster of four sites (2 × 2). For a range
of doping values we observe oscillatory behavior in the DMFT
iteration, which we tentatively associate with incommensurate
spin-density-wave order. For small inhomogeneity the system
displays uniform dSC and also dSC coexisting with the in-
commensurate order depending on the chemical potential. We
find suppression of the dSC order parameter for moderate to
large inhomogeneity, while the oscillatory solutions associ-
ated with incommensurate order persist for all finite values
of the inhomogeneity. The presence of incommensurate order
coexisting with dSC in the homogeneous case is in accordance
with recent findings [27,76], although further work would be
needed to determine the actual wavelength and other proper-
ties of the spin-density wave.

Our findings can be relevant to ultracold gas experiments,
where the simple two-dimensional Hubbard model [77–83]
as well as different inhomogeneity patterns and lattice ge-
ometries [78,84–86] have been realized. Experimentally, the
geometry of an optical lattice can be determined by the spatial
arrangement of the laser beams, and the tunneling of the
trapped atoms within the lattice is then tuned via the laser
amplitudes [87]. Spin correlations displaying antiferromag-
netic behavior have been observed using Bragg scattering [88]
and fermionic microscopes [89,90]. Using these techniques,
it could be possible to also study magnetism in optical Lieb
lattices populated with fermionic atoms [19,22]. Our results
show how an imperfect, quasiflat band affects the double
occupancy and magnetization, and could thus aid interpreta-
tion of such experimental results. It could also be possible
to experimentally engineer the exact model that we have
proposed here. A square-to-Lieb-lattice crossover could be
studied by tuning the laser amplitudes in the configuration
used in previous experiments [20], although the corresponding
tight-binding lattice will also include onsite potential contri-
butions on the D sites. Nevertheless, this is perhaps the easiest
way to study a tunable flat band within ultracold gas systems.
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