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Designing optimal control maps for diesel engines for high efficiency
and emission reduction

Hoang Nguyen Khac1 and Kai Zenger2

Abstract— The objective of this paper is to design static
optimal control maps of diesel engines to achieve high efficiency
and emission reduction. The calibration tool applied to create
the control maps, named ”Off-line parameterization tool”,
was designed based on the Design of Experiments method.
The optimization goal is to minimize the Brake Specific Fuel
Consumption (BSFC) by the engine’s input parameters under
emission constraints. The tool was designed to work both
fully automatically and semi-automatically. Many reports on
engine calibration have taken the Design of Experiments (DoE)
approach, but their implementations in choosing experimental
design types and optimization processes are different compared
to this paper. The unique aspect of this research lies in the
significant properties of the Off-line parameterization tool.
First, this tool is flexible: it is able to work with multiple inputs
and multiple outputs. Second, it can reduce the calibration time
as the engine running time is kept as short as possible and all
the data processing work is accomplished automatically.

I. INTRODUCTION AND MOTIVATION
Engine calibration constitutes a critical process since the

presence of diesel engines in industry. Engine calibration
(known as engine tuning) refers to the adjustment or modi-
fication of the internal engine’s actuators or its control unit
in order to yield optimal performance and fuel economy.
The need for keeping the engine running at higher efficiency
and lower emissions requires calibration work to achieve
sophistication and accuracy.

Increasing the number of controllable engine parameters
leads to a dramatic increase in calibration costs. Hence,
the new generation of engine calibration must be capable
of handling a high number of parameters with reasonable
costs. Static control maps (look-up tables), in which the
optimal values of the engine’s actuators are contained, have
been a common control strategy in the automotive industry.
Finding the accurate values for these maps is therefore really
challenging for the manufacturers. Several works have been
carried out to solve this problem. A D-Optimization and
DoE based method has been demonstrated in [1], however,
the method can only deal with single-object optimization
problem (air mass flow as an example in this article). More
versatile and sophisticated approach has been presented in
[2], the proposed method used combinations of complex
models to deal with multi-objective functions. Promising
results were shown in this work but its computational com-
plexity is too high.

The objective of this paper is to introduce a calibration
tool to create static optimal control maps of diesel engines
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for high efficiency and emission reduction. This tool, namely
”Off-line parameterization tool”, was designed based on the
Design of Experiments method with the computation works
kept to fairly small. The optimization goal is to minimize
the Brake Specific Fuel Consumption (BSFC) of the engine
by adjusting the engine’s input parameters under emission
constraints.

II. RESEARCH AND METHODOLOGY

This section presents a short discussion on effects of
some selected input parameters on the engine’s performance.
Moreover, the Design of Experiments method and the off-
line parameterization tool are introduced.

A. Effects of the input parameters on engine’s performance

In this paper, the following input parameters are consid-
ered: the intake pressure Pi, the common rail pressure PCR
and the start of injection SoI. No pre- or post-injection is
included at this stage. Each of the three input variables is
expected to have an effect on the BSFC, which represents
the fuel flow rate per unit power output. The BSFC is by
definition

BSFC[g/(kW.h)] =
ṁ f [g/h]

P[kilowatts]
(1)

in which ṁ f is the fuel flow rate in grams per hour and P
is the produced work in kW.

1) Effects of intake pressure.: The intake pressure (boost
pressure) plays an important role in diesel engine control.
It has an enormous impact on how efficiently the engine is
performing and, most importantly, how the intake pressure
affects the exhaust emissions of the engine.

Compressed air is used to create heat to burn the fuel.
A high intake pressure can increase the efficiency of fuel
combustion. High efficient combustion reduces unburned
components so the exhaust emissions can be reduced [3].
Higher intake pressure increases the concentration of oxygen
(O2) to improve the combustion; however, higher intake pres-
sure simultaneously increases the concentration of carbon
dioxide (CO2) emissions due to the optimal reaction between
carbon in the fuel and highly concentrated oxygen.

Moreover, higher air intake pressure increases the NOx
emission. According to Zeldovich’s mechanism [4], the NOx
formation increases with high pressure and high temperature
of the combustion. However, particle mass emission is in fact
decreased significantly with high intake pressure [5].



2) Effects of common rail pressure.: Common rail pres-
sure has intense effects on the engine combustion quality as
the injection pressure affects the fuel spray. Raising the rail
pressure to an appropriate range can help reduce smoke and
increase the fuel economy, but at the same time the NOx
emission is increased [6].

Common rail pressure can have different effects upon
different working conditions of the engine. Under heavy load
condition, too high a rail pressure does not clearly improve
the smoke and fuel economy but the NOx emission is still
increased. On the other hand, too high a rail pressure under
light load condition increases the BSFC too much [7]. On
low and middle load, a high enough rail pressure can reduce
both smoke and NOx emissions.

3) Effects of injection timing.: The start of injection
determines when the fuel is injected into the cylinder and
kicks off the combustion. The timing is defined to be before
the piston reaches the top dead center. Earlier SoI can result
in high in-cylinder pressure, temperature and NOx emission
while later SoI results in a reversed outcome [8]. However,
early injection produces higher efficicency and thus reduces
the fuel consumption.

According to [9], the use of early SoI provides lower soot
and higher NOx emission compared to the use of later SoI.
The later injection is usually deployed to effectively reduce
NOx.

B. The design of experiments method

The control of most modern engines consists of three main
loops, including the fuel, air and EGR paths. Co-ordinated
control of these three paths is required for minimization
of emissions and consumption of fuel. The control strategy
typically consists of two essential components: static control
maps and feedback/feedforward control. However, the feed-
back control naturally relies on the set-point, which has to be
provided. In the case of CI engines, such set-points are stored
in the form of the lookup table (or engine map) and include,
for example, manifold and common rail pressure set-points
and injection timings. Without having these, a feedback
control would be meaningless, as the set-points have to
be carefully chosen to provide optimal engine performance.
Therefore, calibration of the lookup tables remains one of the
most important steps in the engine control system design.

The fuel consumption and the emissions are the two most
important factors that need to be minimized in internal
combustion engines. While a brute force can be used to
guess these parameters, a structured way is preferred to save
resources and time. In this work, a design of experiments
approach is proposed as a powerful tool to create and
analyze statistically models of the process. The look-up
tables required for the engine to run include the intake
pressure and common rail pressure set-points and start of
injection (SoI). Design and optimization of the tables is
generally a time consuming trial and error procedure. Fig. 1
demonstrates the calibration of the three maps for one engine
operating point (OP). It can clearly be observed that a brute
force trial and error method can hardly be used to find the

Fig. 1. SIMULTANEOUS CALIBRATION OF THREE PARAMETERS
AT SINGLE ENGINE OP.

optimal factors combination and requires many engine runs.
While the DoE approach does include experimentation as
well, it is an organized and structured approach. Another
advantage of DoE is its ability to evaluate the effect of several
factors at a time, rather than using a one-factor approach. The
combination of the aforementioned input parameters has to
be found at each engine operating point so that the BSFC
is minimized under some emission constraints such as NOx
emissions.

1) Box-Behnken design.: In this work, the Box-Behnken
design is used to determine the relationship between the input
parameters and the engine response BSFC. The three chosen
input factors are intake pressure (bar), common rail pressure
(bar) and start of injection (dBTDC). They are coded as x1,
x2 and x3, respectively. The engine response BSFC is coded
as y and the ith emission measurement is coded as yi.

In this design, each of the 3 factors is assigned high (+),
low (-) and middle (0) levels which are chosen based on
the knowledge of the process. These levels must be chosen
taking into account their feasibility and safety at the current
engine operating point. The design matrix is shown in Tab. I.



TABLE I
TABLE OF RUN FOR THE BB 3-VARIABLES EXPERIMENT.

BB (3)
x1 x2 x3 No. of runs
±1 ±1 0 4
±1 0 ±1 4
0 ±1 ±1 4
0 0 0 3

Total runs 15

=

Std x1 x2 x3
1 - - 0
2 - + 0
3 + - 0
4 + + 0
5 - 0 -
6 - 0 +
7 + 0 -
8 + 0 +
9 0 - -

10 0 - +
11 0 + -
12 0 + +
13 0 0 0
14 0 0 0
15 0 0 0

The Box-Behnken design was chosen based on its number
of runs needed as well as its abilities to guarantee good
quadratic models [10].

Once the design matrix if formed, the experiments can be
run on the engine testbed and the measurements are recorded.
The regression model with three independent variables (Pi,
PCR and SoI) and the one response (BSFC) is fitted

BSFC = a0 +a1Pi +a2PCR +a3SoI + (linear terms)
a12PiPCR +a13PiSoI +a23PCRSoI + (interaction terms)

a11P2
i +a22P2

CR +a33SoI2 (quadratic terms)
(2)

where the coefficients ai are estimated using the least
squares regression method. The model has all three linear
terms of the inputs plus interaction terms between each two
of them and finally quadratic terms of each of them. The
quadratic terms also ensure curvature in the response.

A similar regression model is used to present the cor-
relation between the three input factors and the emission
measurement, particularly NOx at this stage.

NOx = b0 +b1Pi +b2PCR +b3SoI + (linear terms)
b12PiPCR +b13PiSoI +b23PCRSoI + (interaction terms)

b11P2
i +b22P2

CR +b33SoI2 (quadratic terms)
(3)

where the coefficients are also estimated by the least square
method and in the later steps, this fitted model will be used
as non-linear constraints for the optimization procedure.

2) Optimization process: Once the model of BSFC in
terms of the three input factors has been formed, the engine
will be optimized such that

minimize
Pi,PCR,SoI

BSFC

subject to: emission constraints
(4)

in which (2) is used as the cost function while (3) is used as
the non-linear constraint in a sense that the estimated NOx
is less than or equal to a number α (which is predefined
according to emissions regulations) .

The non-linearly constrained optimization problem is
solved by using the Sequential Quadratic Programming
(SQP) algorithm. The basic idea of SQP is to iteratively
model the non-linear optimization problem at a given number
of iteration xk as a Quadratic Programming subproblem, and
to use the solution from the subproblem to build a new
iteration (or approximation ) xk+1 [11].

C. The off-line parameterization tool

The engine calibration process is classically divided into
three phases [12]:

1. Preliminary phase: choosing a set of operating points to
study and emissions targets.

2. The optimization of engine responses on each OP under
emissions targets.

3. The construction of the maps with smoothening step
between optimal settings.

Based on this structure, the off-line parameterization tool’s
working diagram is made with some modifications as
(i) The first step is preparation for the Design of Experi-

ments setup in which the type of experimental design
and the optimization variables must be defined. The
Box-Behnken design table is chosen due to its simplicity
and ability to produce good experimental data. The
optimization variables are coded as
1. Input factors:
– Boost pressure: x1. (unit: bar)
– Common rail pressure: x2. (unit: bar)
– Start of injection: x3. Unit: degree Before Top Dead

Center (dBTDC).
2. Responses:
– The Break Specific Fuel Consumption (BSFC): y1

(unit: g/kWh)
– Other possible emissions responses such as NOx

and NO responses: yi

Although there are multiple inputs and multiple outputs,
this is not the case of multiple input-multiple output
modelling. Each of the output responses is modelled
separately based on the inputs.

(ii) The second step is selecting the operating points by
which the engine is run. The points are chosen in a
300 round-per-minute interval of speed and about 8-
16 load points. The interval between points may differ
from the engines and should be carefully considered
beforehand. In addition, ranges of the variables should
also be predetermined. The complexity of the fitting
model for engine’s response depends on the size of these
ranges. Low order polynomials are usually sufficient to
precisely model the response by using a small enough
domain. This step is also a starting point of a closed-
loop process. This loop is run for each operating point,
starting from the first one and finishing at the last one.

(iii) The next two steps require actual engine running.
First task involving the engine is the validation of
the domains which were predetermined in the previous
step. The experimenter runs the engine with predefined



Fig. 2. INITIAL OPTIMAL MAP WITH LOCAL OPTIMA.

Fig. 3. EXAMPLE OF A MAP ON THE WHOLE OPERATING RANGE.

domains to check whether the upper and lower levels of
the input parameters are out of the engine’s operating
range. As all tests are predefined, the experiments can
be run automatically if it is safe to let the engine run on
itself. Data of inputs and response values are recorded
separately for each operating point.

(iv) Modelling and optimization processes can be run right
after finishing of all the experiments at each operating
point. In case it is not safe to keep the engine running
with the tool automatically, experiments of all operating
points will be conducted without going to the mod-
elling step. As the data has been recorded separately,
modelling and optimization can be done after the test
runs. That is why the tool is called ”off-line” as the
computations can be done without running the engine.
The optimizing can be formulated as a classical math-
ematical problem of optimization under constraints. In
this approach, the optimization is performed at one OP
after the other, considering the responses of emissions
for each OP as constraints.

(v) When optimization is done for all of the operating
points, optimal values of each input factor are saved to
initial optimal maps similar to the one in Fig. 2. They
are just scatter plots of all the optimal settings and the
next step is building a final map on the whole engine
operating domain based on those values. Several fitting
methods can be applied to build the map, such as Robust
Locally Weighted Regression [13] method. Notice that
the selected number of operating points has a big impact
on the map’s resolution and accuracy. The denser the
map is, the more points is needed. Fig. 3 shows an
example of a map on the whole engine operating range.

Fig. 4. AGCO POWER 44 AWI.

TABLE II
SELECTION OF OPERATING POINTS.

Speed (rpm)
Injection quantity (mg) 1300 1600 1900 2200

15 mg
30 mg X X X
45 mg X X X X
60 mg X X X
75 mg X X

(vi) One more step must be done before the created maps
can be used. The final phase of the tool is to smooth
the set-point maps. Since the changes of the parameters
are not feasible during transient, the maps need to be
smoothen to avoid rough transitions between operating
points. Hence, the optimal points are often shifted away
from their locations during the smoothing process. The
goal is to remain as close as possible to the local optima
while keeping a smooth shape of the map.

III. EXPERIMENT IMPLEMENTATION

A. Engine testbed

The engine test bed to be used in this work is a four-
cylinder, common rail and turbocharged diesel engine in the
Internal Combustion Engine Laboratory at Aalto University.
The engine model is AGCO POWER 44 AWI and is shown
in Fig. 4.

Running all the experiments required for one operating
point takes around one hour since the engine is very sensitive
and it requires careful handling during the operation.

Due to these reasons, this engine test bed is only used for
testing of operating points to find out the ranges of factors.
The experiments are conducted on a simulation engine model
which was calibrated with the AGCO engine. The model was
developed in GT-Power software by David Bernasconi [14].

B. Operating point selection

According to the GT-Power model, the operating points
are defined based on speed (rpm) and injection quantity (mg).
The chosen points are shown in Tab. II



TABLE III
MATRIX RUN DESIGN FOR EACH OPERATING POINT.

Pi PCR SoI BSFC NOx
-1 ±1 0
+1 ±1 0
-1 0 ±1
+1 0 ±1
0 -1 ±1
0 +1 ±1
0 0 0
0 0 0
0 0 0

TABLE IV
MODELING RESULTS OF THE SELECTED OPERATING POINTS.

Operating Root Mean Squared R2 R2
ad justed

Point Error (BSFC)
1 2.32 0.987 0.965
2 1.39 0.995 0.987
3 3.15 0.996 0.99
4 3.36 0.993 0.982
5 2.25 0.995 0.986
6 11.3 0.986 0.961
7 7.09 0.991 0.975
8 6.04 0.989 0.97
9 4.54 0.992 0.979
10 25.5 0.974 0.927
11 12.5 0.985 0.959
12 6.24 0.994 0.983

C. Matrix run preparation

The matrix run is designed based on the Box-Behnken
design and is shown in the Tab. III. The last two columns
are reserved for the measured data to be filled in.

D. Running experiments

All the points with the check mark (X) in Tab. II were
run in the simulation model and the results of BSFC as well
as the emissions were recorded for later phases. Modeling
and optimization processes were executed after all operating
points had been run.

IV. RESULTS AND DISCUSSION

The final outcomes of this work are three look-up tables
of the intake pressure Pi, the common rail pressure PCR and
the start of injection SoI. These tables contain the optimized
values which can minimize the BSFC and reduce the NOx
emissions at the same time.

Tab. IV shows results of the BSFC modeling process for
the 12 selected operating points in Tab. II. According to
Tab. IV, the root mean squared errors between the measured
and the estimated BSFC are relatively small. The coefficient
of determination R2 is an important factor to show how well
data is fitted to a statistical model. The closer of R2 to 1,
the better of the fitting result. With models in which more
independent variables are carried, the R2 values will always
increase. Hence, another coefficient of determination, the ad-
justed coefficient of determination R2

ad justed , is adopted. The
R2

ad justed includes the number of degrees of freedom available
to estimate the error after calculating the coefficients and thus

(a) SoI AND CRP

(b) SoI AND Pi

(c) CRP AND Pi

Fig. 5. OPTIMIZATION UNDER EMISSION CONSTRAINTS.

is safer to use to evaluate the error of a complex model. The
goodness of the BSFC fitting is good as all of the R2 and
R2

ad justed are close to 1.
Figure 5 shows an example of the BSFC optimization at

1600 rpm and 45 mg. The optimization is done with three
parameters but it is not possible to show the results in 4-D,
hence the plots are made with each of the three parameters
being kept at their optimum. Though the emission constraints
are not shown in these surfaces, it is understood that the NOx
emission, generated at the optimum, satisfied the constraint
set in (4). It can be seen that the optimum points are not
all located at the minimum points on the surfaces. This is
the compensation between the NOx emissions and the fuel
consumption, in order to get lower emissions, more fuel is
consumed.

Finally, after conducting the constrained optimization pro-
cess for all the operating points, the optimized values of
each input parameters are presented in scatter plots which



Fig. 6. INTAKE PRESSURE MAP.

Fig. 7. COMMON RAIL PRESSURE MAP.

are similar to the plot in Fig. 3. The optimal surfaces of
the three parameters are then created by using interpolation.
They are shown in Fig. 6, Fig. 7 and Fig. 8, respectively.

V. CONCLUSIONS

This paper presents a study of designing static optimal
control maps for high efficiency and emission reduction on
diesel engine. The study leads to a finding of an engine cali-
bration method which reduces necessary time and resources.
The method has also been implemented on a non-road 44
AWI AGCO engine and on a GT-Power simulation model of
that engine. Several conclusions were made from this work:

• An off-line parameterization tool which can be used for
semi and fully automatic engine tuning was proposed
and developed.

• The Design of Experiments method, which is the core
component of the off-line tool, provides an organized
and economical way of engine calibration. By using this
method a considerable amount of time and resources can
be saved.

• The engine response is better optimized in comparison
to the traditional ”brute force” method. Moreover, the
response is even optimized under emission constraints
to guarantee environmental protection.

• The off-line parameterization tool outputs the optimal
control maps with smoothing transitions between the
operating points. This smoothening work assures a
smooth run for the engine in speed and load changing
conditions.

Fig. 8. START OF INJECTION MAP.
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