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A New Teaching-Learning-based Chicken Swarm 
Optimization Algorithm 

Abstract-Chicken Swarm Optimization (CSO) is a novel swarm intelligence based algorithm known for its good 

performance on many benchmark functions as well as real world optimization problems. However, it is observed 

that CSO sometimes gets trapped in local optima. This work proposes an improved version of the CSO algorithm 

with modified update equation of the roosters and a novel constraint handling mechanism. Further, the work also 

proposes synergy of the improved version of CSO (ICSO) with Teaching Learning Based Optimization (TLBO) 

algorithm.  The proposed ICSOTLBO algorithm possesses the strengths of both CSO and TLBO. The efficacy of the 

proposed algorithm is tested on eight basic benchmark functions, fifteen computationally expensive benchmark 

functions as well as two real-world problems. Further, the performance of ICSOTLBO is also compared with a 

number of state of art algorithms. It is observed that the proposed algorithm performs better than or as good as many 

of the existing algorithms. 
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1. Introduction 

In recent years, nature inspired optimization methods have gathered attention of the masses. Most of the nature 

inspired optimization approaches mimic a natural phenomenon or social behaviour of a group of animals. For 

example, Genetic Algorithm (GA) mimics the natural phenomenon of survival of the fittest (Goldberg & Holland 

1988), Simulated Annealing (SA) is inspired from the process of annealing of solids (Laarhoven et al. 1987), 

Gravitational Search Algorithm (GSA) is inspired by the gravitational laws, and interaction between the masses 

(Rashedi  et al. 2009), Particle Swarm Optimization (PSO) mimics the phenomenon of bird flocking (Poli et al. 

2007), Cuckoo Search (CS) mimics the brood parasitism of cuckoo (Yang & Deb 2009; Yang & Deb 2014), 

Elephant Herding Optimization (EHO) uses the herding behaviour of elephants (Wang et al. 2016; Wang et al. 

2015), Earthworm Optimization (EWA) inspired by the burrowing action of earthworms in the soil (Wang et al. 

2015) , Grey Wolf Optimization (GWO) mimics the hunting of grey wolf (Mirjalili et al. 2014; Faris et al. 2018), 

Whale Optimization Algorithm (WOA) mimics the social behaviour of whales (Mirjalili & Lewis 2016), Artificial 

Bee Colony (ABC) imitates the foraging behaviour of honeybee (Karaboga & Basturk 2008 ), Bird Swarm 

Algorithm (BSA) utilizes the social interaction in a bird swarm(Meng et al. 2016), Bat Algorithm (BA) mimics the 

echolocation behaviour of bats (Cai et al. 2016), Harmony Search Algorithm (HSA) mimics the natural phenomenon 

of musicians improvisation of the harmony (Gao et al. 2015) etc.  

One such nature inspired algorithm that has gained popularity in the recent years is CSO (Meng et al. 2014). CSO 

efficientlyexploits the hierarchal order in the chicken swarm and the food-searching process of the chicken swarm. 

In the aforementioned algorithm, the positions of the members of the chicken swarm are regarded as the candidate 

solutions of the optimization problem to be solved. The chicken swarm is divided into rooster, hens, and chicks 

depending upon the food searching capability. The competition between different chickens under a specific 

hierarchal order and mother-child relationship is also taken into account in this algorithm. A number of variants of 

the CSO algorithm are also available in the existing literature. Deb et al. (2019) presented a comprehensive 

overview of different variants of CSO algorithm and concluded that there is still scope of improving the algorithm. 

Chen et al. (2015) proposed an improved version of CSO with modified update equation of the hen. Wang et al. 

(2017) introduced the mutation strategy in the update phenomenon of chicks to enhance their food searching ability. 

Han et al. (2017) also proposed an improved binary version of CSO where the mutation operator is applied to the 

population with the worst fitness value.Ahmed et al. (2017) combined chaos tent map and logistic map with CSO 

and used the algorithm to solve feature selection problem.Liang et al. (2016) replaced the update mechanism of 

roosters with the update mechanism of Bat Algorithm (BA) and proposed hybrid Bat CSO. Kumar &Veni(2018) 

hybridized CSO with Differential Evolution (DE) and applied the proposed algorithm for solving routing problem. 

Experimental results showed that the proposed algorithm performed better than the standalone algorithms as the 

solutions obtained by CSO were further fine-tuned by DE to avoid premature convergence. Torabi&Esfahani (2018) 

hybridized Improved Raven Rooster Optimization (IRRO) with CSO and utilized the proposed algorithm for solving 

task scheduling problems. 

It is observed that in the existing literature a number of nature inspired algorithms are available. Despite the 

availability of such a wide range of nature inspired algorithms researchers are still trying to develop new more 



efficient algorithms, improve the existing algorithms by hybridization or modifying some algorithmic components 

of the methods. The main motivation behind this lies in the No Free Lunch (NFL) theorem (Wolpert& 

Macready1997). NFL theorem concludes that a single algorithm cannot perform well on all the optimization 

problems. Hence, there is necessity of developing new more efficient algorithms and improving the existing 

algorithms. The present work is also concerned with improving CSO and its hybridization with TLBO. CSO has 

good utilization rate of population. However, the algorithm may sometimes get trapped in local optima. Researchers 

have tried to overcome this inherent drawback of CSO by variety of ways (Chen et al. 2015; Wang et al. 2017; Han 

et al. 2017; Liang et al. 2016; Kumar &Veni 2018; Torabi & Esfahani 2018 ). Some of the variants of CSO are listed 

in Table 1.The present work also makes an attempt to improve the basic CSO by modifying the update equation of 

roosters and introducing a novel constraint handling mechanism. Further, the work also proposes synergy of the 

improved version of CSO (ICSO) with Teaching Learning Based Optimization (TLBO) algorithm. The salient 

features of the proposed algorithm in comparison with the existing improvements of CSO are modified update 

equation of rooster, novel constraint handling mechanism and hybridization with TLBO.The contributions of the 

work as compared to the existing works on CSO are summarized as follows: 

1. Improvement of CSO by modifying the update equation of rooster and introduction of a novel constraint handling 

mechanism. 

2. Hybridization of ICSO with TLBO. It is expected that synergy of ICSO and TLBO will enhance the utilization 

rate of population and overcome the premature convergence of the algorithm. 

3. The proposed algorithm is used for solving eight basic benchmark functions, fifteen computationally expensive 

benchmark functions as well as two real- world problems. 

4. The performance of the proposed algorithm is statistically compared with other state of art algorithms like PSO 

and its variants, DE and its variants, GA, TLBO and its variants. 

Table 1- Variants of CSO 
Author Improvement 

Chen et al. (2015) Modification in the update equation of the hen 

Wang et al. (2017) Introduction of mutation strategy in the update equation of chicks 

Han et al. (2017) Development of binary version of CSO  

Ahmed et al. (2017) Development of chaotic CSO  

Liang et al. (2016) Hybridization of Bat algorithm with CSO 

Kumar &Veni (2018) Hybridization of DE with CSO 

Torabi&Esfahani (2018) Hybridization of IRRO with CSO 

 

The remainder of the paper is organized as follows. Section 2, Section 3 and Section 4 illustrate the fundamentals of 

CSO, ICSO and TLBO respectively. Section 5 elaborates the hybridization of ICSO with TLBO. Section 6 and 

section 7 illustrates the results related to the performance of the proposed algorithm on basic benchmark functions 

and computationally expensive benchmark functions respectively. Section 8 discusses the computational complexity 

of the proposed algorithm. Section 9illustrates the performance of the proposed algorithm on real- world problems 

like Charging Station Placement and Economic Load Dispatch problem. Section 10 presents the future direction of 

research on CSO. Finally, section 11 concludes the work.  



2. CSO 

CSO is one of the latest swarm intelligence based algorithms developed by Meng et al. in the year 2014. The 

hierarchal order prevalent in the chicken swarm and the collective food searching mechanism of the swarm are 

mimicked by the algorithm. The entire populace of chicken in the group is segregated into dominant rooster, hens, 

and chicks depending upon the fitness values of the chickens. The chickens with highest food searching ability or 

fitness are designated as roosters, chickens with least food searching ability or fitness are designated as chicks, and 

the chickens with intermediate food searching ability or fitness are assigned as hens. The mother-child relationship 

is also established randomly. The hierarchal order and mother-child relationship are updated after every G time 

steps. The natal behavior of hens to go behind their group mate rooster and chicks to go behind their mother in the 

quest for food is utilized effectively in the algorithm. It is also presumed that the chickens would try to scratch the 

food found by others thereby giving rise to a competition for food in the group. The algorithm is divided into two 

steps- Initialization and Update. 

In Initialization, the population size and other related parameters of CSO like number of roosters, number of hens, 

number of chicks, number of mother hens, G is first defined. The fitness values of the randomly generated initial 

population of chicken are evaluated and a hierarchal order is established based on this fitness value. The algorithm is 

based on the following assumptions- 

• The number of hens is highest in the group 

• All the hens are not mother hens  

• The mother hens are selected randomly from the set of hens 

• The number of chicks is less than hen 

There is variation in the food searching capacity of roosters, hens, and chicks. In the update step, the fitness values 

of the initial population are updated depending on the food searching capacity of the different members of the group. 

Food searching capacity of rooster depends on their fitness value and their update formula is as follows: 
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where randn(0,σ2) is a Gaussian distribution function with mean 0 and standard deviation σ2. f is the fitness value of 

corresponding x, k is randomly selected rooster's index.ϵ is a small constant value which is used to avoid zero division 

error. 

Hens follow their group mate roosters in their quest for food. Moreover, there is also a tendency among the chickens 

to steal the food found by other chickens. The mathematical representation of their update formula is as follows- 
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where rand is a randomly generated number between 0 and 1. ],1[1 Nr ∈ is an index of rooster which is ith hen's 

group mate. And ],1[2 Nr ∈  is an index of rooster or hen which is randomly chosen such that r1 is not equal to r2. 

The natural tendency of chicks to follow their mother is mathematically formulated as follows- 
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where t
jmx ,  represents the position of ith chick's mother. FL is a parameter which signifies that the chick would 

follow its mother. FL is generally chosen in between 0 and 2. 

The pseudo code of CSO is as shown in Algorithm 1 

Algorithm 1-Pseudo code of CSO(Meng et al. 2014) 
Initialize the population of chicken having size N and define other algorithm specific parameters like G, size of RN, 
HN,CN, and MN; 
Evaluate the fitness value of N chicken, t=0 , establish the hierarchal order in the swarm as well as mother child 
relationship; 
While (t<gen) 
t=t+1; 
If(t%G==0) 
Establish the hierarchal order in the swarm as well as mother child relationship; 
Else 
For i=1:PN 
If i==rooster 
Update its solution by Eq.(1); 
End if 
If i==hen 
Update its solution by Eq.(4); 
End if 
If i==chick 
Update its solution by Eq.(7); 
End if 
Evaluate the new solutions; 
Update the new solutions if they are better than the previous one; 
End for 
End if else 
End while 
 

3. ICSO 

The key features of ICSO are modification in the update mechanism of roosters and a novel constraint handling 

mechanism. In the basic CSO, hens follow their group mate rooster in the food searching process. And the chicks 

follow their mother hen. Thus, it is obvious that the performance of the algorithm is very much dependent on 

roosters. If the roosters get struck in local optima then there is possibility of premature convergence. Hence, in order 

of overcome this drawback authors have modified the update equation of roosters. The algorithm considers that the 

roosters would utilize its previous experience in the food searching process. In the quest for food, each rooster can 



record and update its best experience from the past and the swarms’ previous best experience about food 

availability. Social information is shared instantaneously among the roosters. Thus, the update equation of the 

roosters is modified as: 
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where pi,j represents the best previous position of ith rooster, gj represents the best previous position of the swarm, C 

represents cognitive co-efficient and S represents social co-efficient.  

Another salient feature of ICSO is a novel constraint handling mechanism. In the basic CSO, whenever the updated 

value of the decision variable exceeds the upper or lower limit of the decision variable then it is fixed to upper or 

lower limit respectively. In ICSO an improved an efficient methodology of constraint handling is used to improve 

the convergence speed. This improved methodology of constraint handling is as shown in Algorithm 2. The pseudo 

code of ICSO is as shown in Algorithm 3. 

Algorithm 2-Pseudo code of improved constraint handling (Chen et al. 2016) 
if xi,j

t<lb|| xi,j
t<ub     lb and ub  represents lower and upper bound of the decision variable 
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Algorithm 3-Pseudo code of ICSO 
Initialize the population of chicken having size N and define other algorithm specific parameters like G, size of RN, 
HN,CN, and MN; 
Evaluate the fitness value of N chicken, t=0 , establish the hierarchal order in the swarm as well as mother child 
relationship; 
While (t<gen) 
t=t+1; 
If(t%G==0) 
Establish the hierarchal order in the swarm as well as mother child relationship; 
Else 
For i=1:PN 
If i==rooster 
Update its solution by Eq. (8); 
End if 
Perform constraint handling by Algorithm 2 
If i==hen 
Update its solution by Eq.(4); 
End if 
Perform constraint handling by Algorithm 2 
If i==chick 
Update its solution by Eq.(7); 
End if 
Perform constraint handling by Algorithm 2 
Evaluate the new solutions; 
Update the new solutions if they are better than the previous one; 
End for 
Perform constraint handling by Algorithm 2 
End if else 
End while 
 

4. TLBO 

TLBO is a latest evolutionary algorithm introduced by Rao et al. in the year 2011. TLBO is a population-based 

evolutionary algorithm which mimics the interactive process of teaching and learning. A class of learners constitutes 

the population here. The teacher transfers his/her knowledge to the learners. The performance of the learners 

depends on the knowledge and capability of the teacher. The students can learn from the teacher as well as learn 

from each other through mutual interaction. Thus, the algorithm is divided into two parts- Teacher phase and 

Learner phase (Rao et al. 2011; Rao et al. 2016). 

In the teacher phase, the students learn from the teacher who is an erudite scholar with profound knowledge and 

skill. The learner having the best fitness in a randomly generated population of teachers is generally assigned the 

role of teacher. Each learner learns from the teacher and is modified as follows- 
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And the objective function value for each learner set modified by transfer of knowledge by the teacher is 

recalculated. If the new value of the objective function for any learner is better than the previous one then it is 

replaced by the new value. Else, the old learner is kept as it is. 



 In the learner phase, the learner learns by mutual interaction among themselves. For each learner Zi any learner Zj is 

chosen arbitrarily from the learner matrix. The objective function values are compared arbitrarily for the two 

aforementioned learners. If the value of the objective function of Zi is lower than the objective function of Z j then 

the ith learner is modified as follows- 
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Else it is modified as- 

)(rand ijoldnew ZZZZ −×+=
                                                                                                                                       

(12) 

The pseudo code and flowchart of TLBO is as shown in Algorithm 4 

Algorithm 4- Pseudo code of TLBO(Rao et al. 2011; Rao et al. 2016) 
Set k=1; 
Initialize the population size and generate the initial population of students randomly; 
Compute the objective function for all the individuals of the population; 
while(k<gen) 
{Teacher Phase} 
Assign the teacher based on the fitness value; 
for i=1:pop 
Modify each learner by Eq.(9), Eq.(10); 
Evaluate the new solutions; 
Update the new solutions if they are better than the previous one; 
{End of teacher phase} 
{Learner Phase} 
Choose two learners Zi and Zj, i≠j; 
if(fitness of Zi better than Zj) 
Replace ith learner by Eq.(11); 
Else 
Replace ith learner by Eq. (12); 
End if else 
End for 
k=k+1 
End while 
 

5. ICSOTLBO 

Standalone Nature Inspired Optimization (NIO) algorithms are sometimes not efficient enough to handle the 

uncertainty of the practical optimization problems. Hybridization of NIO algorithms offers competitive solutions 

than standalone NIO algorithms in case of practical problems. Also, the hybrid algorithms inherit the advantages of 

two standalone algorithms, eliminate the limitations of the standalone algorithms, and perform better than the 

standalone algorithms. A good balance between exploration and exploitation is maintained in the hybrid 

algorithms.Hybridization of CSO and TLBO is also presented in the work. It is expected that the grading mechanism 

of ICSO when introduced in TLBO the utilization rate of population will increase.Hence, in ICSOTLBO, TLBO is 

performed in all the generations and ICSO is periodically invoked in some generations. The salient features of the 

proposed ICSOTLBO algorithm are  

1. In the hybridization scheme, TLBO is performed in all generations and CSO is periodically invoked. 

2. The algorithm is expected to have good utilization rate of population due to the grading mechanism of CSO 



3. The premature convergence that is a drawback of CSO can be avoided in ICSOTLBO because of 

amalgamation of CSO with TLBO 

4. The modified update equation of CSO utilizing the best experience from the past and the swarms’ previous 

best experience about food availability will also enhance the performance of the algorithm 

5. The new constraint handling mechanism will improve the convergence speed of the algorithm 

The scheme for hybridizing ICSO and TLBO is elaborated by Algorithm 5. 

Algorithm 5- Pseudo code of hybridizing scheme utilized in ICSOTLBO 
Initialize the population size, gen and the other algorithm specific parameters of ICSOTLBO  
Set t=1 
While (t<gen) 
Activate TLBO 
If (t mod INV)>0 
Activate ICSO 
End if 
t=t+1 
End while 
 

6. Performance of ICSOTLBO on basic benchmark functions 

The proposed algorithm was first tested on six basic benchmark functions as shown in Table 2. In Table 2, f1, f2, f3, 

f4, f6 are unimodal functions and f5, f7, and f8 are a multimodal function. The detailed formulations of these 

benchmark functions can be found in the reference (Mirjalili 2016). The different algorithm-specific parameters of 

ICSOTLBO were tuned as in Table 3. The performance of ICSOTLBO on these basic benchmark functions was 

compared with a number of state of art algorithms like different variants of PSO, DE, GA etc. The results related to 

these comparisons are presented in the subsequent subsections. 

Table 2- List of basic benchmark functions 
Function no Function name Bounds f_min 

 
f1 Sphere [-100 100] 0 
f2 Schwefel 2.22 [-10 10] 0 
f3 Schwefel 1.2 [-100 100] 0 
f4 Step [-100 100] 0 
f5 Rastrigin [-5.12 5.12] 0 
f6 Schwefel 2.21 [-100 100] 0 
f7 Ackley [-32 32] 0 
f8 Griewank [-600 600] 0 

 

Table 3- Algorithm specific parameters of ICSOTLBO 
Parameter Value 

RN 0.2PN 

HN 0.6PN 

CN PN-RN-HN 

MN 0.1PN 

S 2 

C 2 

G 10 

INV 25 

 



6.1. Comparison of ICSOTLBO with different variants of DE 

The performance of ICSOTLBO was compared with SaDE, jDE and EPSDE on 8 benchmark functions shown in 

Table 2. The results of SaDE, jDE and EPSDE were directly taken from the reference (Satapathy & Naik 2014). For 

fair comparison, the population size and number of function evaluations of ICSOTLBO were kept same as in the 

reference (Satapathy & Naik 2014). The mean and standard deviations of the errors are reported in Table 4 for each 

of the basic benchmark functions shown in Table 2. Further, Wilcoxon’s rank sum test was conducted at 0.05 

significance level between ICSOTLBO and each of SaDE, jDE and EPSDE. The results of the Wilcoxon’s rank sum 

test are reported in the last three rows of Table 4. It was observed that ICSOTLBO was always better than SaDE and 

jDE. And, ICSOTLBO was better than EPSDE for 5 benchmark functions and equivalent to EPSDE for 3 

benchmark functions. For comparing the performance of the proposed algorithm with the variants of DE, Friedman 

test was performed. The ranks of the different algorithms obtained by Friedman test is as shown in Fig.1. It was 

observed that ICSOTLBO had obtained the best rank in comparison to the different variants of DE. 

Table 4- Comparison of ICSOTLBO with different variants of DE (D=30, PN=20) 
Function FE SaDE jDE EPSDE ICSOTLBO 

Mean SD +-= Mean SD +-= Mean SD +-= Mean SD 
f1 1.5e+05 4.5e-20 1.9e-14 - 2.5e-28 3.5e-28 - 1.53e-85 9.01e-86 - 0 0 
f2 2e+05 1.9e-14 1.1e-14 - 1.5e-23 1.0e-23 - 3.18e-54 3.11e-54 - 0 0 
f3 5e+05 9e-37 5.4e-36 - 5.2e-14 1.1e-13 - 4.81e-76 1.9e-76 - 0 0 
f4 1e+04 9.3e+02 1.8e+02 - 1e+03 2.2e+02 - 0 0 = 0 0 
f5 1e+05 1.2e-03 6.5e-04 - 1.5e-04 2e-04 - 0 0 = 0 0 
f6 5e+05 7.4e-11 1.82e-10 - 1.4e-15 1e-15 - 1.94e-02 8.90e-4 - 0 0 
f7 5e+04 2.7e-03 5.1e-04 - 3.5e-04 1e-04 - 5.36e-13 4.77e-14 - 0 0 
f8 5e+04 7.8e-04 1.2e-03 - 1.9e-05 5.8e-05 - 0 0 - 0 0 
- 8 8 5 + indicates better 

- indicates worse 

= indicates 
equivalent 

+ 0 0 0 
= 0 0 3 

 

 
Fig.1-Comparison of Friedman ranks of ICSOTLBO with different variants of DE for basic benchmark functions 

6.2. Comparison of ICSOTLBO with different variants of PSO 

The performance of ICSOTLBO was compared with APSO, OLPSO, and CLPSO on the benchmark functions 

shown in Table 2. The results of APSO, OLPSO, and CLPSO were directly taken from the reference (Satapathy & 

Naik 2014). For fair comparison, the population size and number of function evaluations of ICSOTLBO were kept 

same as in the reference (Satapathy & Naik 2014). The mean and standard deviations of the errors are reported in 

Table 5 for each of the basic benchmark functions shown in Table 2. Further, Wilcoxon’s rank sum test was 

conducted at 0.05 significance level between ICSOTLBO and each of APSO, OLPSO, and CLPSO. The results of 
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the Wilcoxon’s rank sum test are reported in the last three rows of Table 5. It was observed that ICSOTLBO was 

always better than APSO, OLPSO, and CLPSO on 6,3, and 6 benchmark functions respectively. ICSOTLBO 

performed equivalent to APSO, OLPSO, and CLPSO on 1,2, and 1 benchmark functions respectively. For 

comparing the performance of the proposed algorithm with the variants of PSO, Friedman test was also performed. 

The ranks of the different algorithms obtained by Friedman test is as shown in Fig.2. It was observed that 

ICSOTLBO had obtained the best rank in comparison to the different variants of PSO. 

Table 5- Comparison of ICSOTLBO with different variants of PSO (D=30, PN=20, FE=2e+05) 
Function APSO OLPSO CLPSO ICSOTLBO 

Mean SD +,-,= Mean SD +,-,= Mean SD +,-,= Mean SD 

f1 1.5e-150 5.73e-150 - 1.11e-38 1.28e-128 - 1.89e-19 1.49e-19 - 0 0 

f2 5.15e-84 1.44e-83 - 7.67e-22 5.63e-22 - 1.01e-13 6.54e-14 - 0 0 

f3 1.1e-10 2.13e-10 - NA NA NA 3.97e+02 1.42e+02 - 0 0 

f4 0 0 = NA NA NA 0 0 = 0 0 

f5 5.8e-15 1.01e-14 - 0 0 = 2.57e-01 6.64e-11 - 0 0 

f7 1.11e-14 3.55e-15 - 4.14e-05 0 - 2.01e-12 9.22e-13 - 0 0 

f8 1.67e-02 2.41e-02 - 0 0 = 6.45e-13 2.07e-12 - 0 0 

- 6 3 6 + indicates better 

- indicates worse 

= indicates equivalent 

+ 0 0 0 

= 1 2 1 

 

 
Fig.2.Comparison of Friedman ranks of ICSOTLBO with different variants of PSO for basic benchmark functions 

6.3. Comparison of ICSOTLBO with BPSOGSA BGSA and GA 
The performance of ICSOTLBO was compared with BPSOGSA, BGSA, and GA on the benchmark functions 

shown in Table 2. The results of BPSOGSA, BGSA, and GA were directly taken from the reference (Mirjalili et al. 

2014). For fair comparison, the population size and number of function evaluations of ICSOTLBO were kept same 

as in the reference (Mirjalili et al. 2014). The mean and standard deviations of the errors are reported in Table 6 for 

each of the basic benchmark functions shown in Table 2. Further, Wilcoxon’s rank sum test was conducted at 0.05 

significance level between ICSOTLBO and each of BPSOGSA, BGSA, and GA. The results of the Wilcoxon’s rank 

sum test are reported in the last three rows of Table 6. It was observed that ICSOTLBO was always better than 

BPSOGSA, BGSA, and GA.Further, for comparing the performance of the proposed algorithm with the BPSOGSA, 

BGSA, and GA, Friedman test was performed. The ranks of the different algorithms obtained by Friedman test is as 

2,2
3 3,2

1,6

APSO OLPSO CLPSO ICSOTLBO

Rank



shown in Fig.3. It was observed that ICSOTLBO had obtained the best rank in comparison to BPSOGSA, BGSA, 

and GA. 

Table 6- Comparison of ICSOTLBO with BPSOGSA, BGSA, and GA(D=5, PN=30, FE=500) 

Function BPSOGSA BGSA GA ICSOTLBO 

Mean SD +,-

,= 

Mean SD +,-

,= 

Mean SD +,-

,= 

Mean SD 

f1 0.753881836 0.744054218 - 2052.005 41.45277 - 10.0750 24.9445 - 3.1296e-61 1.3963e-60 

f2 0.158447266 0.121911192 - 1.32569 0.67277 - 0.226948 0.23788 - 1.2360e-32 5.4264e-32 

f3 45.2867 94.45 - 509.0988 266.3714 - 555.9039 250.693 - 1.8293e-71 8.1809e-71 

f4 2.464062500 2.429516395 - 7.999 3.45 - 1.59375 1.21348 - 7.8294e-15 3.5014e-14 

f5 1.875194 1.271683 - 5.999694 2.963102 - 2.1896 0.8330273 - 0.9950 0.757 

f6 2.464062500 2.429516395 - 7.999 3.45 - 1.59375 1.21348 - 9.7504e-25 4.3473e-24 

f7 0.541234 0.800463 - 2.947044 1.481999 - 1.399853 1.338105 - 0.1646 0.5067 

f8 0.179551 0.092974 - 0.647846 0.228547 - 0.7067 0.3223 - 0.0666 0.0506 

- 8 8 8 + indicates better 

- indicates worse 

= indicates equivalent 

+ 0 0 0 

= 0 0 0 

 

 

 

Fig.3.Comparison of Friedman ranks of ICSOTLBO with BPSOGSA, BGSA, and GA for basic benchmark 

functions 

7. Performance of ICSOTLBO on computationally expensive benchmark functions 

The proposed algorithm wasfurther tested on 15 computationally expensive benchmark functions as shown in Table 

7.The benchmark functions reported in Table 7 were taken from the set of computationally expensive benchmark 

functions of various years of Congress on Evolutionary Competition (CEC). Most of the test functions reported in 

Table 7are complex functions representing shifted, rotated, expanded versions of basic benchmark functions. In 

Table 7, F1-F5 are unimodal functions, F6-F13 are multimodal functions and F14, F15 are hybrid functions. The 

detailed formulations of these benchmark functions can be found in the reference (Suganthan et al. 2005). The 

different algorithm specific parameters of ICSOTLBO were tuned as in Table 3. The performance of ICSOTLBO on 

these computationally expensive benchmark functions was compared with a number of state of art algorithms like 
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different variants of PSO, DE, GA, TLBO and its variants etc. The results related to these comparisons are presented 

in the subsequent subsections. 

Table 7- List of computationally expensive benchmark functions 

 

7.1. Comparison of ICSOTLBO with TLBO and its variants 

The performance of ICSOTLBO was compared with TLBO and mTLBO on the benchmark functions shown in 

Table 7. The results of TLBO were directly taken from the reference (Zhai et al. 2015; Rao &Waghmare 2013) and 

the results of mTLBO were directly taken from the reference (Satapathy & Naik 2014). For fair comparison, the 

population size and number of function evaluations of ICSOTLBO were kept same as in the references(Satapathy & 

Naik 2014; Zhai et al. 2015; Rao &Waghmare 2013).The mean and standard deviations of the errors are reported in 

Table 8 for each of the basic benchmark functions shown in Table 7. Further, Wilcoxon’s rank sum test was 

conducted at 0.05 significance level between ICSOTLBO and each of TLBO and mTLBO. The results of the 

Wilcoxon’s rank sum test are reported in the last three rows of Table 8. It was observed that ICSOTLBO performed 

better than TLBO on 9 benchmark functions, worse than TLBO on 5 benchmark functions and equivalent to TLBO 

on 1 benchmark function. And, ICSOTLBO performed better than mTLBO on 6 benchmark functions, worse than 

TLBO on 5 benchmark functions and equivalent to TLBO on 4 benchmark functions.For comparing the 

performance of the proposed algorithm with TLBO and its variants, Friedman test was also performed. The ranks of 

the different algorithms obtained by Friedman test is as shown in Fig.4. It was observed that ICSOTLBO was the 

second best performing algorithm in comparison to TLBO and mTLBO. 

 

 

 

Function no Functionname Bounds f_bias 

 

F1 Shifted sphere [-100 100] -450 

F2 Shifted Schwefel's Problem 1.2 [-100 100] -450 

F3 Shifted Rotated High Conditioned Elliptic   [-100 100] -450 

F4 Shifted Schwefel's Problem 1.2 with Noise in Fitness  [-100 100] -450 

F5 Schwefel's  Problem 2.6 with Global Optimum on Bounds [-100 100] 310 

F6 Shifted Rosenbrock's  Function [-100 100] 390 

F7 Shifted Rotated Ackley's  Function with Global Optimum on Bounds [-32 32] -140 

F8 Shifted Rastrigin Function [-5 5] -330 

F9 Shifted Rotated Rastrigin's  Function  [-5 5] -330 

F10 Shifted Rotated Weierstrass Function  [0.5 -0.5] 90 

F11 Schwefel's  Problem 2.13     [-100 100] -460 

F12 Expanded Extended Griewank's  plus Rosenbrock's  Function [-3 1] -130 

F13 Expanded Rotated Extended Scaffe's Function [-100 100] -300 

F14 Hybrid Composition Function 1    [-5 5] 120 

F15 Rotated Hybrid Composition Function 3 [-5 5] 360 



Table 8- Comparison of ICSOTLBO with TLBO and its variants (D=30, FE=3e+05) 
Function TLBO mTLBO ICSOTLBO 

Mean SD +,-,= Mean SD +,-,= Mean SD 

F1 3.39 e-27 1.49 e-27 - 0.00e+00 0.00e+00 = 0.00e+00 0.00e+00 

F2 1.56 e-09 4.20 e-09 + 1.79 e-08 3.46 e-08 - 1.717 e-08 3.41 e-08 

F3 6.81 e+05 4.08 e+04 - 2.02 e+05 1.72 e+05 - 1.8507 e+05 6.2989e+04 

F4 7.35 e+01 9.78 e+01 - 1.92 e+02 1.47 e+02 - 6.87e+01 5.98e+01 

F5 3.16 e+03 6.77 e+02 - 4.21 e+03 1.13 e+03 - 1.7156e+03 5.19e+02 

F6 5.36 e+01 4.12 e+01 - 1.82 e+01 5.79 e+00 - 9.5287e+00 5.4702e+00 

F7 2.09 e+01 3.52 e-02 - 2.07 e+01 3.92e-02 = 2.07 e+01 3.92e-02 

F8 8.59 e+01 1.92 e+01 + 6.34e+01 1.76e+01 + 3.02e+02 9.327e+01 

F9 1.23e+02 3.30e+01 - 6.14e+01 6.13e+00 + 1.09e+02 2.6e+01 

F10 3.09e+01 3.39e+00 + 3.15e+01 1.11e+00 + 3.7e+01 1.2747e+00 

F11 9.93e+03 1.17e+04 + 1.67e+03 3.61e+03 + 3.864e+05 1.35e+05 

F12 4.33e+00 9.27e-01 + 3.19e+00 3.4e-01 + 6.91e+01 4.4e+01 

F13 1.29e+01 1.87e-01 - 1.20e+01 2.11e-01 = 1.20e+01 2.01e-01 

F14 2.80e+02 7.48e+01 + 3.05e+02 6.46e+01 + 3.76e+02 5.04e+02 

F15 5.002+02 1.92e+00 = 5.002+02 2.08e-13 = 5.002+02 0.00e+00 

+ 6 6 + indicates better 

- indicates worse 

= indicates equivalent 

- 9 5 

= 1 4 

 

 
Fig.4-Comparison of Friedman ranks of ICSOTLBO with TLBO and its variants for unimodal and multimodal 

computationally expensive benchmark functions 

7.2. Comparison of ICSOTLBO with different variants of PSO 

The performance of ICSOTLBO was compared with APSO, OLPSO, and CLPSO on the benchmark functions 

shown in Table 7. The results of APSO, OLPSO, and CLPSO were directly taken from the reference (Li et al. 2015). 

For fair comparison, the population size and number of function evaluations of ICSOTLBO were kept same as in the 

reference (Li et al. 2015). The mean and standard deviations of the errors are reported in Table 9 for each of the 

benchmark functions shown in Table 7. Further, Wilcoxon’s rank sum test was conducted at 0.05 significance level 

between ICSOTLBO and each of APSO, OLPSO, and CLPSO. The results of the Wilcoxon’s rank sum test are 

reported in the last three rows of Table 9. ICSOTLBO performed better than APSO on 7 benchmark functions, 

worse than APSO on 7 benchmark functions and equivalent to APSO on 1 benchmark function. ICSOTLBO 

performed better than OPSO on 8 benchmark functions, worse than OPSO on 5 benchmark functions and equivalent 
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to OPSO on 2 benchmark functions. And, ICSOTLBO performed better than CLPSO on 8 benchmark functions, 

worse than CLPSO on 6benchmark functions and equivalent to CLPSO on 1 benchmark function. For comparing the 

performance of the proposed algorithm with different variants of PSO, Friedman test was also performed. The ranks 

of the different algorithms obtained by Friedman test is as shown in Fig.5. It was observed that ICSOTLBO was the 

best performing algorithm in comparison to different variants of PSO. 

Table 9- Comparison of ICSOTLBO with different variants of PSO (D=30, FE=3e+05) 
Function APSO OLPSO CLPSO ICSOTLBO 

Mean SD +,-,= Mean SD +,-,= Mean SD +,-,= Mean SD 

F1 7.01e-14 2.45e-14 - 0.00e+00 0.00e+00 = 5.68E-14 0.00e+00 - 0.00e+00 0.00e+00 

F2 9.97e-13 1.79e-12 + 1.50e+01 1.23e+01 - 8.79e+02 1.79e+02 - 1.717 e-08 3.41 e-08 

F3 3.96e+05 1.59e+05 - 1.46e+07 5.33e+06 - 1.67e+07 4.66e+06 - 1.8507 e+05 6.2989e+04 

F4 7.23e+01 6.02e+01 - 2.26e+03 9.70e+02 - 6.61e+03 1.14e+03 - 6.87e+01 5.98e+01 

F5 5.85e+03 1.45e+03 - 3.28e+03 5.54e+02 - 3.86e+03 5.32e+02 - 1.7156e+03 5.19e+02 

F6 6.94e+00 1.68e+01 + 2.63e+01 2.50e+01 - 5.10e+00 5.43e+00 - 9.5287e+00 5.4702e+00 

F7 2.07e+01 2.97e-02 = 2.09e+01 6.90e-02 - 2.09e+01 5.46e-02 - 2.07 e+01 3.92e-02 

F8 1.48e-13 5.90e-14 + 0.00e+00 0.00e+00 + 1.08e-11 1.02e-11 + 3.02e+02 9.327e+01 

F9 1.50e+02 6.25e+01 - 1.10e+02 3.12e+01 - 1.14e+02 1.50e+01 - 1.09e+02 2.6e+01 

F10 2.78e+01 3.16e+00 + 2.55e+01 2.95e+00 + 2.7 e+01 1.71e+00 + 3.7e+01 1.2747e+00 

F11 1.27e+04 1.70e+04 + 1.33e+04 6.95e+03 + 2.81e+04 6.59e+03 + 3.864e+05 1.35e+05 

F12 1.54e+00 4.05e-01 + 1.92e+00 3.28e-01 + 1.66e+00 5.68e-01 + 6.91e+01 4.4e+01 

F13 1.30e+01 5.24 e-01 - 1.31e+01 2.57 e-01 - 1.29e+01 1.72 e-01 - 1.20e+01 2.01e-01 

F14 3.48e+02 1.50e+02 + 2.5e+02 9.21e+01 + 1.06e+02 5.34e+01 + 3.76e+02 5.04e+02 

F15 7.66e+02 3.23e+02 - 5.002+02 2.86e-13 = 5.002+02 4.14e-13 = 5.002+02 0.00e+00 

+ 7 5 6 + indicates better 

- indicates worse 

= indicates equivalent 

- 7 8 8 

= 1 2 1 

 

 
Fig.5-Comparison of Friedman ranks of ICSOTLBO with different variants of PSO for unimodal and multimodal 

computationally expensive benchmark functions 

7.3. Comparison of ICSOTLBO with different variants of DE 

 The performance of ICSOTLBO was compared with SaDE, jDE and EPSDE on 15 benchmark functions shown in 

Table 7. The results of SaDE, jDE and EPSDE were directly taken from the reference (Satapathy & Naik 2014). For 

fair comparison, the population size and number of function evaluations of ICSOTLBO were kept same as in the 
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reference (Satapathy & Naik 2014). The mean and standard deviations of the errors are reported in Table 10 for each 

of the basic benchmark functions shown in Table 7. Further, Wilcoxon’s rank sum test was conducted at 0.05 

significance level between ICSOTLBO and each of SaDE, jDE and EPSDE. The results of the Wilcoxon’s rank sum 

test are reported in the last three rows of Table 10. ICSOTLBO performed better than SaDE on 5 benchmark 

functions, worse than SaDE on 7 benchmark functions and equivalent to SaDE on 3 benchmark functions. 

ICSOTLBO performed better than jDE on 8 benchmark functions, worse than jDE on 6 benchmark functions and 

equivalent to jDE on 1benchmark function. And, ICSOTLBO performed better than EPSDE on 6 benchmark 

functions, worse than EPSDE on 7 benchmark functions and equivalent to EPSDE on 2 benchmark functions. For 

comparing the performance of the proposed algorithm with different variants of DE, Friedman test was also 

performed. The ranks of the different algorithms obtained by Friedman test is as shown in Fig.6. It was observed 

that jDE was the best performing algorithm followed by SaDE. And, the rank of ICSOTLBO was equivalent to 

EPSDE. 

Table 10- Comparison of ICSOTLBO with different variants of DE (D=30, FE=3e+05) 

 

 

 

 

Function jDE SaDE EPSDE ICSOTLBO 

Mean SD +,-,= Mean SD +,-,= Mean SD +,-,= Mean SD 

F1 0.00e+00 0.00e+00 = 0.00e+00 0.00e+00 = 0.00e+00 0.00e+00 = 0.00e+00 0.00e+00 

F2 1.11e-06 1.10e-06 - 8.26e-06 1.65e-06 - 4.23e-26 4.07e-26 + 1.717 e-08 3.41 e-08 

F3 1.98e+05 1.10e+05 - 4.27e+05 2.08e+05 - 8.74e+05 3.28e+06 - 1.8507 e+05 6.2989e+04 

F4 4.40e-02 1.26e-01 + 1.77e+02 2.67e+02 - 3.49e+02 2.23e+03 - 6.87e+01 5.98e+01 

F5 5.11e+02 4.40e+02 + 3.25e+03 5.90e+02 - 1.40e+03 7.12e+02 + 1.7156e+03 5.19e+02 

F6 2.35e+01 2.50e+01 - 5.31e+01 3.25e+01 - 6.38e+01 1.49e+00 - 9.5287e+00 5.4702e+00 

F7 2.09e+01 4.86e-02 - 2.09e+01 4.95e-02 - 2.09e+01 5.81e-02 - 2.07 e+01 3.92e-02 

F8 0.00e+00 0.00e+00 + 2.39e-01 4.33e-01 + 3.98e-02 1.99e-01 + 3.02e+02 9.327e+01 

F9 5.54e+01 8.46e+00 + 4.72e+01 1.01e+01 + 5.36e+01 3.03e+01 + 1.09e+02 2.6e+01 

F10 2.79e+01 1.61e+00 + 1.65e+01 2.42e+00 + 3.76e+01 3.88e+00 = 3.7e+01 1.2747e+00 

F11 8.63e+03 8.31e+03 + 3.02e+03 2.33e+03 + 3.58e+04 7.05e+03 + 3.864e+05 1.35e+05 

F12 1.66e+00 1.35e-01 + 3.94e+00 2.81e-01 + 1.94e+00 1.46e_01 + 6.91e+01 4.4e+01 

F13 1.30e+01 2.00e-01  - 1.26e+01 2.38e-01 - 1.35e+01 2.09e-01 - 1.20e+01 2.01e-01 

F14 3.77e+02 8.02e+01 = 3.76e+02 7.83e+01 + 2.12e+02 1.98e+01 + 3.76e+02 5.04e+02 

F15 5.002+02 4.80e-13 = 5.52e+02 1.82e+02 - 8.33e+02 1.00e+02 - 5.002+02 0.00e+00 

+ 7 6 7 + indicates better 

- indicates worse 

= indicates equivalent 

- 5 8 6 

= 3 1 2 



 
Fig.6-Comparison of Friedman ranks of ICSOTLBO with different variants of DE for unimodal and multimodal 

computationally expensive benchmark functions 

7.4. Comparison of ICSOTLBO with SPC-PNX and CMA-ES 

The performance of ICSOTLBO was compared with SPC-PNX and CMA-ES on 15benchmark functions shown in 

Table 7. The results of SPC-PNX and CMA-ES were directly taken from the references(Ballester et al. 2005; 

Satapathy & Naik 2014). For fair comparison, the population size and number of function evaluations of 

ICSOTLBO were kept same as in the reference (Ballester et al. 2005; Satapathy & Naik 2014). The mean and 

standard deviations of the errors are reported in Table 11 for each of the basic benchmark functions shown in Table 

7. Further, Wilcoxon’s rank sum test was conducted at 0.05 significance level between ICSOTLBO and each of 

SPC-PNX and CMA-ES. The results of the Wilcoxon’s rank sum test are reported in the last three rows of Table 11. 

It was observed that ICSOTLBO performed better than SPC-PNX on 7 benchmark functions, worse than SPC-NX 

on 7 benchmark functions and equivalent to SPC-NX on 1 benchmark function. And, ICSOTLBO performed better 

than CMA-ES on 6 benchmark functions, worse than CMA-ES on 7 benchmark functions and equivalent to CMA-

ES on 2 benchmark functions.For comparing the performance of the proposed algorithm with SPC-PNX and CMA-

ES, Friedman test was also performed. The ranks of the different algorithms obtained by Friedman test is as shown 

in Fig.7. It was observed that CMA-ES was the best performing algorithm. And, the rank of ICSOTLBO was 

equivalent to SPC-PNX. 
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Table 11- Comparison of ICSOTLBO with SPC-PNX and CMA-ES (D=30, FE=3e+05) 
Function SPC-PNX CMA-ES ICSOTLBO 

Mean SD +,-,= Mean SD +,-,= Mean SD 

F1 9.3524e-9 4.6327e-10 - 1.58e-25 3.35e-26 - 0.00e+00 0.00e+00 

F2 6.9482e-7 1.4911e-6 - 1.12e-24 2.93e-25 + 1.717 e-08 3.41 e-08 

F3 1.1020e+6 4.2081e+5 - 5.54e-21 1.69e-21 + 1.8507 e+05 6.2989e+04 

F4 8.1320e-7 1.7457e-6 + 9.15e+05 2.16e+06 - 6.87e+01 5.98e+01 

F5 4.2374e+3 1.3752e+3 - 2.77e-10 5.04e-11 + 1.7156e+03 5.19e+02 

F6 1.5197e+1 1.4903e+1 - 4.78e-01 1.32e+00 + 9.5287e+00 5.4702e+00 

F7 2.0932e+1 4.5876e-2 - 2.07e+01 5.72e-01  = 2.07 e+01 3.92e-02 

F8 2.3934e+1 6.2477e+0 + 4.45e+02 7.12e+01 - 3.02e+02 9.327e+01 

F9 6.0297e+1 4.0576e+1 + 4.63e+01 1.16e+01 + 1.09e+02 2.6e+01 

F10 1 1255e+1 3.2979e+00 + 7.11e+01 2.14e+00 - 3.7e+01 1.2747e+00 

F11 1.31e+04 1.3346e+04 + 1.26e+04 1.74e+04 + 3.864e+05 1.35e+05 

F12 3.5881e+00 1.0857e+00 + 3.43e+00 7.60e-01 + 6.91e+01 4.4e+01 

F13 1.3131e+1 2.6887e-1 - 1.47e+01 3.31e-01 - 1.20e+01 2.01e-01 

F14 3.6822e+02 9.45e+01 + 5.55e+02 3.32e+02 - 3.76e+02 5.04e+02 

F15 5.002e+02 0.00e+00 = 5.002+02 2.68e-12 = 5.002+02 0.00e+00 

+ 7 7 + indicates better 

- indicates worse 

= indicates equivalent 

- 7 6 

= 1 2 

 

 
Fig.7-Comparison of Friedman ranks of ICSOTLBO with SPC-PNX and CMA-ES for unimodal and multimodal 

computationally expensive benchmark functions 

8. Computational Complexity of ICSOTLBO 

The complexity of the proposed ICSOTLBO algorithm was compared with other state of art algorithms like basic 

PSO, TLBO, GA, and DE. The details related to the evaluation criterion of computational complexity of algorithms 

used in the present work can be found in the reference (Suganthan et al. 2005). The proposed algorithms were tested 

in MATLAB 2016a software installed on a computer with the processor of 64 bit Intel i7 CPU.  The results related 

to the computational complexity of the aforesaid algorithms are presented in Table 12. In Table 12, T0 represents 

the computing time of the base program given by CEC.T1 represents the computing time of F3 for 2e+05 function 

evaluations. T2 represents the mean of the computing time of F3 for 2e+05 function evaluations obtained by running 

the program 5 times. From Table 12, it can beobserved that the computational complexity of ICSOTLBO is less than 
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TLBO and GA but more than PSO and DE. It must be noted that the computational complexity of the algorithm 

increase with the increasing size of the data set. Thus, the computational complexity of all the algorithms may 

increase if we increase the value of D. 

Table 11- Computational complexity of ICSOTLBO, PSO, TLBO and GA(D=30, FE=2e+05) 
Algorithm T0 (sec) T1(sec) T2(sec) |(T2-T1)/T0| 

ICSOTLBO 0.2081 61.7467 62.5996 4.098 
PSO 29.89 29.87 0.0961 

TLBO 55.45 59.98 21.768 
GA 57.87 54.22 17.539 
DE 32.76 32.54 1.057 

 

9. Performance of ICSOTLBO on real-worldproblems 

The performance of the proposed ICSOTLBO algorithm wasfurther tested on real- world problems like Charging 

Station Placement problem and Economic Load Dispatch problem. The performance of ICSOTLBO on these real- 

world problems is illustrated in this section. 

9.1. Performance of ICSOTLBO on Charging Station Placement Problem 

The performance of the proposed ICSOTLBO algorithm was appraised by applying it on solving the complex and 

demanding problem of charging station placement for Electric Vehicles (EVs). EVs are an environment friendly 

alternative to gasoline fuelled vehicles. However, the limited driving range is one of the drawbacks of EVs. The EVs 

need to recharge their batteries in the charging stations after travelling certain distance. These charging stations 

augment the load of the power grid(Deb et al. 2018a; Deb et al. 2019). Thus, the charging station placement must 

take into consideration security of the power distribution network as well as EV user's convenience. There are 

different formulations of charging station placement present in the existing literature (Deb et al. 2018b). In this work 

the charging station placement problem present in the reference (Deb et al. 2017) was solved by ICSOTLBO. The 

decision variables of the charging station placement problem were- 

• Position where charging stations will be placed, b 

• Number of fast charging stations placed at b, NFb 

• Number of slow charging stations placed at b, NSb 

It was considered that the charging stations would be placed at the superimposed nodes (TS) of the road and 

distribution network. Also, it was assumed that the charging stations would only be placed at the strong nodes (S) of 

the distribution network that were not prone to voltage instability.  

The optimization aimed at minimization of the overall cost associated with charging stations. Moreover, the cost 

was divided into the direct and indirect cost. Direct cost considered the installation and operation cost associated 

with charging stations. Indirect cost considered the penalty paid by the utilities for violating the safe limits of 

distribution network parameters like voltage profile, reliability and the travelling distance cost from point of 

charging station to point of placement of charging station. 

The objective function is  

)( travelpenaltyoperationoninstallati CCCCMinJ +++=                                                                                                  (13) 

where Cinstallation represents installation cost of chargers, Coperation represents operating cost of the charging 

stations, Cpenalty represents the penalty paid by utility for violating safe limits of voltage profile and Average Energy 



Not Served (AENS), Ctravel  represents the travelling distance cost from point of charging station to point of 

placement of charging station. 

Subject to  

fastCSFb nN ≤<0                                                                                                                                                    
(14) 

slowCSSb nN ≤<0                                                                                                                                                    (15) 

maxmin SSS i ≤≤                                                                                                                                                        (16) 

maxLL ≤                                                                                                                                                                   (17) 

where nfastCS  and  nslowCS   represent the maximum number of fast and slow charging stations that can be placed, Smin 

and Smax represent lower and upper limit of reactive power flow of each bus, Lmax represents the loading margin of 

the network. 

Apart from the aforementioned constraints the power balance equation must also be considered as an equality 

constraint while solving the charging station placement problem (Deb et al. 2017). 

The charging station placement problem was solved for superimposed IEEE 33 bus distribution network and 25 

node road network. The details of the test system and the input parameters of the charging station placement 

problem can be found in the reference (Deb et al. 2017).  

The performance of ICSOTLBO on solving charging station placement problem was also compared with other state 

of art algorithms like GA, DE, PSO, CSO, TLBO, and CSOTLBO. The different algorithm specific parameters of 

the aforesaid algorithms are listed in Table 13. For fair comparison the population and iteration are fixed to 10 and 

50 respectively for all the aforesaid algorithms. The optimal value of the decision variables for minimization of the 

overall cost and the best value of the fitness function is as reported in Table 14. It was observed that the best fitness 

value obtained by ICSOTLBO was 1.3605 that was better than CSOTLBO, TLBO, CSO, GA, DE, and PSO. A 

statistical comparison of the quality of solution was performed for all the algorithms, the results of which are 

reported in Table 15.The results reported in Table 15 demonstrate the superiority of ICSOTLBO over CSO, TLBO, 

CSOTLBO, GA, PSO and DE in solving the complex charging station placement problem. The convergence curve 

of ICSOTLBO and the aforesaid algorithms for the best fitness value is as shown in Fig.8. 

Table 13-Algorithm specific parameters of different state of art algorithms for charging station placement 

problem 
Algorithm Parameters 

PSO c1=c2=2, w=0.1 

DE CR=0.6, F=1.5 

CSO RN=0.2PN, HN=0.5PN, CN=PN-RN-HN, MN=0.3PN, G=5 

CSO TLBO RN=0.3PN, HN=0.4PN, CN=PN-RN-HN, MN=0.3PN, G=3, INV=5 

ICSOTLBO RN=0.3PN, HN=0.4PN, CN=PN-RN-HN, MN=0.3PN, G=3, INV=5, C=2, S=2 

 

 

 

 



Table 14-Optimal placement of charging stations by ICSOTLBO and other state of art algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15-Statistical comparison of ICSOTLBO with other algorithms in solving Charging Station Placement 

problem 
Algorithm Mean fitness 

ICSOTLBO  1.4268 

CSOTLBO  1.5241 

CSO 1.5430 

TLBO 1.5413 

PSO 1.5413 

DE 1.5497 

GA 1.5584 

 

 

 

 

 

 

 

 

 

Fig.8-Convergence curve of different algorithms for the best fitness value of Charging Station Placement 

problem 

9.2. Performance of ICSOTLBO on Economic Load Dispatch Problem 

Economic Load Dispatch is considered as one of the complex power system optimization problems. The main 

objective of Economic Load Dispatch is to minimize the net cost of generation under a set of operating constraints. 

Optimization 
technique 

Fitness value 
(best) 

b NFb NSb 

ICSOTLBO 1.3605 6 1 2 
3 1 2 
23 1 3 

CSOTLBO 1.4841 6 1 2 
3 1 3 
23 1 3 

CSO 1.4870 6 1 3 
23 1 3 
3 1 2 

TLBO 1.4878 3 1 3 
23 1 3 
28 1 2 

PSO 1.4898 23 1 2 
6 1 3 
3 1 3 

DE 1.4898 23 1 2 
6 1 3 
3 1 3 

GA 1.5075 23 1 2 
3 1 3 
28 1 3 
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Both convex and non convex formulations of Economic Load Dispatch problem are available in the existing 

literature (Bhattacharjee et al. 2014a; Bhattacharjee et al. 2014b; Bhattacharjee et al. 2014c). In the present work, 

Economic Load Dispatch problem with quadratic fuel cost function along with operating limits was solved by 

ICSOTLBO. The objective function is expressed as- 

)( 2

1
iiii

N

i
i PcPbaMinJ ++= ∑

=
                                                                                                                                          (18) 

where N is the total number of generators in the system, ai, bi , ci are the cost coefficients of the ith generator, Pi is the 

output power of ith generator. 

Subject to- 

0
1

=−∑
=

D

N

i
i PP

                                                                                                                                                                
(19) 

maxmin
iii PPP ≤≤                                                                                                                                                           (20) 

where PD represents net power demand of the system, Pi
min and Pi

max represent lower and upper power limit of ith 

generator. 

The Economic Load Dispatch problem with quadratic cost function and operating constraints elaborated by Eq. (18) 

- Eq. (20) was solved by ICSOTLBO. The test system considered was a 38 generator test system. The details of the 

test system and the input parameters were same as reference (Bhattacharjee et al. 2014a; Bhattacharjee et al. 2014b; 

Bhattacharjee et al. 2014c). The performance of ICSOTLBO algorithm in solving Economic Load Dispatch problem 

was compared with other algorithms like RCCRO, TLBO, and DE. The results of RRCO, DE were taken from 

(Bhattacharjee et al. 2014c) and the results of TLBO were taken from (Bhattacharjee et al. 2014b). For fair 

comparison, the population size and number of function evaluations of ICSOTLBO were kept same as in the 

reference (Bhattacharjee et al. 2014b; Bhattacharjee et al. 2014c).The different algorithm specific parameters of 

ICSOTLBO were same as in Table 13 only the value of INV is changed to 10.The mean of the cost function over 50 

trials obtained by the aforesaid algorithms are reported in Table 16.The results reported in Table 16 demonstrate the 

superiority of ICSOTLBO over TLBO, RRCRO and DE in solving the Economic Load Dispatch problem. The 

convergence curve of different algorithms for the best fitness value is as shown in Fig.9. 

Table 16- Statistical comparison of ICSOTLBO with other algorithms in solving Economic Load Dispatch problem 
Algorithm Mean Fitness ($/hr) 

TLBO 9411938.55723 

RCCRO 9412404.277425 

DE 9417237.290970 

ICSOTLBO 9411938.54700 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Fig.9-Convergence curve of different algorithms for the best fitness value of Economic Load Dispatch problem 

10. Future Directions of Work 

The work proposes improvement of basic CSO algorithm and its hybridization with TLBO. The proposed algorithm 

performs satisfactorily on basic, computationally expensive benchmark problems as well as real-world problems. 

However, still there is scope of improving the algorithm and using the algorithm for complex optimization 

problems. Future works that can be undertaken on the proposed algorithm are listed below:  

1. Development of adaptive CSO- CSO has a number of algorithm-specific parameters. Improper tuning of these 

parameters sometimes causes slow convergence of the algorithm. Also, the tuning of these parameters is done by 

trial and error method that is very much time consuming. Hence, development of an adaptive version of CSO is a 

promising area of research. 

2. Solution of complex real-world optimization problems by ICSOTLBO-There are many complex real-world 

optimization problems that are difficult to solve by conventional algorithms. The proposed ICSOTLBO algorithm 

can be utilized to solve real-world complex problems such as optimization of vehicle-to-vehicle frontal crash model 

(Bououden et al. 2017), predictive control of non-linear processes (Bououden et al. 2015), microgrid control 

(Goodarzi and Kazemi 2017), optimal configuration of microgrid (Deb et al. 2016; Ghosh et al. 2017). 

3. Improvement of the algorithm with information feedback models-The proposed ICSOTLBO algorithm does not 

fully utilize the information available from previous iterations. If the information from the previous iterations can be 

utilized properly then it is expected that the quality of the solutions will significantly improve. Thus, introduction of 

the feedback models suggested by Wang et al. 2019 in the proposed ICSOTLBO algorithm is a promising area of 

research. 

4. Hybridization of CSO with other Nature Inspired algorithms-Standalone Nature Inspired Optimization (NIO) 

algorithms are sometimes not efficient enough to handle the uncertainty of the practical optimization problems. 

Hybridization of NIO algorithms offers competitive solutions than standalone NIO algorithms in case of practical 

problems. Also, the hybrid algorithms inherit the advantages of two standalone algorithms, eliminate the limitations 

of the standalone algorithms, and perform better than the standalone algorithms. A good balance between 

exploration and exploitation is maintained in the hybrid algorithms.There is scope of hybridizing CSO with other 
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NIO algorithms. Hybridization of CSO with other NIO algorithms such as Jaya algorithm, Sine Cosine algorithm is 

a promising area of research. 

11. Conclusions 

The work proposes improvement of basic CSO algorithm and its hybridization with TLBO. The performance of the 

proposed algorithm is investigated on basic benchmark functions as well as computationally expensive functions. It 

is observed that the proposed algorithm outperforms many of the state of art algorithms like PSO, DE, GA. Further, 

the proposed algorithm is used for solving the complex problem of Charging Station Placement and Economic Load 

Dispatch problem. The superiority of the proposed algorithm in solving complex real-world problems likeCharging 

Station Placement and Economic Load Dispatch problem is also clearly revealed in the work. Our future work will 

focus on further improvement of CSO, development of adaptive CSO, hybridization of CSO with other evolutionary 

algorithms, solution of complex power system optimization problems by CSO. 
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