
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Karhula, S. S.; Finnila, M. A. J.; Rytky, S. J. O.; Cooper, D. M.; Thevenot, J.; Valkealahti, M.;
Pritzker, K. P. H.; Haapea, M.; Joukainen, Antti; Lehenkari, P.; Kröger, H.; Korhonen, R. K.;
Nieminen, H. J.; Saarakkala, S.
Quantifying Subresolution 3D Morphology of Bone with Clinical Computed Tomography

Published in:
Annals of Biomedical Engineering

DOI:
10.1007/s10439-019-02374-2

Published: 01/02/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Karhula, S. S., Finnila, M. A. J., Rytky, S. J. O., Cooper, D. M., Thevenot, J., Valkealahti, M., Pritzker, K. P. H.,
Haapea, M., Joukainen, A., Lehenkari, P., Kröger, H., Korhonen, R. K., Nieminen, H. J., & Saarakkala, S.
(2020). Quantifying Subresolution 3D Morphology of Bone with Clinical Computed Tomography. Annals of
Biomedical Engineering, 48(2), 595-605. https://doi.org/10.1007/s10439-019-02374-2

https://doi.org/10.1007/s10439-019-02374-2
https://doi.org/10.1007/s10439-019-02374-2


Original Article

Quantifying Subresolution 3D Morphology of Bone with Clinical

Computed Tomography
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Abstract—The aim of this study was to quantify sub-
resolution trabecular bone morphometrics, which are also
related to osteoarthritis (OA), from clinical resolution cone
beam computed tomography (CBCT). Samples (n = 53)
were harvested from human tibiae (N = 4) and femora
(N = 7). Grey-level co-occurrence matrix (GLCM) texture
and histogram-based parameters were calculated from CBCT
imaged trabecular bone data, and compared with the
morphometric parameters quantified from micro-computed
tomography. As a reference for OA severity, histological
sections were subjected to OARSI histopathological grading.
GLCM and histogram parameters were correlated to bone
morphometrics and OARSI individually. Furthermore, a
statistical model of combined GLCM/histogram parameters
was generated to estimate the bone morphometrics. Several
individual histogram and GLCM parameters had strong
associations with various bone morphometrics (|r| > 0.7).
The most prominent correlation was observed between the
histogram mean and bone volume fraction (r = 0.907). The
statistical model combining GLCM and histogram-parame-

ters resulted in even better association with bone volume
fraction determined from CBCT data (adjusted R2 change =
0.047). Histopathology showed mainly moderate associa-
tions with bone morphometrics (|r| > 0.4). In conclusion, we
demonstrated that GLCM- and histogram-based parameters
from CBCT imaged trabecular bone (ex vivo) are associated
with sub-resolution morphometrics. Our results suggest that
sub-resolution morphometrics can be estimated from clinical
CBCT images, associations becoming even stronger when
combining histogram and GLCM-based parameters.

Keywords—Grey-level co-occurrence matrix, Textural anal-

ysis, Micro-computed tomography, Cone beam computed

tomography, Imaging, Osteoarthritis.

INTRODUCTION

Subchondral bone sclerosis, causing increases in
bone volume fraction (BV/TV, ratio of bone volume
and tissue volume), trabecular thickness (Tb.Th.),
trabecular number (Tb.N.) and a decrease in trabecu-
lar separation (Tb.Sp.), has been associated with
osteoarthritis (OA)-driven cartilage defects.2,5,10 These
alterations in subchondral bone are often linked to the
later stages of OA. However, in early OA, contrary
structural alterations in subchondral bone have been
reported within several animal models.1,9,16 Further-
more, an increase in subchondral bone resorption, due

Address correspondence to S. S. Karhula, Research Unit of

Medical Imaging, Physics and Technology, University of Oulu, POB

5000, 90014 Oulu, Finland. Electronic mails: sakari.karhula@oulu.fi,

mikko.finnila@oulu.fi, santeri.rytky@oulu.fi, dml.cooper@usask.ca,

jerome.thevenot@oulu.fi, maarit.valkealahti@oulu.fi, kenpritzker@gmail.com,

marianne.haapea@oulu.fi, antti.joukainen@kuh.fi, petri.lehenkari@oulu.fi,

heikki.kroger@kuh.fi, rami.korhonen@uef.fi, heikki.j.nieminen@aalto.fi,

simo.saarakkala@oulu.fi

Annals of Biomedical Engineering (� 2019)

https://doi.org/10.1007/s10439-019-02374-2

BIOMEDICAL
ENGINEERING 
SOCIETY

� 2019 The Author(s)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10439-019-02374-2&amp;domain=pdf


to abnormally high bone turnover, has also been
observed to occur in progressive OA.23 The contra-
dictory results in subchondral bone alterations in ani-
mal studies, and limited evidence of early OA-related
subchondral bone alterations in human tissue, sup-
ports the need for further research on early OA-in-
duced alterations of human subchondral bone at the
micro- and nanostructural level.

Computed tomography (CT) modalities provide
spatial resolution starting from 100 nm with syn-
chrotron radiation nano-CT up to a 0.2–0.5 mm with
clinical CT, enabling the hierarchical imaging of sub-
chondral bone from the sub-cellular level to the organ
level.21 Desktop micro-computed tomography (lCT)
imaging has become the gold standard for quantifica-
tion of bone morphology and microstructure in 3D.24

When approaching to the spatial resolution of clinical
CT, trabecular bone structure has been reported to be
quantifiable up to 100 lm voxel size.17 On the other
hand, with dental CT-imaged bone, strong associations
between the average of the grey-level values and
microstructural trabecular bone morphometrics from
lCT have been reported in the literature.15

In order to quantify bone microarchitecture from
clinical X-ray based imaging modalities, several texture
analysis algorithms have been applied in osteoporosis
and OA research applications. Notably, fractal analy-
sis and run-length distribution texture analysis meth-
ods from X-ray radiographs, and variogram from
dual-energy absorptiometry, have been reported to
correlate with morphometric parameters of bone.4,19,26

Textural analysis of 2D radiographs has been shown to
be sensitive to OA-related structural alterations and
changes in bone density of subchondral bone.13,14,19

For volumetric data, grey-level co-occurrence matrix
(GLCM) based texture analysis, first introduced by
Haralick,11,12 has been previously applied to medical
CT imaging of bone.8,20,22 Moreover, GLCM param-
eters have shown good correlations to the BV/TV and
biomechanical properties of bone from lCT data when
the volumetric data is re-projected in 2D.30

GLCM-based textural analysis is a method to ex-
tract second order statistical features from grey-level
images. In comparison to histogram based parameters
(i.e. grey-level mean and standard deviation, and his-
togram skewness and kurtosis), GLCM is not related
to the absolute value of the grey-levels but to the
relationship of the pixel’s (or in 3D voxel’s) grey-level
value to the grey-level values of its neighboring pixels/
voxels. Thus, calculating GLCM and histogram-based
parameters are complementary to each other. In the
case of X-ray radiography and clinical CT imaging of
subchondral bone, where resolution is insufficient for
calculating the true morphometrics of bone, the grey-

level values can still be reflective of the microarchi-
tecture.

As CT modalities are used to study bone morpho-
metrics at several hierarchical length scales, histogram
and GLCM-based analysis of the grey-level values are
likely to produce further information from the sub-
resolution features. This will provide new tools to
researchers, to help them analyze their data beyond the
resolution limits of the CT system. This study aims to
quantify sub-resolution bone morphometrics, which
are related to OA, from clinical cone-beam CT (CBCT)
ex vivo. We utilize GLCM texture and histogram-
based parameters of the CBCT-imaged subchondral
bone with various OA severities, and compare them
with the morphometric parameters quantified from
lCT. We hypothesize that trabecular bone morpho-
metrics (BV/TV, Tb.Th., Tb.N., etc.) quantified from
lCT associate with the GLCM parameters and his-
togram parameters calculated from the clinical CBCT
data.

MATERIALS AND METHODS

53 osteochondral cores (Ø = 4 mm) were extracted
from total knee arthroplasty (TKA) patients and from
cadavers without OA diagnosis under the approval of
ethical committees of Northern Ostrobothnia Hospital
District (Finland, Approval No. 78/2013) and Re-
search Ethics Committee of Northern Savo Hospital
District (Finland, Approval No. 58/2013 and 134/
2015). Dental drill with a trephine blade was used for
extracting the cores. From the 53 cores, 46 cores were
extracted from the tibial plateaus of 2 TKA patients
(females aged 68 and 73) and 2 cadavers (males aged 68
and 68). From cadavers, cores from both tibiae were
included (see Table 1). Only one tibia per TKA patient
was subjected to the core extraction, because sample
harvesting from these patients is conducted from the
remnant tibial pieces of the TKA operation. Cores
were extracted from 8 manually determined locations
on the tibial plateau (Fig. 1). The remaining 7 cores
(out of 53) were extracted from the weight-bearing area
of TKA patient femora (N =7, 5 females and 2 males,
age range: 66–86) to ensure high variability in OA
severity. After core extraction, samples were preserved
in a 2 80 �C freezer until thawed for imaging. Prior to
imaging, samples were immersed in 4% saline buffered
formaldehyde for fixation and imaged in the fixation
media.

Harvested cores were imaged with desktop lCT and
with CBCT. The desktop lCT imaging was conducted
with a Skyscan 1272 (Bruker microCT, Kontich Bel-
gium) with 50 kV, 200 lA, 2.75 lm voxel size, 2200 ms
exposure time, 2 h 42 min scan time, 1200 projections
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from 360�, averaging 3 frames/projection, and with a
0.5 mm Al filter. Projection data were reconstructed
with NRecon-software (v.1.6.10.4, Bruker microCT)
with beam hardening and ring artefact corrections
applied.

The CBCT imaging was conducted with the clinical
extremity CBCT scanner (Planmed Verity, Planmed
Inc., Helsinki, Finland) with 80 kV, 12 mA, 200 lm
voxel size, 2 min scan time, 300 projections and 20 ms
pulse time. Reconstruction was conducted with the
manufacturer’s own reconstruction software with
‘‘standard’’ reconstruction filter.

CBCT and lCT volumes were co-registered using
rigid transformations with the Dataviewer-software
(v.1.5.4, Bruker microCT). Each co-registered dataset
was visually evaluated to confirm the successful co-
registration. For the CBCT and lCT comparison,
cylindrical volume of interest (VOI) of
3000 9 3000 9 Z lm3 (where Z is the depth from the
subchondral bone plate, range: 605–4435 lm) was se-
lected from the trabecular bone. Z was restricted based
on how much trabecular bone was left in biopsies after
the surgeries. The VOI was visually evaluated to be
sufficient for each sample so that the minor alterations
to the edges of trabecular bone core due drilling would
be excluded from the analysis. The bone masks were
utilized for the morphometric analyses of lCT-imaged
trabecular bone. Figure 2 presents the flowchart of the
methods and analyses used.

CTAn software (v.1.17.7.2, Bruker microCT) was
used to calculate the relevant 3D morphometrics of the
bone from the lCT data. We considered that the fol-
lowing trabecular bone morphometrics primarily affect
to the grey-level values of CBCT imaged subchondral
trabecular bone: BV/TV, Tb.N., Tb.Th., Tb.Sp., and
local bone surface complexity (fractal dimension, FD).
All the aforementioned morphometrics were calculated
within the VOI of the lCT-imaged trabecular bone
data (Fig. 1).

The histogram and GLCM texture parameters were
calculated from the CBCT data within the VOI de-
scribed above. The histogram parameters (mean,
standard deviation, skewness, kurtosis and image en-
tropy) and GLCM texture parameters were calculated
with Matlab (v.2017b, Mathworks, Natick, MA,
USA).

To briefly summarize the calculation of the GLCM,
the GLCM is a Ng 9 Ng matrix where Ng is the
number of quantized grey levels. The GLCM consists
of elements P(i,j), representing the number of occur-
rences in grey-levels i and j within a certain window
defined by the displacement d and angle h for 2D
images (and for 3D matrix [h, u]). The GLCM is then
normalized by calculating the second order statistical
probability values p(i,j) with Eq. 1:

p i; jð Þ ¼ P i; jð Þ
PNg�1

i¼0

PNg�1
j¼0 P i; jð Þ

: ð1Þ

In our study, 13 GLCMs from 13 individual angles
of the 3D dataset (Supplementary Table 1) were cal-
culated and summed to provide rotationally invariant
texture features. The selection of parameters d and Ng

affect to the calculated texture parameters.7 We se-
lected the voxel displacement d to be 1, because in
CBCT the morphometric features, to which we corre-
lated with the texture parameters, were below our
imaging resolution. For 8-bit grey-level images, the Ng

can obtain values up to 256, reducing Ng from 256 can
decrease the noise and calculation time of the analysis
in the expense of diminution of the information. Pre-
vious studies7 have noted that the classification accu-
racy can be retained when Ng ‡ 24. In this study, Ng

was selected to be 256 for the GLCM generation from
the CBCT, to address the strong impact of the partial
volume effect occurring in CBCT imaging. As the
partial volume effect sums quantifiable micromor-
phometrics in relatively large voxels (as obtained from
CBCT), it is necessary to keep Ng high to avoid addi-
tional loss of morphometric information, which occurs
when grey-levels are grouped during the GLCM cal-
culation.

From the available textural features, inverse differ-
ence moment (IDM), angular second moment (ASM),
contrast, variance, entropy, and cluster shade were
calculated from the summed GLCM. While several
other parameters could be calculated from the GLCM,
in this study, only parameters which have often been
reported in literature were considered (Table 2).

The equation for the image entropy of the his-
togram based parameters is the same as for the GLCM
parameters is described in Table 2. In the case of image
entropy the p(i,j) is replaced by normalized histogram
counts. Thus, as GLCM entropy describes randomness
in texture (within the window limited by the displace-
ment values), image entropy describes randomness of
the grey-level values.

After lCT and CBCT imaging, the osteochondral
cores were subjected to histological analyses. Histo-
logical sections (3 lm thick) were stained with Sa-
franin-O and imaged with a digital pathology slide
scanner (940 magnification and 0.25 lm pixel size;
Aperio AT2, Leica Biosystems, Wetzlar, Germany).
Subsequently, severity of osteoarthritis was evaluated
using the OARSI histopathological grading system27

from three consecutive sections by two independent
graders. In the case of disagreements, a consensus
grade was used for each sample.

Pearson’s correlation coefficients were calculated to
evaluate the association of morphometric parameters
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calculated from lCT with individual histogram and
GLCM texture parameters calculated from CBCT. As
the OARSI grade is ordinal, correlations between the
morphometric, GLCM and histogram parameters
were evaluated using the Spearman’s rank correlation
coefficient. Furthermore, we tested whether multiple
histogram and GLCM parameters could estimate tra-
becular structure better compared to individual his-
togram or GLCM parameters by using stepwise linear
regression with morphometric parameters as depen-
dent variables (separate models) and all histogram and
GLCM parameters as independent variables. Multi-
collinearity in stepwise linear regression was taken into
account by calculating the variance inflation factor
(VIF) and excluding parameters with VIF > 529 from
the models. Furthermore, homoscedasticity of the data
and residual distribution were qualitatively evaluated
from the P–P-plot of regression standardized residuals
and from the residuals vs. fitted plot. These statistical

tests for comparing structural information with
GLCM, histogram parameters and OARSI scores were
conducted for all the 53 samples (osteochondral cores).

To evaluate whether the location of core extraction
affects the results, in addition to correlation coefficients
for the whole dataset, the correlation coefficients for
subgroups based on the origin (TKA patients and
cadavers), compartmental location (medial tibial pla-
teau and lateral tibial plateau, femora excluded), and
areal location (central tibial plateau, anterior tibial
plateau, posterior tibial plateau, and distal tibial pla-
teau) are also reported (see Table 1 for subgroup
sample sizes). The dependency of the location was
tested also with the models generated in stepwise linear
regression described above. The effect of core location
was evaluated by including the subgroup information
to the model to see whether it would have an effect on
the correlation (change in adjusted R2). The number of
cores per subgroup is shown in Table 1. All the sta-

TABLE 1. Sub-groups of the osteochondral samples.

Grouping criteria

Number of cores Patients/group

n N

Total number of cores 53 11 (9 TKA patients, 2 cadavers)

Sample origin

TKA patients 15 2

Cadavers 38 2

Compartmental locationa

Medial tibial plateau 22 4 (2 TKA, 2 cadavers)

Lateral tibial plateau 24 4 (2 TKA, 2 cadavers)

Areal locationa

Central tibial plateau 10 4

Anterior tibial plateau 11 4

Posterior tibial plateau 12 4

Distal tibial plateau 13 4

Number of samples (n) used in parameter comparisons (total number of cores), and number of samples per subgroup for locational

dependency analyses (Sample origin, Compartmental location, Areal location), and number of patients in each group are listed in the table..
aFemoral cores (n = 7, N = 7) excluded..

FIGURE 1. Core extraction and VOI selection. (a) 8 areas from tibial plateau from which the osteochondral cores were extracted.
(b) Sagittal slice of lCT imaged subchondral bone core on which the trabecular bone VOI (green rectangle) and calcified
cartilage—articular cartilage interface (red arrow) are marked.
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tistical tests were performed with IBM SPSS Statistics
software (v.25, IBM Corp., Armonk, NY, USA).

RESULTS

BV/TV from lCT had strong correlation (|r| > 0.7)
with the histogram parameters (mean, standard devi-
ation), and GLCM texture parameters (correlation,
cluster shade, and variance) from CBCT (Table 3 and
Fig. 3). Because BV/TV is highly associated with
Tb.Th., Tb.Sp., Tb.N. and FD, it is not surprising that
GLCM and histogram parameters had similar associ-
ations with these other morphometric parameters too.
However, only few histogram (mean and standard
deviation) and GLCM parameters (correlation and
cluster shade) had strong or moderate correlations

(|r| > 0.5) with all the morphometric parameters. BV/
TV and Tb.N. had the highest correlations with mean
(r = 0.907 and r = 0.834, respectively), Tb.Th. with
standard deviation (r = 0.676), Tb.Sp. with GLCM
variance (r = 2 0.803), and FD with GLCM corre-
lation (r = 0.759). Regarding associations with OA
severity, OARSI grade had moderate correlations with
mean (r > 0.612), standard deviation (r > 0.663), and
with GLCM cluster shade (r > 0.612).

Subgrouping revealed that the histogram mean,
GLCM cluster shade, GLCM variance and GLCM
correlation had strong correlation (|r| > 0.7) with BV/
TV both when the subgroups were considered sepa-
rately (Supplementary Tables 2–5) or pooled together.
Since BV/TV has dependency with other morphomet-
rics, we conducted the stepwise linear regression only
with BV/TV.

FIGURE 2. Flowchart describing the imaging and analysis methods used in this study.
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Stepwise linear regression (Table 4) revealed that
the model with mean and GLCM IDM parameters
yielded highest coefficient of determination (adjusted
R2 = 0.864) with BV/TV, and when compared with the
best individual parameter histogram mean the adjusted
R2 was lower (adjusted R2 = 0.818, adjusted R2

change = 0.046). The model was also robust to the
core extraction location as the addition of location did
not improve the adjusted R2 values (TKA/Cadaver
grouping: adjusted R2 change = 2 0.001; Compart-
mental grouping: adjusted R2 change = 2 0.002;
Areal grouping: adjusted R2 change = 2 0.001).

All trabecular morphometric parameters had sig-
nificant associations with the OARSI grade (p < 0.01),
but the strength of the correlations varied: BV/TV and
Tb.Th. had moderate correlations (r = 0.584 and r =
0.573, respectively), while Tb.Sp., Tb.N. and FD had
weaker associations (r = 2 0.461, r = 0.479, and r =
0.388, respectively) with the OARSI grade (Table 3).

With regard to subgrouping of the samples for
cadavers and TKA patients, all the trabecular mor-
phometric parameters did have weak to moderate
correlations with the OARSI grade in the cadaver and
TKA groups (Supplementary Table 3). From the
morphometric parameters, in both groups, BV/TV
yielded the highest correlation with the OARSI grade
(cadaver group: r = 0.418, TKA group: r = 0.650).
Subgrouping to medial and lateral tibial plateau
groups (Supplementary Table 4), revealed that all the
trabecular morphometric parameters in medial tibial

plateau group had significant correlations ranging
from weak to moderate (0.432 < |r| < 0.684) with the
OARSI grade. BV/TV and Tb.Th. (r = 0.681 and r =
0.684, respectively) had the highest correlations with
the OARSI grade in the medial subgroup. However, in
the lateral tibial plateau only weak correlations of
Tb.Sp. and Tb.N. with the OARSI grade were
observed (r = 2 0.462 and 0.408, respectively).
Compartmental subgrouping (Supplementary Table 5)
showed no significant correlations between the tra-
becular bone morphometrics and the OARSI grade in
distal and anterior groups. However, in central tibial
plateau group, the BV/TV had moderate and signifi-
cant correlation with the OARSI grade (r = 0.673),
and in posterior tibial plateau group BV/TV, Tb.Th.,
and Tb.Sp. had similarly significant and moderate
correlations with the OARSI grade (r = 0.655, r =
0.658, and r = 2 0.598, respectively).

DISCUSSION

In this study, we aimed to quantify sub-resolution
subchondral bone morphometrics related to OA from
clinical CBCT ex vivo. Our results demonstrate that
sub-resolution features can be quantified, from clinical
CBCT using 3D texture analysis by calculating his-
togram and GLCM parameters.

The primary finding of our study is that select
parameters from histogram and GLCM analyses are

TABLE 2. Description of GLCM textural parameters.

Textural feature Equationa Description

Contrast PNg�1

n¼0

i � jð Þ2 PNg

i¼1

PNg

j¼1

p i ; jð Þ
( )

Measure of local grey level variation in the image. The high values of the

contrast can indicate the presence of large local gradient alteration in the

image (e.g. edges, wrinkled textures)

Variance (sum of squares)
PNg

i¼1

PNg

j¼1

i � lð Þ2p i ; jð Þ Describes global variance of the image. Variance puts high weights on grey-

level values dispersing from the mean value of p(i,j). Unlike Contrast,

Variance has no spatial frequency

Angular second moment

(ASM, energy, uniformity)

PNg

i¼1

PNg

j¼1

p i ; jð Þ2 Describes the overall homogeneity of the image. In homogenous images,

GLCM results in few high p(i,j) values which results in high sum of squares.

Thus with increasing textural uniformity (or increasing homogeneity) the

ASM will have increasing values

Inverse difference moment

(IDM, homogeneity)

PNg

i¼1

PNg

j¼1

p i ;jð Þ
1þ i�jð Þ2 Measure of local homogeneity of an image. The weighting factor

(1 + (i 2 j)2)21 emphasizes the pixel pairs with close grey-scale values.

This results in relatively higher IDM in homogenous images. IDM is often

correlated to Contrast, as with high local homogeneity the Contrast tends to

be low

Correlation
PNg

i¼1

PNg

j¼1

ijð Þp i ;jð Þ�lx lyð Þ
rxry

Describes linear dependency between neighboring pixels. High Correlation

values indicate high local grey-level dependency, i.e. similar grey-level

regions in the image

Entropy �
PNg

i¼1

PNg

j¼1

p i ; jð Þlog p i ; jð Þð Þ Measure of the randomness of the texture or intensity distribution. It is (ap-

proximately) inversely correlated to the uniformity

Cluster shade
PNg

i¼1

PNg

j¼1

i þ j � lx � ly
� �3

p i ; jð Þ Measure of the skewness of the GLCM matrix. High Cluster shade value

means that image is asymmetric

aIn all equations lx, ly and rx, ry denote the mean and standard deviation of the row and column sums of the GLCM, respectively.
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associated with specific, micro-level morphometric
structures of subchondral bone better than the others.
As seen in Table 3 and Fig. 3, histogram mean, his-
togram standard deviation, GLCM cluster shade,
GLCM correlation and GLCM variance seem to
associate well with the various morphometric struc-
tures. However, our results also indicate that using
only individual histogram or GLCM parameters to
predict individual morphometric structures might not
feasible. For example, BV/TV had strong correlation
with all of the aforementioned histogram and GLCM
parameters (r > 0.782). Even though histogram mean
had the highest correlation with the BV/TV when all
the cores were included, in some subgroups the
strongest association was with other histogram/GLCM
parameters (e.g. standard deviation in cadavers, medial
tibial, anterior tibial, and posterior tibial plateau sub-
groups, and GLCM cluster shade in lateral tibial and
distal tibial plateau subgroups). Since the relation of
the histogram/GLCM parameters with morphometric
parameters seem to vary depending on the subgroup-
ing, the use of multiple histogram/GLCM parameters
combined to predict the trabecular bone morphomet-
rics is the most preferable option in the future.

The stepwise linear regression model combining
histogram and GLCM parameters (histogram mean
and GLCM IDM) was robust for the location (with all
subgrouping criterias: adjusted R2 change < 0) and
predicted BV/TV better when compared to the indi-
vidual parameters (histogram mean: adjusted R2 =
0.818; histogram mean and IDM: adjusted R2 =
0.864). As the correlation between individual his-

togram mean and BV/TV is already strong, only a
slight increase in coefficient of determination (adjusted
R2 change = 0.047) of combined histogram mean and
GLCM IDM with BV/TV might seem redundant.
However, it should be noted that this study was con-
ducted with small ex vivo osteochondral cores. This set
limitations as the imaging and reconstruction proto-
cols are optimized for in vivo limbs. First of all, we are
lacking the noise generated from the soft tissue and
surrounding bone matrix which is present in vivo.
Secondly, this study uses only 8-bit images as the
imaging and reconstruction parameters did limit the
full utilization of the 16-bit dynamic range for small
osteochondral cores. The combination of the first and
second order grey-level statistics could be advanta-
geous in reducing the effect of noise in the analysis of
the in vivo clinical CT data. This is true especially if 16-
bit dynamic range can be utilized.

In this study, the used voxel size was 200 lm. Due to
the technical advancements in current CBCT systems,
the high resolution scans of extremities with minimal
radiation dose has been surfaced to clinical practice.25

For example, the CBCT scanner used in this study has
been reported to cause only 6 lSv effective dose (with
200 lm resolution) in a CBCT scan of the ankle, which
compares to the effective dose of 4 conventional 2D
radiographs from the same anatomical region.18 The
histogram/GLCM analysis might be best suited for
clinical CBCT images of extremities, especially because
the multidetector CT (MDCT) systems provide poorer
resolution (~ 0.6mm voxel size) with higher radiation
dose.

TABLE 3. Correlation coefficients from comparisons between lCT morphometry, CBCT GLCM and histogram parameters, and
OARSI grade (n = 53).

Trabecular bone morphometrics from lCT

BV/TV (Pearson’s R) Tb.Th. (Pearson’s R) Tb.Sp. (Pearson’s R) Tb.N. (Pearson’s R) FD (Pearson’s R)

Histogram parameters

Mean 0.907** 0.606** 2 0.792** 0.834** 0.691**

Standard deviation 0.891** 0.676** 2 0.757** 0.795** 0.672**

Skewness 0.060 0.191 0.083 2 0.052 2 0.097

Kurtosis 0.154 0.265 0.026 0.026 2 0.026

Image entropy 2 0.129 0.165 0.278* 2 0.215 2 0.063

GLCM texture parameters

Contrast 2 0.059 2 0.121 2 0.104 2 0.052 2 0.185

Correlation 0.782** 0.522** 2 0.751** 0.776** 0.759**

Cluster shade 0.891** 0.600** 2 0.803** 0.825** 0.718**

ASM 2 0.346* 2 0.079 0.592** 2 0.404** 2 0.216

Entropy 0.396** 0.104 2 0.628** 0.454** 0.264

IDM 2 0.317* 2 0.035 0.571** 2 0.382** 2 0.178

Variance 0.825** 0.436** 2 0.820** 0.804** 0.640**

Histology

OARSI (Spearman’s q) 0.584** 0.573** 2 0.461** 0.479** 0.388**

Asterisks (*) indicate for the statistical significance of the correlations (***p < 0.001, **p < 0.01, *p < 0.05). Strong correlations bolded

(|r| > 0.7).
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Other approaches determining trabecular bone
morphometrics from clinical resolution images have
been proposed. Methods utilizing peripheral quanti-
tative CT and lMRI can reach resolutions around 80–
140 lm voxel size, and thus, direct estimates of bone
strength could be calculated.3,28 However, with those
methods, sufficient resolution is required as they often
require binarization steps. In our study, the resolution
of CBCT 200 lm was not sufficient for binarization as
the average trabecular structure thickness varied from
0.5–1 voxel side lengths. In this type of scenario, the
partial volume effect prevents the differentiation of
trabecular bone from the trabecular cavities and the
conventional selection of the threshold values based on
the known attenuation values of bone is not possible.
Approaches using fuzzy skeletonization can partially
overcome the problems of binarization and these
methods have proven good results from MDCT scans
with clinical resolution images (~ 200 lm voxel size).6

Unfortunately, Chen et al. reported that the accuracy

of this method decreases with VOI diameter smaller
than 5.25 mm,6 and in our study the core diameter
restricted the VOI diameter to 3 mm. Therefore,
comparison of those methods with GLCM/histogram
analysis remains to be elucidated in future studies with
larger samples.

The combined histogram/GLCM parameters yiel-
ded better association with the morphometrics than the
individual histogram/GLCM parameters. As this
shows promise for future studies, one must be aware of
collinearity and autocorrelation when creating these
types of multiparameter models from GLCM/his-
togram parameters. There are mathematical based
collinearities and autocorrelations between the
parameters, e.g. between mean and standard deviation
where both are dependent on the grey-level average.
Another example includes inverse relationships
between some of the GLCM parameters, such as
GLCM IDM and GLCM contrast, i.e., another value
increases the other value tends to decrease. In this
study we considered both positive and negative rela-
tions as an advantage in interpretation of our results.
Often with multiple correlations, the simultaneous
statistical interference might result in Type I errors,
and consequently, p values require correction. Here the
interpretation of the individual significant correlations
of the histogram and GLCM parameters were always
compared with the correlations of the variable with
dependency (i.e. previously mentioned mean and

bFIGURE 3. Scatter plots of the highest correlations with the
histogram/GLCM parameters with the different trabecular
bone morphometrics. Correlation coefficients for all
parameters, including the ones presented in this figure, are
presented in Table 3. (a) Scatter plots of the highest
histogram parameter correlations with (from top to bottom)
BV/TV, TbTh., Tb.Sp., Tb.N., and FD. (b) Scatter plots of the
highest GLCM parameter correlations with (from top to
bottom) BV/TV, TbTh., Tb.Sp., Tb.N., and FD.

TABLE 4. Results and coefficient info from stepwise linear regression.

Added subgrouping Model Adjusted R2 Change in adjusted R2 Predictor B ß p value VIF

Sample origin 1 0.818 0.818 Mean 1.018 0.907 < 0.0001 1.000

2 0.864 0.046 Mean 1.179 1.050 < 0.0001 1.435

IDM 29.004 0.261 < 0.0001 1.435

3 0.863 2 0.001 Mean 1.199 1.068 < 0.0001 1.628

IDM 28.141 0.253 < 0.0001 1.471

Subgroup 2 1.149 2 0.047 0.432 1.322

Compartmental locationa 1 0.795 0.795 Mean 0.956 0.894 < 0.0001 1.000

2 0.874 0.079 Mean 1.161 1.086 < 0.0001 1.457

IDM 33.692 0.343 < 0.0001 1.457

3 0.872 2 0.002 Mean 1.166 1.090 < 0.0001 1.552

IDM 34.315 0.349 < 0.0001 1.667

Subgroup 0.294 0.015 0.797 1.147

Areal locationa 1 0.795 0.795 Mean 0.956 0.894 < 0.0001 1.000

2 0.874 0.079 Mean 1.161 1.086 < 0.0001 1.457

IDM 33.692 0.343 < 0.0001 1.457

3 0.873 2 0.001 Mean 1.177 1.101 < 0.0001 1.578

IDM 32.947 0.336 < 0.0001 1.488

Subgroup 0.521 0.048 0.419 1.220

Models predicting BV/TV are based on stepwise linear regression, the models are generated automatically, starting with best individual

histogram/GLCM parameter as predictor (histogram mean = model 1) then further ‘‘significant’’ predictors are added if they improve the

prediction and if their variance inflation factor (VIF) is less than 5 (histogram mean + GLCM IDM = model 2). The locational dependency was

evaluated by manually adding subgroup information to the models (see groups in text and Table 1), which corresponds to the model 3.

Unstandardized coefficients (B), standardized coefficients (ß), and statistical significance (p value) of the predictors for each model are also

reported in the table.
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standard deviation) before making conclusions about
the significance of the parameter correlations. Thus,
understanding of the parameters’ descriptive proper-
ties in addition to the mathematical base is crucial
when generating more complex multiparameter pre-
diction models.

The association of trabecular bone morphometric
parameters with the histopathological OARSI grade
were in line with our previous study.10 With the
increasing OARSI grade, which evaluates the pro-
gressive degeneration of articular cartilage, we found
a similar decrease in trabecular bone separation and
increases in trabecular bone volume fraction, trabec-
ular thickness, trabecular number and fractal dimen-
sion. The main difference compared to our previous
study is that the current associations (correlation
coefficients) between the trabecular bone morpho-
metrics and the OARSI grade are only weak to
moderate, whilst in the previous study the correla-
tions were strong (|r| > 0.7). This difference might be
related to a different and smaller patient population
here. Furthermore, the associations between the
OARSI grade and structural parameters varied in
different subgroups, which supports strong depen-
dence on the sample location. Thus, more controlled
core extraction location-wise would be preferable in
future studies when investigating these kinds of
associations. Interestingly, OARSI had stronger cor-
relations with histogram mean, histogram standard
deviation and GLCM cluster shade (r = 0.612, r =
0.664, and r = 0.612, respectively) while the highest
morphometric parameter association with the OARSI
grade yielded r > 0.584(BV/TV). This gives indica-
tion that the underlying image texture/grey level
information could be used in classification of OA
severity from clinical CT bone data. These associa-
tions between the histogram/GLCM parameters re-
lated to OA severity need to be investigated with a
larger patient population. Still, a smaller patient
population in this study does not restrict us from
making general conclusions on the associations
between local trabecular bone structure and his-
togram/GLCM parameters calculated from clinical
CT images.

In conclusion, we demonstrated that GLCM texture
and histogram-based parameters from trabecular bone
are associated with sub-resolution morphometrics in
CBCT ex vivo. Our results also suggest that sub-reso-
lution morphometrics can be predicted from clinical
CBCT images even more accurately when combining
histogram and GLCM texture based parameters.
These methods show great potential for deriving the
microstructural subchondral bone alterations from
clinical CBCT. However, further studies of the feasi-

bility of the combined use of histogram and GLCM
based parameters for in vivo are required.
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