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Abstract

Electrophysiological signals recorded intracranially show rich frequency content

spanning from near-DC to hundreds of hertz. Noninvasive electromagnetic signals

measured with electroencephalography (EEG) or magnetoencephalography (MEG)

typically contain less signal power in high frequencies than invasive recordings. Par-

ticularly, noninvasive detection of gamma-band activity (>30 Hz) is challenging since

coherently active source areas are small at such frequencies and the available imaging

methods have limited spatial resolution. Compared to EEG and conventional SQUID-

based MEG, on-scalp MEG should provide substantially improved spatial resolution,

making it an attractive method for detecting gamma-band activity. Using an on-scalp

array comprised of eight optically pumped magnetometers (OPMs) and a conven-

tional whole-head SQUID array, we measured responses to a dynamic visual stimulus

known to elicit strong gamma-band responses. OPMs had substantially higher signal

power than SQUIDs, and had a slightly larger relative gamma-power increase over

the baseline. With only eight OPMs, we could obtain gamma-activity source esti-

mates comparable to those of SQUIDs at the group level. Our results show the feasi-

bility of OPMs to measure gamma-band activity. To further facilitate the noninvasive

detection of gamma-band activity, the on-scalp OPM arrays should be optimized with

respect to sensor noise, the number of sensors and intersensor spacing.
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1 | INTRODUCTION

Neuronal gamma-band (>30 Hz) synchronization appears to be a funda-

mental part of neural communication in the brain, having been linked to

a multitude of cognitive functions, such as attentional selection (Fries,

Reynolds, Rorie, & Desimone, 2001; Tallon-Baudry, Bertrand,

Delpuech, & Pernier, 1996) and working memory (Howard et al., 2003;

Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002). The interest in

electrophysiological gamma-band signals (the “gamma buzz”; Buzsaki,

2006; Lachaux, Axmacher, Mormann, Halgren, & Crone, 2012) was initi-

ated by studies in the cat visual cortex that suggested that the binding

of visual stimulus features might be mediated by neuronal synchroniza-

tion at frequencies around 40 Hz (Eckhorn et al., 1988; Gray, König,

Engel, & Singer, 1989); the idea was then formulated as the binding-by-

synchrony hypothesis (Singer, 1999). More recently, it has been also

hypothesized that the precise timing of the gamma oscillations plays a

key role in information transfer between different cortical regions

(Fries, 2015). While these hypotheses have assumed an oscillatoryJoonas Iivanainen and Rasmus Zetter contributed equally to this study.
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mechanism (usually present as a signal increase in a narrow frequency

band; narrowband gamma), it is now appreciated that stimulation also

usually induces a broadband (40–150 Hz) increase in signal power

(broadband gamma or high-frequency activity; Crone, Korzeniewska, &

Franaszczuk, 2011, Lachaux et al., 2012). Broadband gamma has been

shown to be correlated with multiunit activity, reflecting local cortical

processing (Manning, Jacobs, Fried, & Kahana, 2009; Ray, Crone,

Niebur, Franaszczuk, & Hsiao, 2008; Ray & Maunsell, 2011).

Evidence of the link between gamma-band activity and cognitive

functions was originally discovered in invasive experiments in non-

human animals (e.g., Eckhorn et al., 1988; Fries et al., 2001; Gray et al.,

1989). Similar findings were then reported in invasive human measure-

ments using intracranial electroencephalography (iEEG) (e.g., Crone,

1998; Crone, Boatman, Gordon, & Hao, 2001). Gamma-band activity

has also been observed noninvasively in humans using scalp-EEG

(e.g., Ball et al., 2008; Pfurtscheller & Neuper, 1992; Tallon-Baudry

et al., 1996) and magnetoencephalography (MEG) (e.g., Adjamian et al.,

2004; Hoogenboom, Schoffelen, Oostenveld, Parkes, & Fries, 2006).

However, it is commonly understood that the noninvasive detection of

gamma-band activity is difficult due to poor signal-to-noise ratio (SNR)

and spatial resolution of the measurement methods (e.g., Dalal et al.,

2009; Jerbi et al., 2009). Thus, the studies have usually relied on special

stimuli crafted to maximize the gamma SNR.

The disparity in the SNR between invasively and noninvasively

measured neural activity is dependent on the frequency: lower-

frequency activity such as alpha (�10 Hz) and beta (�20 Hz) rhythms

are typically equally present in noninvasive and invasive measure-

ments, while higher frequency activity is proportionally much weaker

in noninvasive measurements (Jerbi et al., 2009). A likely reason for

the low SNR of gamma-band signals detected by EEG/MEG is the

short coherence length of the gamma sources, that is, a patch of cor-

tex producing synchronous gamma activity is smaller than a patch pro-

ducing synchronous activity at lower frequencies (for experimental

evidence in somatomotor cortex see, e.g., Pfurtscheller, Graimann,

Huggins, Levine, & Schuh, 2003 and Miller et al., 2007).

The spatial resolution of EEG is inherently limited by the spatial

low-pass filtering of the neural electric field by the conductivity struc-

ture of the head (Srinivasan, Tucker, & Murias, 1998); the filtering

leads to loss of spatial detail so that nearby sources cannot be sepa-

rated easily or at all. By contrast, the neuromagnetic field measured

by MEG is not as sensitive to head tissue conductivities (Hämäläinen,

Hari, Lounasmaa, Knuutila, & Ilmoniemi, 1993; Iivanainen, Stenroos, &

Parkkonen, 2017; Stenroos & Nummenmaa, 2016) so that the spatial

detail of the field is mostly determined by the measurement distance.

In conventional SQUID-based MEG, the distance of the sensors to

the head (at least about 2 cm) thus limits the spatial resolution.

Recent advances in the development of optically pumped magne-

tometers (OPMs) (Budker & Kimball, 2013; Budker & Romalis, 2007)

has enabled their use in MEG (e.g., Borna et al., 2017; Boto et al.,

2018; Iivanainen, Zetter, Grön, Hakkarainen, & Parkkonen, 2019;

Sheng, Wan, et al., 2017). OPMs, in contrast to SQUIDs, can be placed

in very close proximity to the scalp, considerably boosting both spatial

resolution and sensitivity to neural sources (Boto et al., 2016;

Iivanainen et al., 2017). Thus, OPM-based on-scalp MEG shows great

promise both generally in the context of MEG and specifically for the

detection of gamma-band activity.

In this work, we demonstrate that visual gamma-band responses

can reliably be detected with on-scalp MEG based on currently avail-

able OPMs at a similar or better SNR than with conventional SQUID-

based MEG. Additionally, we demonstrate that source-level analysis

of gamma activity can be performed with a limited number of chan-

nels only covering parts of the scalp.

2 | MATERIALS AND METHODS

2.1 | Subjects

Ten healthy volunteers (six males, four females, 23–33 years of age,

average 27.7 years) with no known history of neurological or psychi-

atric disorders participated in the study. The experimental design took

into consideration the code of ethics as defined in the World Medical

Association's Declaration of Helsinki, and the study was approved by

the Aalto University Ethics Committee. Informed consent was

obtained from all participants.

2.2 | Structural MRI acquisition and segmentation

T1-weighted structural MR images from previous studies were available

for all subjects. The FreeSurfer software package (Dale, Fischl, &

Sereno, 1999; Fischl, 2012; Fischl, Sereno, Tootell, & Dale, 1999) was

used for preprocessing the MRIs and for segmentation of the cortical

surfaces. For each subject, the surfaces of the skull and scalp were seg-

mented using the watershed approach (Ségonne et al., 2004)

implemented in FreeSurfer and MNE software (Gramfort et al., 2014).

These surfaces were thereafter decimated to obtain three boundary

element meshes (2,562 vertices per mesh). For source estimation, the

neural activity was modeled as a primary current distribution con-

strained to the surface separating the cortical gray and white matter

and discretized into a set current dipoles (4,098 locations per hemi-

sphere, three orthogonal dipoles per location).

2.3 | Experimental paradigm and stimuli

To evoke visual gamma-band activity, we used a stimulation paradigm

originally presented by Hoogenboom et al. (2006) and thereafter

employed in a multitude of studies (e.g., Hoogenboom, Schoffelen,

Oostenveld, & Fries, 2010; Scheeringa et al., 2011; Tan, Gross, &

Uhlhaas, 2016; van Pelt, Shumskaya, & Fries, 2018). In short, the

experiment consisted of contracting sine-wave gratings projected on

a screen in front of the subject inside a magnetically shielded room

(MSR). In 80% of the trials, the contraction velocity of the grating

increased at an unpredictable time but not earlier than 50 ms after

the stimulus onset; the subject's task was to detect this increase and

report it as quickly as possible by lifting the right index finger. The

remaining 20% of the trials were a catch condition during which no
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velocity increase occurred. After each response, visual feedback of

the correctness of the subject's response was given.

The parameters of the stimulation paradigm were the same as in

the work by Scheeringa et al. (2011). The stimuli were projected

on a semi-transparent back-projection screen using a projector (ET-

LAD7700/L; Panasonic, Osaka, Japan; lens ET-D75LE3; refresh rate

60 Hz; resolution 1,280 × 1,024), located outside the MSR. The dis-

tance from the eyes to the screen and the stimulus size were adjusted

such that the outer diameter of the grating subtended a visual angle of

5�. Stimuli were presented using the “Presentation” software package

(Neurobehavioral Systems, Inc., Berkeley, CA). Subject responses (finger

lifts) were recorded using an in-house-built optically triggered button.

During an approximately 1.5-hr session (including subject prepara-

tion), the experiment was performed for each subject using both

OPM- and SQUID-MEG. The order of OPM and SQUID measure-

ments was counterbalanced across subjects. Each subject completed

one block of 100 trials per measurement, which lasted approximately

12 min. A 1-min resting-state measurement was performed after the

primary task was completed.

2.4 | MEG acquisition

OPM-MEG was recorded using an array of eight OPMs (Gen-1.0

QZFM; QuSpin Inc., Louisville, CO). The measurement setup is depicted

in Figure 1. The OPMs were placed in a 3D-printed helmet with identi-

cal geometry to that of a commercial 306-channel SQUID-MEG system

(MEGIN Oy [formerly Elekta Oy], Helsinki, Finland). Individual OPMs

were placed into sockets in the helmet, whose positions and orienta-

tions corresponded to those of the occipital sensors of the MEGIN sys-

tem, and inserted until touching the head of the subject. The insertion

depth was manually measured for each sensor. The helmet was

attached to the chair the subject was seated in, and the subject's head

position inside the helmet was adjusted so that the OPM array covered

the occipital cortex. To fix the position of the subject's head inside the

helmet, dummy sensors were inserted into sockets on the sides of the

helmet so that they gently pressed on the head on each side. MEG–

MRI coregistration was performed using an optical scanner as described

by Zetter, Iivanainen, and Parkkonen (2019); an example of coregistered

OPM positions with respect to the subject's head is shown in Figure 1.

For Subjects 1 and 2, an additional ninth OPM was used (seen in

Figure 1, left side); however, for these subjects, one OPM

malfunctioned and was not included in the analysis. The OPM data (sen-

sor bandwidth �130 Hz) were recorded at 1-kHz sampling rate with an

acquisition passband of 0.03–330 Hz using a data acquisition system

based on the electronics of the commercial MEGIN system (Iivanainen

et al., 2019). No additional magnetic shielding was used for the OPMs;

the ambient-field amplitude and its drift inside our three-layer MSR

(Imedco AG, Hägendorf, Switzerland) are typically below �10 nT and

�30 pT/hr, respectively, and thus do not pose any challenges for the

operation of the OPMs (Iivanainen et al., 2019).

SQUID-MEG was recorded using a whole-head 306-channel MEG

system (Vectorview by MEGIN/Elekta Oy; 102 magnetometers;

204 planar gradiometers). The MEG signal was acquired with the same

acquisition parameters as in OPM-MEG. MEG–MRI coregistration was

performed using an electromagnetic digitizer in conjunction with head

position indicator (HPI) coils. Approximately �150 head-shape points

were digitized and five HPI coils were applied. In both measurement

modalities, 1 min of data in the absence of a subject was also recorded.

2.5 | Data analysis

We performed all MEG analysis using the MNE-Python software

(master branch, checked out on October 19, 2018; Gramfort et al.,

2014). Both OPM and SQUID data were band-pass filtered to

0.1–130 Hz before further processing. Epochs were manually

inspected and those containing visible artifacts were rejected.

F IGURE 1 Left: The optically pumped magnetometer (OPM) measurement setup in the magnetically shielded room (MSR). Right: SQUID (top)
and OPM (bottom) sensor positions with respect to the head of a representative subject. The source space used for OPM source estimation is
shown as yellow points [Color figure can be viewed at wileyonlinelibrary.com]
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2.5.1 | Sensor-level analysis

Time–frequency representations (TFRs) of the responses were com-

puted using Morlet wavelets. The frequency spacing for the TFR com-

putation was 1 Hz, with the number of cycles for each frequency f set

to f2. The 2.5-s period preceding stimulation was used as a baseline.

Power spectral density (PSD) was computed using a multitaper

approach. Multiple orthogonal tapers (Slepian, 1978) were applied to

each epoch, after which the spectral density of each channel was

computed by averaging over each taper and epoch. The bandwidth of

the multitaper window function was set to 1 Hz. For baseline spectra,

the 2.0–0.5-s period preceding stimulation was used. For the

stimulation-period spectra, the time period 0.5–2.0 s following stimu-

lation onset was used; the contribution of the initial evoked responses

to the spectra was thus avoided.

For quantitative analysis of the difference in spectral power

between stimulation and baseline, we computed the ratio between

the stimulation and baseline spectra for each sensor. Thereafter, we

fitted a Gaussian function to the gamma-band peak in the relative

spectrum of each sensor using the Trust Region Reflective algorithm

as implemented in the scipy software library (Jones, Oliphant, Peter-

son, et al., 2001). We estimated the gamma power increase (stimula-

tion vs. baseline) by the peak amplitude of the Gaussian, the gamma

frequency by the Gaussian peak frequency and the gamma bandwidth

by the full width at half maximum (FWHM) of the Gaussian. The

Gaussian function amplitude (i.e., the power increase relative to base-

line) was constrained to be higher than 0.1%, peak frequency was

bounded to 40–70 Hz and the bandwidth (FWHM) to 3–47 Hz. The

fitting was initialized with a guess amplitude of 11, center frequency

of 52 Hz, and a bandwidth of 9.4 Hz. In addition, the goodness-of-fits

(GOFs) of the Gaussians were computed. Sensors for which the fitted

Gaussian function had a GOF less than 0.5 or amplitude less than 5%

were considered not to have a gamma response. This relative spectral

power analysis was performed for all subjects for both OPM and

SQUID data.

2.5.2 | Source-level analysis

Forward models were computed using the MRI-derived three-shell

boundary element models (see Section 2.2). OPMs were modeled as

by Zetter, Iivanainen, Stenroos, and Parkkonen (2018), with eight inte-

gration points equally spaced within a 3-mm cube corresponding to

the sensitive volume of the sensor. SQUIDs were modeled as in the

MNE software. For the SQUID measurement, the 102 magnetometers

and the entire whole-brain source space were used in the analysis.

Due to the small number of OPM sensors, we restricted the source

space in OPM analysis to cortical locations within 7 cm of the sensors,

limiting the number of points in the source space to 2,361 ± 197

(mean ± SD) across subjects. The source space for a representative

subject is shown in Figure 1. The subject-specific sensitivity maps that

were used to determine the 7-cm limit are shown in Figure S1,

Supporting Information. For the SQUID measurements, signal-space

projection (Uusitalo & Ilmoniemi, 1997) based on an empty-room

recording was applied to suppress artifacts in frontal channels that

would otherwise corrupt the source estimates.

For source-level estimation of induced power, we employed DICS

beamforming (Gross et al., 2001) as implemented in MNE-Python. To

speed up computation, data were decimated by a factor of 3 before

analysis. Cross-spectral density (CSD) matrices for baseline (2.0–0.5 s

preceding stimulus onset) and stimulation (0.5–2.0 s following stimu-

lus onset) time periods were computed within two frequency bands

corresponding to alpha and gamma bands. The alpha frequency band

(7–13 Hz) was chosen on the basis of sensor-level TFRs to encompass

alpha-band activity for all subjects. Subject-specific gamma bands

were defined using the peak frequencies and bandwidths given by the

Gaussian fits. Since SQUID magnetometer gamma bands were

F IGURE 2 A representative single-trial
response filtered to 0.1–130 Hz (upper traces) and
to 40–70 Hz (lower traces) of optically pumped
magnetometer (OPM), SQUID magnetometer
(mSQUID), and planar SQUID gradiometer
(gSQUID) sensor with the largest gamma-band
response (Subject 6). The dashed vertical lines
indicate the onset and offset of the stimulus.
Responses are from a trial without a change in the
grating contraction velocity
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systematically larger than those for OPMs, we used the union of both

bands to make the source estimates comparable between OPMs and

SQUIDs. CSD computation was performed using a multitaper

approach similar to that used for PSD estimation, with the bandwidth

of the multitaper window function set to 1 Hz. Based on the CSD

matrices, separate spatial filters were computed for, and applied to,

each time period and frequency band to create time- and frequency-

specific source-power estimates. Diagonal loading regularization of

0.01 was applied when computing the spatial filters. The source orien-

tation which produced maximal power was chosen, and no weight

normalization was applied. Finally, the baseline-normalized difference

in source power ((Stimulation − Baseline)/Baseline) was computed for

both frequency bands, and across-subject grand averages were com-

puted after morphing the data to the “fsaverage” template brain (Fischl

et al., 1999). The gamma-band grand-average was limited to those

subjects for which clear gamma-band activity was present in the

sensor-level analysis of both OPMs and SQUIDs, while all subjects

were included for the alpha band grand-average. A comprehensive

tutorial of this type of source analysis can be found in van Vliet,

Liljeström, Aro, Salmelin, and Kujala (2018).

3 | RESULTS

3.1 | Sensor-level analysis

Examples of single-trial responses of all sensor types for Subject 6 are

presented in Figure 2. Gamma-band (40–70 Hz) power increases

are visible in these responses. Across the sensor types, the responses

F IGURE 3 Time–frequency representations (TFRs) of the induced responses. (a) Responses in a representative subject (Subject 6) in optically
pumped magnetometer (OPM; left) and SQUID (right) magnetometers. (b) TFRs of the sensors with the maximal-induced gamma-band response
for OPMs (top row) and SQUID magnetometers (bottom row) across all subjects (one column per subject). The topographic sensor layouts
indicate the sensor of the TFR (black) and a malfunctioning sensor (red) not included in the analysis [Color figure can be viewed at
wileyonlinelibrary.com]
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are qualitatively similar. The OPM signal amplitude is larger than that

of SQUID magnetometer by roughly a factor of two.

Averaged TFR of the induced responses of OPM and SQUID mag-

netometers for Subject 6 are shown in Figure 3a. The TFR of the sen-

sor with the maximum gamma-band response amplitude is presented

in Figure 3b for each subject. Three out of the 10 subjects (Subjects

4, 5, and 10) did not show clear gamma-band activity for either OPM

or SQUID measurements while they did show a decrease in alpha–

beta power with both sensor types. Another four subjects (Subjects

2, 3, 6, and 8) demonstrated a simultaneous narrowband (40–70 Hz)

and a possible broadband gamma increase.

The PSDs and the metrics derived from them are presented in

Figure 4 for all subjects. Subject 9 shows gamma response only with

one SQUID magnetometer. The goodness of the Gaussian fits to the

PSDs of the sensors included in the analysis were 0.75 ± 0.13, 0.75

± 0.13, and 0.68 ± 0.12 for OPMs, SQUID magnetometers and SQUID

gradiometers, respectively (mean ± SD). For subjects with a consider-

able gamma-band response at any sensor, the number of sensors

showing this response was 4–8, 1–50, and 3–22 for OPMs, SQUID

magnetometers and gradiometers, respectively. Across the subjects

and the sensors with a considerable gamma response, the average

gamma power increase relative to baseline was 4.0, 2.7, and 2.1, while

the maximum gamma power was 15.1, 14.1, and 5.1 for OPMs,

SQUID magnetometers and gradiometers, respectively. The average

subject-wise gamma power of the sensors with a considerable

response ranged 2.5–8.1, 1.7–3.5, and 1.6–2.4 for OPMs, SQUID

magnetometers, and gradiometers, respectively.

3.2 | Source-level analysis

Figure 5 shows the average source-power difference in alpha and

gamma bands between stimulation and baseline for both OPMs and

SQUID magnetometers. Gamma-band averages include subjects for

which discernible gamma-band activity was present at the sensor level

for both sensor types (Subjects 1, 2, 3, 6, 7, and 8); alpha-band averages

include all subjects. For subject-level source estimates, see Figures S2

and S3, Supporting Information. The power difference in the grand-

average source estimate was larger for OPMs than for SQUIDs in both

(a)

(b)

F IGURE 4 Power spectral analysis. (a) Top: Power spectral densities (PSDs) estimated prior and during stimulation for the sensor with the
highest gamma-band power for optically pumped magnetometer (OPMs), SQUID magnetometers (mSQUID), and gradiometers (gSQUID) in a
representative subject (Subject 6). Bottom: The ratio of the spectra (black) during stimulation and baseline, illustrating the power increase during
stimulation, and the fitted Gaussian (red). (b) Relative power (stimulation vs. baseline), bandwidth, and peak frequency of the gamma response
(extracted from the fitted Gaussian) across all subjects. The dots represent values for individual sensors [Color figure can be viewed at
wileyonlinelibrary.com]
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alpha and gamma bands. The laterality of the group-level gamma-power

estimate is the same in OPMs and SQUIDs. The shape of the alpha-

power estimate differs slightly between OPMs and SQUIDs.

4 | DISCUSSION

In this work, we applied an experimental paradigm known to elicit

gamma-band activity in the early visual cortices while measuring both

OPM-based on-scalp MEG and conventional SQUID-based MEG. We

showed that this type of gamma activity is well visible in on-scalp OPM-

MEG as well as in conventional MEG, with gamma SNR (as compared to

the baseline power) typically being higher in on-scalp OPM-MEG. In par-

ticular, we showed that with an eight-channel OPM array group-level

source estimates of alpha and gamma power are comparable to those

obtained with a 102-channel SQUID magnetometer array.

4.1 | Gamma-band activity as measured by OPMs
and SQUIDs

As Figures 3 and 4 demonstrate, gamma-band activity was seen with

OPMs at least as well as with SQUID magnetometers. OPM signals

have considerably higher absolute power than SQUIDs, as manifested

already in the single-trial traces shown in Figure 2 and in the PSDs of

Figure 4 due to the shorter distance between the OPMs and the neural

sources.

Two subjects (2 and 6) displayed two separate bands in the gamma

frequency range: one with a lower peak frequency around 30 Hz and

another with a higher peak frequency (see TFRs of Figure 3 and PSDs

of Figure 4a). Such a feature has also been observed earlier using the

same stimuli (Hoogenboom et al., 2006). The lower gamma peak

appeared more visible with OPMs than with SQUIDs in Subject 6 (see

Figure 4a). It is unclear whether the lower frequency peak is due to

broadband (>30 Hz) elevation of power giving an appearance of a sepa-

rate peak, a subharmonic of the higher frequency gamma response, or

an independent oscillation. However, it has been reported that in pri-

mate visual cortex multiple gamma peaks can be induced by large visual

stimuli (Murty, Shirhatti, Ravishankar, & Ray, 2018).

In general, the gamma peak frequency varied considerably across

subjects (Figures 3 and 4), which has also been reported in several

earlier studies (Hoogenboom et al., 2006, 2010; van Pelt et al., 2018)

and which seems to show some genetic dependence (van Pelt,

Boomsma, & Fries, 2012) along with other factors such as sex and age

(van Pelt et al., 2018). For some subjects, significant gamma-band acti-

vation was not detected in either OPM or SQUID measurements, at

least not at the sensor level. Such a lack of visible gamma activity is

also consistent with earlier literature, and may be due to many factors,

such as differences in cortical folding, level of synchronous activity in

cortical circuits, or even cognitive factors such as maintenance of the

attentional focus on the stimulus.

The SQUID magnetometer and especially the OPM data exhibit

significant 50-Hz line interference which could complicate detection

and analysis of responses around 50 Hz. Fortunately, the gamma-

band responses have relatively large bandwidth; the narrow 50-Hz

interference peak only obscures a small portion of the gamma

response. In the spectral analyses, the 50-Hz peak tends to decrease

the values of the relative power at 50 Hz, as seen by the white lines

F IGURE 5 Grand-average normalized source-
power difference between stimulation and
baseline within alpha (7–13 Hz) and subject-
specific gamma bands for optically pumped
magnetometer (OPM; top row) and SQUID
magnetometers (mSQUID, bottom row). The
difference is visualized on the FreeSurfer
“fsaverage” template brain. Color maps are the
same for both sensor types [Color figure can be
viewed at wileyonlinelibrary.com]
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in the TFRs at 50 Hz (Figure 3) and the smaller power ratios around

50 Hz (Figure 4a). Using the Gaussian fits, we can estimate the shape

of the underlying gamma response despite the interference peak;

however, the peak can skew the fit to some degree, possibly

explaining why the estimated gamma bandwidths are systematically

smaller for OPMs than for SQUIDs.

The choice of baseline may affect the gamma power differences in

Figure 4. For example, a slight alpha–beta suppression can be seen for

some subjects during the baseline at approximately 1 s prior to stimu-

lus onset (Figure 3). This MEG response corresponds to the dimming

of the fixation dot, indicating that a trial will begin soon. Including this

response to the baseline could change the obtained results. Indeed,

the obtained power ratios changed slightly depending on which time

windows were used for computing the baseline and stimulation spec-

tra and what the lengths of those were; however, the relation

between OPM, SQUID magnetometer, and SQUID gradiometer

results remained unchanged. The inclusion of this time period in the

baseline had no other visible effects on the results.

4.2 | Optimizing OPMs for detecting gamma-band
activity

Due to the small number of sensors, the coverage of the cortex was lim-

ited in the OPM measurements. In addition, occipital areas were cov-

ered somewhat differently from subject to subject due to differences in

the seating position and head shape; for some subjects, the OPM array

was placed slightly too low to cover the whole occipital cortex

adequately (see Figure S4, Supporting Information). When using partial-

coverage arrays and similar positioning methods as described here,

specific care must be taken when adjusting the relative positions of the

sensors to the head in order to achieve good coverage of the region of

interest.

Our OPM array consisted of eight sensors with an intersensor

spacing of approximately 3.4 cm, which is far from the ideal; the spac-

ing should be roughly the distance from the sensors to the brain

(Ahonen et al., 1993), which is about 1.5 cm measured from the scalp.

Thus, to maximize the amount of spatial detail present at the sensors

and thus the spatial resolution of the method, an on-scalp array with

sensor spacing less than 1.5 cm covering the region of interest in the

brain would be optimal. In the case of the occipital cortex, this would

correspond to �50 sensors.

The aforementioned limitations in sensor count and coverage and

thus also in spatial sampling of the field limit our ability to fully utilize

the benefits of on-scalp MEG arrays for modeling the neural sources.

Nevertheless, we could successfully estimate the underlying sources

from our OPM measurements, with the group-level estimates

corresponding well to those based on the whole-head SQUID-

magnetometer data (Figure 5). The subject-specific estimates also

appear fairly similar for those subjects that had visible gamma-band

activity at the sensor level (see Supporting Information).

In addition to sufficiently sampling the neuromagnetic field, MEG

arrays should also reject external interference, for example, by using

gradiometric techniques. SQUID-based MEG arrays typically comprise

either gradiometers, magnetometers, or both gradiometers and mag-

netometers. Intrinsic OPM gradiometers can be constructed in several

different ways, each with different advantages (see, e.g., Sheng, Perry,

et al., 2017). In addition to noise rejection, gradiometers have implica-

tions for the spatial sampling of the neuromagnetic field (Ahonen

et al., 1993). The optimal spatial sampling of an OPM array can be

achieved not only by placing magnetometers densely, but also with

sensor configurations using both magnetometers and gradiometers.

OPM gradiometer parameters, such as baseline and type (axial

vs. planar), remain to be optimized. Furthermore, by measuring more

field components besides the field component normal to the scalp,

the information content of the measurement can be increased

(Iivanainen et al., 2017). Altogether, OPM array optimization is an

interesting task for future research.

We have previously shown that the optical coregistration method

we applied in the OPM measurement is sufficiently accurate for on-

scalp MEG (Zetter et al., 2018, 2019). Thus, coregistration error

should not be the limiting factor when improving OPM source esti-

mates beyond those obtained from SQUID data. However, when

OPM sensors are packed more densely, crosstalk between the sensors

due to the sensor-wise modulation fields increases. With open-loop

OPMs—such as the ones used here—crosstalk mainly changes the gain

of the sensor and the orientation of its sensitive axis (Tierney et al.,

2019). If crosstalk is not taken into account, it will cause source-

estimation errors (Zetter et al., 2018). We do not believe that

crosstalk will be a severe issue in dense open-loop OPM arrays. If the

array geometry is fixed during the measurement, crosstalk will be con-

stant and can, in principle, be taken into account by calibrating the

sensor gains and sensitive axes. However, due to crosstalk, the sens-

ing axes may not be normal to the scalp even if the sensors are physi-

cally placed as such. Additionally, with a careful design of sensor-wise

coils, crosstalk can be minimized.

Due to the physics of the OPM sensors, their bandwidth is limited

in comparison to SQUIDs, which have no intrinsic maximum measur-

able frequency as far as MEG measurements are concerned. The

bandwidth of the OPMs employed in this work extends to �130 Hz

(falling off 6 dB/octave), which is adequate for the narrowband

gamma (40–70 Hz) we observed here. In contrast, invasively mea-

sured broadband gamma in the visual cortex has been shown to

extend at least to 200 Hz (Hermes, Miller, Wandell, & Winawer,

2014). Thus, to study the entire gamma spectrum, the OPM band-

width should be higher. In addition—besides broadband gamma—there

are other high-frequency MEG signals beyond the current OPM band-

width, for example, axonal �600-Hz -bursts (Curio, 2000) detected in

S1 cortex in response to electric nerve stimulation as well as

150–250-Hz bursts linked to epileptic discharges (RamachandranNair

et al., 2008; Zijlmans et al., 2012). As bandwidth and sensitivity are

inherent trade-offs in OPMs (Budker & Romalis, 2007), further OPM

sensor development is needed to meet the standards set by SQUIDs.

The current commercial OPMs can provide good-quality data, at

least in environments where the ambient interference level is low,

such as in our three-layer MSR. To increase the SNR of the gamma

responses, the OPM noise level could be reduced: depending on the
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subject, sensor noise (9–16 fT/
ffiffiffiffiffiffi

Hz
p

in our eight OPMs) in addition to

the 1/f background brain activity (Buzsaki, 2006; Miller, Sorensen,

Ojemann, & Den Nijs, 2009) was limiting the SNR of the gamma-band

responses. From the spectrum of background brain activity as mea-

sured with OPMs, we estimate that to make the OPM measurement

limited by the brain background activity within the OPM bandwidth

(�130Hz), the sensor noise level should be below 3 fT=
ffiffiffiffiffiffi

Hz
p

.

Here, we used only eight OPMs to successfully record gamma-

band activity. To study specific and localized brain activity with a good

spatial resolution, such small arrays could be sufficient for many appli-

cations provided that the intersensor distance is short enough

(<1.5 cm). These arrays could be operated in a typical shielded room

augmented with active shielding against the static (Boto et al., 2018)

or static and dynamic (Iivanainen et al., 2019) components of the

ambient field. The sensor arrays could also be operated in a low-cost

person-sized magnetic shield (e.g., Borna et al., 2017). Thus, we expect

that MEG could be adopted more widely with the availability of OPMs

and compact shields as one does not need an expensive whole-scalp

MEG system in spacious surroundings for every MEG application.

4.3 | Narrowband versus broadband gamma

There seems to be two or more separate phenomena that are com-

monly referred to as gamma-band activity: synchronized, narrowband

gamma oscillations as well as broadband gamma spanning at least

50–150 Hz (Lachaux et al., 2012). Narrowband gamma, which has also

been termed “binding gamma” within the visual system, can be

observed at least in the visual (e.g., Hoogenboom et al., 2006),

somatomotor (e.g., Bauer, 2006; Gross, Schnitzler, Timmermann, &

Ploner, 2007), and auditory systems (Brosch, Budinger, & Scheich,

2002). There are several hypotheses concerning its role (e.g., Donner &

Siegel, 2011; Fries, 2015; Jensen & Mazaheri, 2010; Wang, 2010).

Broadband gamma, on the other hand, is associated with a general

increase in locally synchronous neuronal firing regardless of stimulus

modality and brain region (Belitski et al., 2008; Liu & Newsome, 2006;

Miller et al., 2014; Mukamel, 2005; Ray et al., 2008). Broadband gamma

provides information about local processing in neuronal circuits and can

thus serve as a highly focal marker of brain activity; for example, it can

reveal spatial differences of the processing of highly similar stimuli (see,

e.g., Flinker, Chang, Barbaro, Berger, & Knight, 2011). Whether and how

narrowband and broadband gamma are related still remains an open

question (Lachaux et al., 2012). Broadband gamma is often observed in

invasive measurements (e.g., Bartoli et al., 2019; Cervenka et al., 2013;

Crone et al., 2001; Crone, Sinai, & Korzeniewska, 2006; Edwards,

Soltani, Deouell, Berger, & Knight, 2005; Hermes et al., 2014) but rarely

in noninvasive ones.

In this work, we primarily studied narrowband gamma oscillations

(here 40–70 Hz) to compare OPM and SQUID recordings. The nar-

rowband visual gamma response to grating patterns seems to be well

visible in MEG, as evidenced by the vast body of MEG studies using

such stimuli to induce gamma-band activity in the visual cortex

(e.g., Hoogenboom et al., 2006; Scheeringa et al., 2011; van Pelt et al.,

2012, 2018). In contrast, we are not aware of any studies directly

quantifying the broadband visual gamma response with MEG. One

explanation why narrowband, but not broadband, gamma would be

well visible in noninvasive recordings is that narrowband gamma may

be spatially more coherent than broadband gamma. However, a recent

study by Bartoli et al. (2019) showed that the sources of narrowband

gamma responses to gratings are quite focal. They examined the nar-

rowband gamma responses with high-density ECoG grids in the visual

cortex and found that the grating stimulus elicited strong narrowband

gamma response across electrodes; however, the phase correlation

between the electrode responses decayed fast with an estimated spa-

tial decay constant of 2.3–2.5 mm. The visibility of narrowband versus

broadband gamma in noninvasive recordings is an intriguing question

that calls for more research and explanations.

We briefly investigated higher frequency activity (>70 Hz), which

should provide a proxy for broadband gamma, see Figure 3. Such

high-frequency power increases were discernible in some of the TFRs

and in the PSDs (see the tails of the PSDs in Figure 4). At the source

level, a slight power increase within the 70–130-Hz band is seen dur-

ing stimulation (especially with SQUIDs); see Figure S5, Supporting

Information. A more extensive analysis and a larger data set with vari-

ous visual stimuli would be needed for a more definitive comparison

of broadband activity as measured by OPMs and SQUIDs.

As on-scalp MEG should have better spatial resolution than conven-

tional SQUID-based MEG (Boto et al., 2016; Iivanainen et al., 2017),

the use of on-scalp MEG to measure broadband gamma is attractive

and could open a new noninvasive window into the functioning of the

human brain. The noninvasive detection and localization of broadband

gamma would be greatly facilitated by more sensitive OPM sensors

assembled into arrays that provide dense spatial sampling of the neu-

romagnetic field and a good coverage of the cortical area of interest.

5 | CONCLUSIONS

We have shown that visual gamma-band responses can be measured

with a small on-scalp OPM array with response quality comparable to

that obtained with a conventional whole-scalp SQUID-based MEG.

Gamma power and SNR were larger in OPMs compared to SQUIDs.

To further facilitate the noninvasive detection of gamma-band activ-

ity, the on-scalp OPM arrays should be optimized with respect to sen-

sor noise, the number of sensors, and intersensor spacing.
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