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Abstract
Wedetermine how to optimally reset a superconducting qubit which interacts with a thermal
environment in such away that the coupling strength is tunable. Describing the system in terms of a
time-localmaster equationwith time-dependent decay rates and using quantumoptimal control
theory, we identify temporal shapes of tunable level splittings whichmaximize the efficiency of the
reset protocol in terms of duration and error. Time-dependent level splittings imply amodification of
the system-environment coupling, varying the decay rates as well as the Lindblad operators. Our
approach thus demonstrates efficient reservoir engineering employing quantumoptimal control.We
find the optimized reset strategy to consist inmaximizing the decay rate fromone state and driving
non-adiabatic population transfer into this strongly decaying state.

1. Introduction

Superconducting qubits, combining sufficient isolation from the external environment and good scalability,
constitute a promising platform for demonstrating quantumadvantage of a quantum computer [1]. The ability
to quickly and accurately reset qubits is a key requirement for reaching the thresholds on state preparation and
gate errors required by contemporary quantum error correction codes. Conventional reset procedures consist of
coupling the qubits to cold environments andwaiting for their thermalization. Although this is effective, it is also
slow due to the inherently small coupling between the qubit and the environment, which sets the time scale of
the thermalization. A faster alternative is to use ancilla systems and to implement a controlled swap of entropies
between the qubit and the ancilla [2, 3] or algorithmic cooling [4, 5]. Another alternative is given by tunable
environments [6–10], which provide a convenient and fast way to initialize qubits on-demandwhile still
employing the idea of thermalization. Amethod utilizing such a tunable environment to efficiently prepare
superconducting qubits in their ground state has recently been brought forward [11]. It exploits the indirect
coupling of the qubit to a low-temperature resistive bath via two intermediate resonators [11] and uses a
protocol that utilizes sequential resonances (SR)with the resistive bath.Here, we use quantumoptimal control
theory (QOCT) to study the efficiency of this reset protocol.

For a givenmodel of a quantum system and its dynamics, QOCTprovides a set of tools for obtaining the
shapes of pulses whichmaximize a desired objective such as a gate or state preparation fidelity [12]. In contrast to
dynamical-decoupling-like approaches [13], QOCTdoes not rely on any a priori assumptions on the timescales
of correlation functions of the system and the environment, and it allows for continuous dynamicalmodulation
withminimal restrictions on the shape, duration, and strength of the applied pulse [12]. In general, QOCT
methods can be distinguished into those that evaluate only the objective functional such as the chopped random
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basismethod [14] and those that alsomake use of the gradient of the objective functional [12]. The latter require
both forward and backward propagation of the systemdynamics and update the pulse shape either sequentially
in time, such asKrotov’smethod [15], or concurrently for all times at once, such as the gradient ascent pulse
engineering algorithm [16]. In particular, QOCT is useful to study the control of open quantum systems since it
allows to determine fundamental performance bounds due to decoherence and decay processes [17].
Remarkably, the latter are not necessarily detrimental butmay also be desired, for examplewhen export of
entropy is required to reach the objective [17]. This is true for cooling in general [18–20] and especially for reset
of qubits to a pure state [2, 21, 22].

Utilizing the coupling to environmental degrees of freedom is also at the heart of quantum reservoir
engineering [23]which deliberately incorporates dissipation into the systemdynamics. In its simplest form, it is
realized by a switchable, constant-amplitude electromagnetic field that drives transitions into a fast decaying
state [23]. For open quantum systemswithoutmemory, the system is driven into the fixed point of the
Liouvillian, with constant and positive decay rates, that governs the dynamics [24, 25]. This idea has found
widespread application in quantumoptical experiments, for examplewith trapped atoms [26], ions [27, 28] and
circuitQEDplatforms [29]. For trapped ions, combining reservoir engineering withQOCThas recently allowed
to determine thefield strengths required to reach the error correction threshold in entangled-state preparation
[30]. For superconducting qubits,major decoherence arises from two-level fluctuators which also render the
dynamics non-Markovian [31]. This can be captured by a strongly coupled environmentalmode [32] or negative
and time-dependent decay rates in amaster equation [33]. However, reservoir engineering protocols have thus
far been limited to exploiting decaywith constant or piecewise constant rates [24, 34–36].

Here, we lift the limitation of constant decay rates by combining reservoir engineeringwithQOCT and a
master equation featuring time-dependent rates. The latter are both controllable and experimentally
implementable with current technologies [11]. UsingKrotov’smethod forQOCT [37], we derive the optimal
shape of the external control fields that determine the time-dependent decay rates in themaster equation.

The paper is structured as follows: in section 2, we introduce both theHamiltonian of themodel and the
main features of the used quantumoptimal controlmethod. In section 3, we present the numerical results for
the optimization of the original protocol and compare it with the previous solution [11].Moreover, we extend
the original protocol by adding two additional sets of control fields and evaluate the influence of the initial fields
withwhich the optimization is started. Finally, in section 4we summarize ourfindings and present the
conclusions of this work.

2.Model andmethods

2.1.Model
Weconsider a three-partite system consisting of twoharmonic oscillators, named left (subscript L) and right
(subscript R) oscillator, and a qubit (subscript q) as sketched infigure 1 and previously discussed in [8, 11].We
assume the two oscillators to be linearly coupled to each other through quadrature operators and the qubit to be
exclusively coupled to the right oscillator. This scenario ismodeled by theHamiltonian (using units inwhich
ÿ=1)

t t t t g t g ti ,

1

L L L R R R q LR L L R R Rq R RH a a a a a a a a a aw w w s s s s= + + + + + - + -+ - + -ˆ ( ) ( ) ˆ ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( )( ˆ ˆ )( ˆ ˆ ) ( )( ˆ ˆ )( ˆ ˆ )
( )

† † † † †

where ,L Ra aˆ ˆ† † and s+ˆ are the creation operators for the left oscillator, right oscillator and qubit, respectively. The
first three terms in equation (1) describe the free evolution of the subsystems, with tq L Rw ( ) being the time-

Figure 1. Schematic diagramof the considered physical scenario consisting of a qubit (q) linearly coupled to a harmonic oscillator (R),
which in turn is linearly coupled to a second harmonic oscillator (L) that is in direct contact with a thermal bath. By temporally
controlling the level splittings tq L Rw ( ) of the qubit, the right and the left oscillator, one can effectively tune the coupling strength to
the bath and change the decay rates over several orders ofmagnitude.
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dependent and controllable level splittings of the qubit, the left and the right oscillator, respectively. The fourth
andfifth termdescribe how the right oscillator is bi-linearly coupled to left oscillator and to the qubit with time-
dependent interaction strengths gLR(t) and gRq(t), respectively.

TheHamiltonian(1) can be simplified by applying a rotating-wave approximation, assuming
g gRq LR

0
Rw<  , where g

LR
0 is the resonant coupling strength between the oscillators. This results in [11]

t t t t g t g ti . 2L L L R R R q LR L R R L Rq R RH a a a a a a a a a aw w w s s s s+ + + + + -+ - - +ˆ ( ) ( ) ˆ ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( )( ˆ ˆ ˆ ˆ ) ( )( ˆ ˆ ˆ ˆ ) ( )† † † † †

Within this approximation, the number of excitations is a conserved quantity in the case of unitary evolution.
Therefore, the totalHilbert space of the system can be conveniently divided into subspaces N where the
number of excitationsN is constant. A state belonging to a subspace N will thus remainwithin the subspace
during the evolution that is solely governed byHamiltonian(2).

However, we consider the three-partite system to be open, interacting with an environment through one of
its subsystems. Specifically, we take the left oscillator to be linearly coupled to a thermal reservoir. Sincewewant
this coupling to be relatively strong (compared to other typical relaxation rates), the right oscillator is needed as
an intermediate component in order to allow efficient decoupling of the qubit from the reservoir. The system-
bath interactionHamiltonian is of the form [11]

, 3int L L RH a a Va= +ˆ ( ˆ ˆ ) ˆ ( )†

where RV̂ is an operator of the reservoir andα plays the role of an effective coupling strength. In order to derive a
master equation for the open system,we employ its instantaneous eigenbasis tnY ñ{∣ ( ) }, defined by

t t t tn n nH wY ñ = Y ñˆ ( )∣ ( ) ( )∣ ( ) , withωn(t) being the respective eigenvalue. In this representation, the system-bath
interaction can be rewritten as

v t t , 4
m n

mn m nint
,

RH Våa= Y ñáYˆ ∣ ( ) ( )∣ ˆ ( )

where

v t t t . 5mn m nL La a= áY + Y ñ( ) ( )∣( ˆ ˆ )∣ ( ) ( )†

Using standard techniques based on aweak-coupling hypothesis and the Born,Markov and secular
approximations [38], it is possible to derive aMarkovianmaster equation for the open system. The decay rates,
responsible for dissipation and decoherence, are given by

t v t S t , 6mn mn mn
2 2

Ra wG =( ) ∣ ( )∣ [ ( )] ( )

whereωmn(t)=ωm(t)−ωn(t) and SR(ω) is the real part of the Fourier transformof the reservoir correlation
function

S s e sd 0 , 7s
R

i
R R RV Vòw = á ñw

-¥

+¥
( ) ˆ ( ) ˆ ( ) ( )

where the average ... Rá ñ is taken over the thermal state of the reservoir and the operators are expressed in the
interaction picture with respect to the bathHamiltonian. The correspondingmaster equation in the Lindblad
form reads

t
t t t t t t t t t t

d

d
i ,

1

2
, , 8

m n
mn mn mn mn mn

,

H L L L Lår r r r= - + G -⎜ ⎟⎛
⎝

⎞
⎠ˆ ( ) [ ˆ ( ) ˆ ( )] ( ) ˆ ( ) ˆ ( ) ˆ ( ) {ˆ ( ) ˆ ( ) ˆ ( )} ( )† †

where the Lindblad operators t t tmn m nL = Y ñáYˆ ( ) ∣ ( ) ( )∣describe transitions among the eigenstates. A derivation
of themaster equation can be found in the appendix. TheHamiltonian tĤ( ) can be directly controlled by tuning
the level splittings tq L Rw ( ). Importantly, the Lindblad operators and decay rates inherit the temporal
dependence from the instantaneous eigenstates and eigenvalues. As a consequence, equation (8) goes beyond the
description based on static decay channels with constant rates, althoughwe have neglected the correlations
arising from the interplay between the temporal dependence of theHamiltonian and the dissipation.

Solving the fullmaster equation (8) is a rather challenging task andwe therefore limit our study to afinite
number of subspaces N . Specifically, we consider the dynamics of the open system in the two subspaces 0
and 1 , i.e. the subspacewith no excitations, gspan 0, 0,0 = ñ{∣ }, and that with a single excitation,

e g gspan 0, 0, , 0, 1, , 1, 0,1 = ñ ñ ñ{∣ ∣ ∣ }where g g0, 0, 0 0L R qñ = ñ Ä ñ Ä ñ∣ ∣ ∣ ∣ ,
e e0, 0, 0 0L R qñ = ñ Ä ñ Ä ñ∣ ∣ ∣ ∣ , g g0, 1, 0 1L R qñ = ñ Ä ñ Ä ñ∣ ∣ ∣ ∣ , g g1, 0, 1 0L R qñ = ñ Ä ñ Ä ñ∣ ∣ ∣ ∣ .In the

restrictedHilbert space, theHamiltonian reads
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H t
t g t

g t t g t

g t t

0 0 0 0
0 i 0

0 i

0 0

9
q Rq

Rq R LR

LR L

w

w

w

=
-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( ) ( )
( ) ( ) ( )

( ) ( )

( )

in the basis g e g g0, 0, , 0, 0, , 0, 1, , 1, 0,ñ ñ ñ ñ{∣ ∣ ∣ ∣ }. This simplifiedmodel can be solved analytically in the basis
of the instantaneous eigenstates t t t, ,1 2 3 1Y ñ Y ñ Y ñ Î∣ ( ) ∣ ( ) ∣ ( ) and the ground state g0, 0,0Y ñ = ñ∣ ∣ .

Accounting exclusively for population decay from the excited states in 1 to the ground state g0, 0, ñ∣ , but
not for the reverse process of thermal excitation7, we obtain the following Lindbladmaster equation, see
equation (8)

t
t t t t t t t

d

d
i , , 10DH r r r r= = - +ˆ ( ) ( )[ ˆ ( )] [ ˆ ( ) ˆ ( )] ( )[ ˆ ( )] ( )

where

t t t t t t t t t
1

2
, 11D

i
i i i i i

1

3

0 L L L L år r r= G -
=

⎜ ⎟⎛
⎝

⎞
⎠( )[ ˆ ( )] ( ) ˆ ( ) ˆ ( ) ˆ ( ) {ˆ ( ) ˆ ( ) ˆ ( )} ( )† †

and the three time-dependent Lindblad operators are given by

t t i, 1, 2, 3. 12i i0L = Y ñáY =ˆ ( ) ∣ ( )∣ ( )

Closed form expressions for the exact eigenvaluesωi(t) and eigenstates tiY ñ∣ ( ) , albeit rather lengthy, are
straightforward to calculate with computer algebra.

Note that in addition to the tunable, engineered environment created by the left oscillator and the resistor,
there exists in general also uncontrollable environments giving rise to the usual background lifetimes. Since the
optimization scheme is essentially independent of suchweak background coupling, we do not consider it further
in this work.

2.2. Physical realization
Themodel introduced above is quite general. In the following, we focus on a possible experimental realization
which implies certain constraints and specific functional dependencies between the bare frequencies of the three
subsystems, t t t, ,L R qw w w{ ( ) ( ) ( )}, and their respective couplings. Themodel described byHamiltonian(1)
can be realized bymeans of a superconducting qubit coupled to two LC resonators [11]. The resonators behave
effectively as quantumharmonic oscillators, the tunable frequencies of which are determined by the capacitance
C and a controllable inductance L, i.e. t L t C1L R L R L Rw =( ) ( ) . In this implementation, the couplings
between the components can be expressed as functions of the physical parameters of the system and the bare
resonator frequencies [11].

The reservoir is realized by connecting a resistor to the left resonatorwith RV̂ in the interaction
Hamiltonian(3) describing voltagefluctuations over the resistor. The resistor can bemodeled as a thermal bath
of bosonicmodes [39], with the bath correlation function(7) corresponding to the Johnson–Nyquist spectrum

S
R

e

2

1
, 13

k TR
B env

w
w

=
- w-

( ) ( )

whereR is the resistance of the resistor andTenv denotes its electron temperature [39]. At low temperature, the
spectral function(13) strongly suppresses emission of thermal excitations from the resistor so that indeed the
population decay is the leading-order dissipative process for the studied three-partite quantum system. The
decay rates can be expressed as [11]

t t t
t t

t e

1

1
, 14i i

i
t k T0 0 0 L L

2 L

R
2 i B env

a a
w w
w

G = G áY + Y ñ
- w-

( ) ∣ ( )∣ˆ ˆ ∣ ( ) ∣ ( ) ( )
( )

( )†
( )

whereΓ0 plays the role of a static decay rate. Note that the decay rates fulfill the detailed balance condition [11]

t
t

k T
texp , 15mn

mn
nm

B env

w
G = - G

⎧⎨⎩
⎫⎬⎭( ) ( ) ( ) ( )

which implies suppression of thermal excitations at low temperatures.

7
For environmental temperatures T 10 mKenv ~ , typical for dilution refrigerators, and qubit frequencies of 5–10 GHz, typical for

superconducting qubits [1], the thermal occupation of states with double or higher excitations ismuch less than 1%. Thermally induced
excitation processes can thus be neglected [11]. Formuch higher temperatures, in contrast, subspaces with higher excitation numbers would
become relevant and thermal excitations need to be taken into account.
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2.3.Quantumoptimal control theory
In general, QOCT aims atfinding the optimal external control fields to steer the dynamics of a quantum system
in the desiredway [12]. The starting point is to express the optimization task as a functional of the yet unknown
external control fields tk{ ( )}

J t g t t td , , . 16k l k l
0

 òa r t r= +t
t

[{ }] [{ˆ ( )}] [{ ( )} {ˆ ( )} ] ( )

Here,ατ denotes thefinal-time target functional which describes the actual optimization task such as the
preparation of a specific target state. Itmay depend on one or several states lr tˆ ( ), where the subscript l denotes
the different initial conditions of the temporal evolution. Furthermore, g describes constraints that are relevant
also at intermediate times, such as constraints on the intensity or spectrumof the yet unknown control fields
[40, 41]. A proper choice of the functional requires that the extremum is attained if and only if the task is carried
out in an optimal way. In the example of state preparation, this is the case if the system statematches the desired
target state perfectly. In the following, we discuss the two terms in the optimization functional(16) inmore
detail.

Thefinal-time functionalαTmeasures howwell the target is reached. For the reset task at hand, we seek to
prepare the qubit in its ground state, irrespective of the initial state of the total system. This can be achieved by
considering the dynamics for several initial states t 0lr ={ˆ ( )}, making sure that all of them result in the desired
target state [42].Moreover, no excitation should be left in any of the two oscillators, since otherwise thesemight
get transferred to the qubit in an uncontrolled fashion later on.Hence, our set of initial states t 0lr ={ˆ ( )}, is
given by any complete basis of the excited subspace 1 . The respective target state is the ground state of the total
system trg 0 0r = Y ñáYˆ ∣ ∣. Thefinal-time functional reads

1
1

3
, , 0; , 17

l
k l

1

3

trg  åa r t r= - á ñt
=

ˆ ( { }) ˆ ( )

where , TrA B A Bá ñ =ˆ ˆ { ˆ ˆ}†
and , 0; k t( { }) is the control-dependent dynamicalmap. Sinceατmeasures the

remaining population in 1 at final time τ, it corresponds to the error of the reset protocol. An ideal protocol is
given byατ=0,which can be attained if and only if no population is left in 1 . Thefinal-time functionalατ

provides ameasure for how far thefinal state of the system is away from the desired target. It does not contain
any information about the dynamics that brought it there.

Although our aim is tominimize equation (17), which quantifies the reset error, wewill achieve this by
minimization of the total functional(16). To this end, we employKrotov’smethod [15, 43], an iterative
optimization algorithm that comeswith the advantage ofmonotonic convergence. Note that inKrotov’s
method, the function g is needed even if we do notwant to impose constraints on the control fields or the system
dynamics. In particular, the choice of g determines the update rule for the control fields tk{ ( )} [37, 44]. Given
thefinal-time target, a choice of g in equation (16), and the equation ofmotion for the system, equation (10),
Krotov’smethod provides a recipe to derive an optimization algorithm to determine k [37]. Here, we use the
standard choice ofminimal amplitude increase per iteration step [44]

g t
S t

t t , 18k
k

k

k
k k

ref 2  å l
= -[{ ( )}]

( )
[ ( ) ( )] ( )

where tk
ref ( ) is a reference field for each tk ( ), taken to be thefield from the previous iteration, S t 0, 1k Î( ) ( ]a

shape function to smoothly switch thefieldmodulations on and off, andλk a parameter that controls the update
magnitude of tk ( ) in each optimization step.Due to the choice of tk

ref ( ) to be the control field from the last
iteration, the difference t tk k

ref -( ) ( ) approaches zero as the optimization converges. Hence, the contribution
of g to the total functional(16)decreases aswell. As the optimum is approached, the value of the overall
functional(16) is essentially given by the value ofατ as desired.

With equation (18), the update equation for tk ( ) reads [37]

t t
S t

t t, , 19k
i

k
i k

k l
l

i k

k t
l

i1 1

k
i 1

 
 

 
ål

c r= +
¶

¶
+ ¢ +

¢
+

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

( ) ( ) ( ) ˆ ( ) [{ }] ˆ ( ) ( )( ) ( ) ( )

{ ( )}

( )

( )
Im

where tl
i 1r +{ˆ ( )}( ) are the forward propagated initial states spanning 1 , obtained by solving

t
t t

d

d
i . 20l

i
k
i

l
i1 1 1 r r= -+ + +ˆ ( ) [{ }] ˆ ( ) ( )( ) ( ) ( )

The so-called co-states tl
ic{ ˆ ( )}( ) in equation (19) are solutions of the adjoint equation ofmotion

t
t t

d

d
i , 21l

i
k
i

l
i c c=ˆ ( ) [{ }] ˆ ( ) ( )( ) † ( ) ( )
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with boundary condition l
i

l l
ic t a= -r t t r t¢

ˆ ( ) ∣( )
ˆ ( ) { ˆ ( )}( ) . The derivative ofατwith respect to r̂l(τ) can be turned

into a usual gradient by representing the states in a complete, orthonormal basis [44]. Note that the indices
(i+1) and (i) indicate values for current and last iteration, respectively.

Aswith any optimization algorithmbased on variational calculus, Krotov’smethod requires the calculation
of gradients—one of them the gradient of the dynamical generator with respect to the controls, see
equation (19). Peculiarly, not just theHamiltonian Ĥ, see equation (9), but also the dissipator D , see
equation (11) depends on the controls and thus contributes to the gradient

i , . 22k

k

k

k

D k

k

H 







 


r r r

¶
¶

= -
¶

¶
+

¶
¶

¢ ¢ ¢
⎡
⎣⎢

⎤
⎦⎥

[{ }] ˆ
ˆ [{ }] ˆ [{ }] ˆ ( )

Whereas the gradient of theHamiltonianwith respect to ,L Rw w and qw is straightforward to calculate, see
equation (9), the gradient of the dissipator D is rather lengthy to evaluate, see equation (11). This inconvenience
is due to the dependence of the decay ratesΓi0 and Lindblad operators iL̂ on the instantaneous eigenvaluesωi(t)
and eigenstates tiy ñ∣ ( ) . The required derivatives ofωi(t) and tiy ñ∣ ( ) with respect to ,L Rw w , and qw have been
algebraically calculated using computer software.

3.Numerical results

3.1.Optimization of the original protocol
The original protocol [11] is based on a simple choice for the left-oscillator frequency tLw ( ). Effectively, it
consists of two stages, namely tLw w= +( ) and tLw w= -( ) , separated by an intermediate ramp. The entire
protocol reads
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where τ is the total protocol duration, τ/2 is the hold time at each stage, and tR=τ is the ramping duration. The
ramp formula has been chosen to be

t f
t t

t t
24L 0 1 0

0

1 0

w w w w= + -
-
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

with f x x x x6 15 105 4 3= - +( ) , which ramps tLw ( ) smoothly fromω0 toω1 as time goes from t0 to t1. The
operation points w+ andω− have been chosen such thatΓ20(t)=Γ30(t) in the case ofω+ andΓ10(t)=Γ20(t) for
ω−. This choice guarantees that any excitation decays at some point of time during the protocol.

Figure 2 illustrates the performance of the protocol of SRwith the resistive bath as a function of its duration
τ. It shows a rapid approach towards errors at as small as 10−6 for 2000 nst = for the parameters listed in
table 1. Although thismay be sufficient for some applications, the SR exhibits a plateau for longer durations,
preventing it even theoretically to reach significantly smaller errors. The plateau is caused by population being
locked in the excited state of the right oscillator—an unfavorable feature that is apparently not resolvable by
simply extending the protocol duration.However, taking equation (23) as the initial guess for the above
described optimization procedure, figure 2 shows that, depending on τ, an improvement of up to two orders of
magnitude in the errorατ compared to the SR is possible. In addition, this optimized protocol (OP1) also
resolves the issue of the plateau, reaching errorsατ<10−7. The improvement with respect to the protocol
duration is comparativelymodest, as the inset offigure 2 illustrates. Taking, e.g.ατ=10−4 as a sufficiently small
error, the speedupwith respect to the SR is roughly 280 nstD » .

Figure 3 compares the decay dynamics of SR andOP1, for 1500 nst = , showing the population of the
excited eigenstates infigures 3(a) and the respective decay rates and control fields tLw ( ) generating them in
figures 3(b) and (c).We observe that the original two-stage protocol (SR) acts as intended, i.e. the population
decays from all three eigenstates of 1 . Since the intermediate ramp transfers a significant amount of population
from 1Y ñ∣ to t,2 20Y ñ G∣ ( ) needs to be sufficiently large also during the second stage. Note that this population
transfer between different eigenstates within 1 occurs due to non-adiabatic transitions caused by changes of
those particular eigenstates8. These are caused by changes in the control function tLw ( ), i.e. the ramps in the SR.

A similar reasoning readily explains also the behavior of the control field in case ofOP1, shown infigure 3(c).
Compared to the SR, the optimization effectively shifts the base levels of Lw at both stages and adds oscillations

8
Note that the population transfer between different eigenstates due to non-adiabatic transitions is accompanied by a contribution

originating from the change in the eigenstates themselves.
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on top. This results in an increase ofΓ10(t) and a decrease ofΓ20(t), see figure 3(b), in particular during the
second stage, directly causing the population of t1Y ñ∣ ( ) ( t2Y ñ∣ ( ) ) to decay faster (slower). The additional
oscillations, even though having small amplitude, drive non-adiabatic transitions between 1Y ñ∣ and 2Y ñ∣ , which
primarily transfer population to the fast decaying state 1Y ñ∣ , see figure 3(a). This becomes evenmore clear by
inspecting figures 3(d) and (e), which show the spectra corresponding to the insets offigure 3(c). In both cases,
the frequenciesmatch the differences between various eigenvaluesωi, evaluated atω+ andω− for Lw in the left
and right inset, respectively.Whereas the spectrum shown infigure 3(d) is dominated by a peak at 2 3w « , which
does not seem to have a notable impact on the dynamics,figure 3(e) exhibits a peak at 1 2w « and is responsible
for the above-mentioned population transfer between 1Y ñ∣ and 2Y ñ∣ . The combination of increasing decay rates
and engineered population transfer results in the excitation tomore efficiently decay fromboth states. The
required control of the left oscillator frequency tLw ( ) can, for instance, be achieved by Josephson parametric
amplifiers [45].

The optimization studied infigure 3 changes the coherent part of the evolution compared to the SR, creating
non-adiabatic transitions by suitablymodulating tLw ( ) and adapting the decay ratesΓi0(t) accordingly. Both
effects are necessary to explain the observed improvementwith respect to the SR. In contrast,figure 2 shows also
optimization results where the systemdynamics has been completely ignored in the optimization process. In this
case, theminimization of equation (16) has been replaced by a functional targeting equal dissipation rates (ER).
Namely, we have optimized tLw ( ) to yield R R R1 2 3» » with eachRi as large as possible, where

Figure 2.Excited state populationατ, equation (17), as a function of protocol length τ for different control fields. SR denotes the
original protocol utilizing sequential resonances with the resistive bath [11], CP refers to a protocol with only constantfields, andOP1,
OP2, andOP3 are results obtainedwith SR orCP as guess control fields to start the optimization (seemain text for detailed
explanations). An optimization targeting equal dissipation rates, see equation (25), instead ofminimizingατ is labeled by ER. The
inset highlights the speedup due to the optimization, by comparing the durations for which the optimized protocols and the SR reach
an error of 10−4. The parameters are summarized in table 1.

Table 1.Parameters used in the calculations for the setup
shown infigure (1).The parameters are taken from [11]
and correspond to an experimentally feasible circuit
QED realization.Here,Tenv is a typical temperature for
dilution refrigerators used to operate superconducting
qubits [1].

Left oscillator frequency 2L0w p 11.5 GHz

Right oscillator frequency 2Rw p 10.0 GHz

Qubit frequency 2qw p 9.5 GHz

Right osc.-qubit coupling gRq/ 2π 68 MHz

Left-right osc. coupling g 2LR0
p 74 MHz

Static decay rate Γ0 31 MHz

Temperature Tenv 10 mK
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R t t id , 1, 2, 3, 25i i
0

0ò= G =
t

( ) ( )

are the time-integrated dissipation rateswhich are independent of the systemdynamics. The naive assumption
behind this optimization is that, since all states , ,1 2 3r r rˆ ˆ ˆ are equally weighted in equation (17), equal dissipation
fromall of themmay be a good choice to decrease the errorατ. However, this is not the case, see figure 2, which
emphasizes the interplay of coherent and dissipative dynamics in the problem at hand.

3.2.Optimizationwith an extended set of control fields
In the following, we extend the SR by assuming the frequencies of the right oscillator and of the qubit, tRw ( ) and

tqw ( ), to be temporally controllable. Since the eigenvaluesωi(t) and eigenstates tiY ñ∣ ( ) (i=1, 2, 3) depend on all
three frequencies, ,L Rw w and qw , changing any of themmay affect the dynamics. In other words,more control
fields give the optimizationmore flexibility to steer the systemdynamics in the desiredway and engineer the
dissipation ratesmore appropriately.

First, we inspect infigure 4 how the decay rates change as a function of the level splittings ,L Rw w , and qw .
Two important observations can bemade from figure 4. On one hand, the decay rates are stillmutually
exclusive, in the sense that there exists no combination such that two of them aremaximal at the same time.On
the other hand, the attainable totalmaximumof each individual decay rate as a function of all three controls

,L Rw w and qw does not change.Hence, adjusting Rw or qw in addition to Lw does not yield essentially larger
rates, and there will not be a significantly faster decay to the ground state. Although no naive improvement is to
be expected from simply increasing the decay rates, i.e. due to the dissipative part of the dynamics, onemay still
achieve an improvement bymore appropriately steering the coherent part.

Figure 2 shows optimization results for the case that all three frequencies are time-dependent (OP2). The
initial guess has been chosen according to the SR, i.e. equation (23) for tLw ( ) and constant values for ,R qw w .
Despite the extended set of controls, the optimization does not yield errors significantly below the casewhere

Figure 3.Dynamics for the SR (dashed lines) and its optimized versionOP1 (solid lines) for a protocol duration of 1500 nst = , see
figure 2.Note that dashed lines partly overlap. (a)Population in the three eigenstates of the excited subspace 1 . (b)Decay rates, see
equation (14), from 1 into the total ground state 0Y ñ∣ . (c) Left oscillator frequency tLw ( ) following the original two stage protocol of
equation (23). The two stages are still visible in the optimized version, withmodulations on top, as highlighted by the two insets. The
shaded area in the left inset corresponds to fast oscillations, which are not resolved due to the linewidth. (d) and (e) show the frequency
spectra of the optimized splitting tLw ( ) from the left and right insets of (c), respectively. The vertical lines indicate frequency
differences, i j i jw w w= -« ∣ ∣with i i Lw w w= ( ) being the instantaneous eigenvalues.
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only tLw ( ) is controlled. This finding is reproducible evenwhen using different sets of controls, such as only
using tqw ( ) and Lw or only using tqw ( ) and Rw (data not shown).We therefore expect that further controls
beyond tLw ( ) do not allow the coherent part of the dynamics to be steeredmore efficiently.

In order to study this expectation further and evaluate the impact of the guess fields, we have carried out
optimizations with all three possible controls.Whereas Rw and qw have been set constant as initial guess, tLw ( )
has been chosen as t 2Lw w w= ++ -( ) ( ) with additional ramps in the beginning and end.Due to this choice,
Γ20 is almostmaximal during the entire protocol, whereasΓ10 andΓ30 are orders ofmagnitude smaller, see
figure 4. Thus, only population in 2Y ñ∣ decays fast. Simply extending the protocol duration τwill not solve the
problemof smallΓ10 andΓ30. Upon optimization, we are, however, able tofind fields yielding similarly small
errorsατ as before, seeOP3withOP1 andOP2 infigure 2.We again analyze an exemplary dynamics for

1500 nst = in figure 5. Figure 5(a) shows the population dynamics. As expected, the population in 2Y ñ∣ decays
rapidly under the constant guess fields, while 3Y ñ∣ exhibits only slow decay and the population in 1Y ñ∣ is almost
conserved. The respective decay rates and control fields are shown infigures 5(b) and (c). Interestingly, the
optimization leaves the base levels of each control field unchanged, again adding small oscillations on top.
Consequently, the decay rates are unchanged inmagnitude but exhibit small oscillations aswell. SinceΓ20 is
alreadymaximal by choice of the guess fields, see figure 4, there is no possibility for the optimization to increase
it. Instead, the optimization ensures that all excitations are coherently transferred to this strongly decaying state
—in our example from 1Y ñ∣ and 3Y ñ∣ to 2Y ñ∣ , as evident fromfigure 5(a). Thus, wefind a similar reset strategy as in
figure 3: The control fields are tailored such that a single decay rate (not necessarily the same at different times) is
maximal and population is transferred coherently into this strongly decaying state.

We expect the reset strategies illustrated infigures 3 and 5 to be feasible for essentially any combination of
control fields and choice of guess fields. This follows from the decay rates beingmutually exclusive, see figure 4,
i.e. if one state has amaximal decay rate, the other two states decay slower. All that is hence required is to ensure
coherent population transfer into this statewhich seems to be possible by tailoring the control fields.
Remarkably, the addition of further control fields does not result in significantly smaller errorsατ, see figure 2.
In fact, tLw ( ) alone is already sufficient to fully control the decay rates and engineer the required population
transfer. Nevertheless, addingmore control options increases flexibility and is thus potentially beneficial in
experiments, especially if certain control fields are convenient to implement experimentally.

4. Summary and conclusions

In summary, we have studied howoptimization of external control fields speeds up the initialization of a
superconducting qubit which is tunably coupled to a thermal bath via two resonators. The control knobs are the
time-dependent level splittings of the qubit and the resonators. Starting from a protocol utilizing SRwith the

Figure 4.Decay ratesΓi0 from the excited subspace 1 into the total ground state 0Y ñ∣ , see equation (14), as a function of level
splittingsωL andωR and for three different values ofωq.
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resistive bath and employing the level splitting of a single resonator as the only control field, while assuming the
initial state to be confined to the single excitation subspace [11], we have replaced the analytically derived
temporal dependence by a numerically optimized control field. This has allowed us to obtain an improvement in
both the reset speed and fidelity.

We have also testedwhether addingmultiple control fields, by explicitly accounting for the tunability of the
level splitting of the qubit and of the second resonator, results in additional improvements. This has turned out
not to be the case.Moreover, we have found that in all control scenarios, the optimized reset strategy consists in
maximizing the decay rate from a single state and driving non-adiabatic population transfer into the strongly
decaying state by small oscillations in the control fields. Even for different combinations of control fields and
various guess fields, the optimization has resulted in reset errors and times of the same order ofmagnitude.We
thus suspect to have identified the quantum speed limit for qubit reset in this particular physical setupwith
tunable couplings, provided that only a single excitation atmaximum is present initially. However, amore
rigorous study exploring the full parameter space is required to prove that our solution represents indeed a
global, and not only a local, optimum.

Whether the quantum speed limit identified in our study is related to the rotating-wave or other used
approximations remains an open question. In particular, it will be interesting to studywhether the reset
duration and error can be further decreased by utilizing couplings between the single-excitation subspace and
higher-excitation subspaces. The rationale would be that highly excited states decay faster whichmight further
decrease the protocol duration. The required transitions could again be driven by suitably shaped control fields
determined byQOCT.

Our study is, to the best of our knowledge, the first demonstration of experimentally directly applicable
reservoir engineering using quantumoptimal control of time-dependent decay rates. It is related to earlier
results obtained for controlling open quantum systemswith non-Markovian dynamics which had shown, for
example, improved cooling due to cooperative effects of control and dissipation [20] or better gate operations
[32, 46]. Our approach differs from themore common scenario for the control of open quantum systems in
which the external fieldmodifies only theHamiltonian and thus the coherent part of the dynamics, rather than
the dissipator of themaster equation [17]. In contrast, in our example, both the coherent evolution and the decay

Figure 5.Dynamics obtainedwith the constant protocol CP (dashed lines) and its optimized versionOP3 (solid lines). The panels are
as infigure 3with the small insets in (b) and (c) providing a closer look at the shapes of the optimizedfields, respectively decay rates,
compared to their non-optimized, constant counterparts. Panel (d) shows the spectra of all optimized fields frompanel (c).
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rates change in time as a result of the field optimization9. Specifically, the changes in the coherent dynamics are
manifested in the occurrence of non-adiabatic transitionswhich go hand in handwithmodifications in the
time-dependent decay rates. Interestingly, coherent and dissipative dynamics are tightly intertwined and the
optimization protocol affects both in a physically transparent way.Our study thus paves theway to explore
quantum reservoir engineering in condensed phase settings.
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Appendix. Derivation of theMaster equation

In this appendix, we provide details on how to obtain the Lindbladmaster equation (8). It follows in large parts
the derivation in [11].We know that the combined dynamics of the system and the environment follows is
unitary and obeys the vonNeumann equation

t
t t t

d

d
i , , A1tot tot totHr r= -ˆ ( ) [ ˆ ( ) ˆ ( )] ( )

where ttotr̂ ( ) is the joint state of the system and the environment and

t t , A2tot env intH H H H= + +ˆ ( ) ˆ ( ) ˆ ˆ ( )
is the totalHamiltonian, envĤ is theHamiltonian of the environment alone and tĤ( ) and intĤ are given by
equations (2) and(3), respectively. In order to obtain an equation ofmotion for the reduced dynamics of the
system alone, i.e. t ttrenv totr r=ˆ ( ) { ˆ ( )}, we start with applying a unitary transformation t nn nD y= å ñáˆ ( ) ∣ ∣ that
diagonalizes tĤ( ), where nñ{∣ } is a time-independent basis. In the new basis of eigenstates tnY ñ{∣ ( ) }of tĤ( ), the
systemHamiltonian reads

t t t t n mi , A3
n m

n n m n meff
,

,H å w d= - áY Y ñ ñáˆ ( ) [ ( ) ( )∣ ˙ ( ) ]∣ ∣ ( )

whereωn(t) is the corresponding eigenvalue of tnY ñ∣ ( ) . The second term in equation (A3) is responsible for non-
adiabatic couplings between different eigenstates. The derivation of themaster equation starts with conventional
assumptions like initial separability, 0 0 0tot envr r r= Äˆ ( ) ˆ ( ) ˆ ( ), a thermal and static state of the bath

t 0env envr r»ˆ ( ) ˆ ( ), weak coupling between the system and its environment and the typical Born–Markov and
secular approximations [38].We obtain the general Lindbladmaster equation (8), where the decay ratesΓmn(t)
are still undefined.However, it can be shown that the decay rates coincide with the ones that can be obtained
with Fermi’s golden rule [47]. This yields the general expression in equation (6) for the decay rates. By
substituting vmn(t) and SR from equations (5) and(13), respectively, one arrives at the decay rates in
equation (14). Due to the formof the system-environment interaction(4), dephasing processes described by
ratesΓnn(t) vanish.Moreover, since the detailed balance(15) holds and taking the temperature of the
environment low, heating processes are strongly suppressed and cooling is the dominant source of dissipation.

Note that the frame, where theHamiltonian tĤ( ) is diagonal, i.e. equation (A3), is only used for the
derivation of the decay rates. In the numerical simulations, all operators and states are still expressed in the static
basis g e g g0, 0, , 0, 0, , 0, 1, , 1, 0,ñ ñ ñ ñ{∣ ∣ ∣ ∣ }.
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