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Superconducting quantum circuits are potential candidates to realize a large-scale quantum computer. The
envisioned large density of integrated components, however, requires a proper thermal management and control
of dissipation. To this end, it is advantageous to utilize tunable dissipation channels and to exploit the optimized
heat flow at exceptional points (EPs). Here, we experimentally realize an EP in a superconducting microwave
circuit consisting of two resonators. The EP is a singularity point of the effective Hamiltonian, and corresponds
to critical damping with the most efficient heat transfer between the resonators without back and forth oscillation
of energy. We observe a crossover from underdamped to overdamped coupling across the EP by utilizing photon-
assisted tunneling as an in situ tunable dissipative element in one of the resonators. These methods can be used
to obtain fast dissipation, for example, for initializing qubits to their ground states. In addition, these results pave
the way for thorough investigation of parity-time symmetry and the spontaneous symmetry breaking at the EP
in superconducting quantum circuits operating at the level of single energy quanta.

DOI: 10.1103/PhysRevB.100.134505

I. INTRODUCTION

Systems with effective non-Hermitian Hamiltonians have
been actively studied in various setups in recent years [1–7].
They show many intriguing properties such as singularities in
their energy spectra [8–13]. A square-root singularity point
in the parameter space of a non-Hermitian matrix is referred
to as an exceptional point (EP) if the eigenvalues coalesce
[12,13]. Previously, EPs have been shown to emerge, for
example, in nonsuperconducting microwave circuits, laser
physics, quantum phase transitions, and atomic and molecular
physics [12,13]. The fascinating effects of EPs include the
disappearance of the beating Rabi oscillations [14], chiral
states in microwave systems [15], and spontaneous symmetry
breaking in systems with parity- and time-reversal (PT )
symmetry [16–19]. In the quantum regime, PT -symmetric
systems may show features that are different from the semi-
classical predictions, such as new phases owing to quantum
fluctuations [19,20]. Despite the active research on EPs, they
have not been sufficiently investigated in superconducting
microwave circuits to date [21].
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Superconducting microwave circuits provide an ideal plat-
form to realize various quantum technological devices, such
as ultrasensitive photon detectors and counters [22–25], and
potentially even a large-scale quantum computer [26,27],
or a quantum simulator [28] in the framework of circuit
quantum electrodynamics [29,30]. Notably, superconducting
qubits have been shown to approach the required coherence
times [31,32] for quantum error correction [33,34]. However,
despite the tremendous interest in superconducting microwave
circuits in recent years [35–37], there are still many issues
to be solved before a fully functional quantum computer is
realizable. For example, the precise engineering of energy
flows between different parts of the circuit in scalable archi-
tectures is of utmost importance since heat is a typical source
of decoherence in qubits [38,39]. In many error correction
codes, qubits are repeatedly initialized, which requires fast
and efficient cooling schemes [40–42]. It is also of great
importance to reset the qubit readout resonators, for example,
using pulse shaping [43,44]. One very promising method
for absorbing energy and, hence, initializing qubits to their
ground state is based on resonators with tunable dissipation
[45].

The recently developed quantum-circuit refrigerator
(QCR) [46,47] provides great potential for both qubit
initialization and thermal management since it enables
tunability of energy dissipation rates over several orders of
magnitude in a superconducting microwave resonator [48].
The operation of the QCR relies on inelastic tunneling of
electrons through a normal-metal–insulator–superconductor
(NIS) junction [49]. The tunneling electrons can absorb
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FIG. 1. Sample structure. (a) The sample consists of two ca-
pacitively coupled resonators, R1 and R2, which are presented as
analogous cavities with coupling strength g. The primary resonator
R1 has a fixed dissipation rate κ1 and angular frequency ω1 whereas
the dissipative resonator R2 has a tunable rate κ2(Vb) controlled by
a QCR, and angular frequency ω2(�) tuned with a SQUID. The
coupling strength to external ports is denoted by κext. (b) Optical mi-
crograph of the sample. The transmission coefficient S21 is measured
from port 1 to port 2. (c) False-color scanning electron micrograph
of the QCR together with a schematic control circuit. The QCR
consists of normal-metal (N) and superconducting (S) electrodes
separated by an insulator (I). The QCR is operated with bias voltage
Vb, and the electron temperature of the normal metal is obtained
from voltage Vth and current Ith. (d) The operation principle of a
SINIS junction. The occupied states in the superconductor density
of states are shown in blue, the occupation of the normal metal is
given by the Fermi distribution shown in orange, and the empty states
are shown in gray with energy E on the vertical axis. The Fermi
levels of the superconducting electrodes (dashed lines) are shifted by
applying a voltage Vb. The black arrows indicate elastic tunneling,
and blue arrows inelastic tunneling with photon absorption. The red
dashed arrows show photon emission that is suppressed due to lack of
available unoccupied states on the other side of the tunneling barrier.

or emit photons to a resonator which allows to control
the coupling strength to a low-temperature bath in situ.
This tunable coupling strength arising from a broadband
environment has also been shown to induce a Lamb shift [48].

In this work, we utilize tunable dissipation to realize EPs,
which correspond to critical coupling between two supercon-
ducting microwave resonators. To this end, we investigate a
circuit consisting of two coupled resonators, one of which is
equipped with NIS junctions and a flux-tunable resonance fre-
quency (Fig. 1). We denote the NIS junctions and the normal-
metal island that is capacitively coupled to the resonator as
a QCR. Thanks to the voltage-tunable dissipation within the
QCR and the flux-tunable resonance frequency, an EP arises
in the Hamiltonian that describes the modes of the coupled
resonator system. We investigate the emergence of the EP
using frequency and dissipation as control parameters (Fig. 2)
and verify its properties experimentally by measuring the
microwave transmission coefficient (Fig. 3). The maximum
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FIG. 2. Eigenvalues of the effective Hamiltonian and the excep-
tional point. (a) Calculated mode frequency shift Re(λ) with respect
to the uncoupled mode frequency of R1, and (b) negative value
of the mode decay rate −Im(λ) as functions of the decay rate κ2

and frequency detuning δ. The figure shows both λ+ and λ− calcu-
lated according to Eq. (2) with the experimental coupling strength
g/(2π ) = 7.2 MHz and decay rate κ1/(2π ) = 260 kHz. The EP is
located approximately at κ2 = 4g, and δ = 0 as indicated with the
red circle. The panels (a) and (b) can be compared with each other
with the help of the colors which denote Im(λ) in (a) and Re(λ) in (b).

dissipation rate given by the coupling strength can be reached
at the EP (Fig. 4). Furthermore, we demonstrate temporal
control of the damping rates by utilizing voltage pulses at
the QCR (Fig. 5). By adding voltage-tunable dissipation to a
system of two resonators with tunable coupling, our approach
provides a conceptually higher level of control compared
to the commonly studied systems which only have tunable
coupling between the resonators [42,50–57]. Hence, our work
demonstrates a platform to control the dissipation and, con-
sequently, local heat transport between neighboring nodes
in a quantum electrical circuit. In addition to thermal man-
agement within superconducting multiqubit systems, these
methods may be applicable to thermally assisted quantum
annealing [58] and to studies of the eigenstate thermalization
hypothesis in many-body quantum problems [59]. Further-
more, our work is an important step toward thorough in-
vestigation of PT -symmetric systems at the quantum level

134505-2



EXCEPTIONAL POINTS IN TUNABLE SUPERCONDUCTING … PHYSICAL REVIEW B 100, 134505 (2019)

Experiment Theory

10

1.0

1.3

1.7

|S21|

eVb
2Δ

= 0.7
κ2
4g

= 0.7

4.2

9.9

0.42 0.440.4 0.42 0.440.4

0.5
0

-0.5

Φ/Φ0Φ/Φ0

0.5
0

-0.5

0.5
0

-0.5

0.5
0

-0.5

0.5
0

-0.5

0.5

0

-0.5

0.5

0

-0.5

0.5
0

-0.5

(a) (b)

f
−

f 1
(M

H
z)

f
−

f 1
(M

H
z) 1.3

FIG. 3. Scattering parameter of sample A. (a) Experimental and
(b) theoretical transmission amplitudes as functions of frequency
and magnetic flux through the SQUID. The panels in (a) show the
crossing of the second mode of R1 and the first mode of R2 at
different bias voltages, and the panels in (b) show the corresponding
theoretical results at different coupling strengths, as indicated in the
figure. The EP is obtained at eVb/(2�) ≈ 1, where the ratio κ2/(4g)
crosses unity. The maximum in each panel is normalized to unity,
and the frequency axes are shifted by the resonance frequency f1 =
5.223 GHz in good agreement with the simulated frequency f1 =
5.2 GHz. The input power at port 1 is approximately −100 dBm.

that can be realized with circuit quantum electrodynamics
architectures [21,60].

This paper is structured as follows: We introduce the
experimental samples in Sec. II, describe the EPs in Sec. III,
and present the experimental results in Sec. IV. The results are
discussed in Sec. V. Extended measurement results are shown
in Appendix A, electron tunneling through NIS junctions is
described in Appendices B and C, quantum-mechanical and
classical models for our samples are discussed in detail in
Appendices D–I, and experimental techniques are presented
in Appendices J–L.

II. EXPERIMENTAL SAMPLES

Our samples consist of two coplanar waveguide resonators,
R1 and R2, which are capacitively coupled to each other,
as depicted in Figs. 1(a) and 1(b). The resonator R1 has a
fixed fundamental frequency at 2.6 GHz. This mode does not
couple strongly to the resonator R2 owing to the voltage node
in the middle of the resonator R1 where the coupling capacitor
CC is located. Therefore, we focus on the second mode of
R1, with frequency f1 = ω1/(2π ) = 5.2 GHz, which has a
voltage antinode at the coupling point of the resonators. The
resulting capacitive coupling between the resonators has a
strength g/(2π ) = 7.2 MHz. In contrast to R1, the resonator
R2 has a flux-tunable resonance frequency ω2(�) owing to a
superconducting quantum interference device (SQUID), and
a voltage-tunable loss rate κ2(Vb) owing to the QCR. Here,
� and Vb are the magnetic flux threading the SQUID loop
and the voltage bias of the QCR, respectively. The theoretical
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FIG. 4. Transition rates. (a) Extracted decay rates of the bare
resonator R2, κ2, for samples A and B as functions of the bias
voltage together with the theoretical model (Appendix H). The EP
is obtained at the intersection of κ2 and the critical coupling 4g.
Furthermore, the figure shows the theoretical coupling strength of the
QCR, κQCR, without taking dephasing and other voltage-dependent
losses into account. Here, the flux is approximately �/�0 = 0.4,
and the frequency 5.2 GHz. The probe power at the input of the
device is −100 dBm for sample A and −115 dBm for sample B. The
uncertainty of the data points is of the same order as the marker size.
(b) Experimental and theoretical effective decay rates of the coupled
system κeff = −2 Im(λ±) obtained from κ2 at zero detuning using
Eq. (2). The two branches at high voltages correspond to λ+ and
λ− with the modes located predominantly in one of the resonators
as indicated. The maximum decay rate for R1 is obtained at the
EP. The damping rates of the modes are equal at eVb/(2�) < 1 due
to hybridization. The inset shows the effective damping rate in the
voltage regime near the exceptional point.

background for the QCR is discussed in Appendix B and
Ref. [49]. The inductance of the SQUID and, hence, also the
resonance frequency of R2 are periodic in the flux with a
period of a flux quantum �0 = h/(2e). Consequently, due to
the coupling of the resonators, R1 also shows flux-dependent
features. We show the QCR in Fig. 1(c) and schematically
present its operation principle in Fig. 1(d). The difference
in photon absorption and emission rates originates from the
gap of 2� in the density of states of the superconductor, and
the difference can be utilized to cool down quantum circuits
[46,49]. We study two samples with different R2 resonator
lengths: sample A (12 mm) and sample B (13 mm). The
R1 resonator has a length of 24 mm in both samples. See
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FIG. 5. Energy dissipation of sample B as a function of time.
Measured voltage amplitude A(t ) of the resonator R1 normalized
with A(0) = A0 (markers). We apply microwave drive to R1 at the
resonance frequency for 40 μs and switch it off at time t = 0. At
t ≈ 0.5 μs, we send nominally rectangular 2-μs-long voltage pulse
with the amplitude eVb/(2�) ≈ 2.4 to the QCR, which results in in-
creased energy dissipation. After the pulse, the dissipation decreases
approximately to its original value, as shown by the model (solid
line). The magnetic flux through the SQUID is shifted from the
mode crossing by approximately 0.015 × �0 yielding a detuning
of 200 MHz (see Appendix I). The inset shows the experimental
(markers) and theoretical (solid line) decay rate of the R1 mode
during the pulse as a function of the pulse amplitude. The input
power is approximately −105 dBm.

Appendices E, J, and K for sample parameters, fabrication,
and measurement setup, respectively.

III. EXCEPTIONAL POINTS

To study exceptional points, we utilize two control param-
eters in the effective Hamiltonian of the system: we use the
voltage-tunable dissipation rate κ2(Vb) and the flux-tunable
detuning between the resonators δ(�) = ω2(�) − ω1. We
study the system consisting of the two resonators in a frame
rotating with a frequency corresponding to the uncoupled
mode frequency of R1. Thus, the excitations of the system can
be described with the effective non-Hermitian Hamiltonian in
matrix form operating on a vector ψ = (A, B)T where A and
B are field amplitudes in R1 and R2, respectively,

H =
(−i κ1

2 g

g δ − i κ2
2

)
, (1)

where κ1 is the decay rate of the resonator R1. This ef-
fective Hamiltonian is analogous with the actual quantum-
mechanical Hamiltonian operating on the corresponding
Hilbert space, and it can be derived from the Lindblad master
equation (see Appendix D and Refs. [56,61]). The eigenvalues
of H can be written as

λ± = 1
4 (2δ − iκ1 − iκ2 ± s), (2)

and the corresponding eigenvectors are

ψ± =
(−2δ − iκ1 + iκ2 ± s

4g
, 1

)T

, (3)

where s =
√

(2δ + iκ1 − iκ2)2 + 16g2. Thus, the eigenvalues
and eigenvectors coalesce when the square-root term s van-
ishes resulting in an EP. Consequently, there is only a single
eigenvalue and, importantly, there is also only a single eigen-
vector. The EP occurs at |κ2 − κ1| = 4g, and δ = 0. In our
samples κ1 � κ2, which we verify by measuring the internal
quality factor of the primary resonator R1 with R2 far detuned
at � = �0/2. From the quality factor, we extract a loss rate
κ1 � 2π × 260 kHz for both samples which is substantially
lower than the extracted value of κ2, as discussed below.
Consequently, the condition for the EP simplifies to κ2 = 4g.

To visualize the system singularity, i.e., the EP, we show
the real and imaginary parts of λ± in Fig. 2. The eigenvalues
form a self-intersecting Riemann surface in the parameter
space of κ2 and δ. The imaginary part corresponds to mode
decay, and real part to mode frequency deviation from the
uncoupled mode frequency of R1. Our system consisting
of the resonators R1 and R2 can be considered as a sin-
gle damped harmonic oscillator, where the energy oscillates
between the two resonators, as discussed in Appendix D.
In the underdamped case κ2 < 4g, the modes have an equal
decay rate at zero detuning, and there is an anticrossing of
the mode frequencies. In contrast, in the overdamped case
κ2 > 4g, there is an anticrossing in the mode decay rates as a
function of the detuning, and the mode frequencies are equal
at zero detuning. Consequently, one of the modes remains
lossy whereas the other one has a low decay rate at different
detunings.

Let us connect the meaning of this critical point to the
efficiency of energy transfer between the two resonators. In
terms of coupled dissipative systems, the EP separates the
system between the overdamped and underdamped regimes
being the point of critical coupling. It follows from the dy-
namics of the coupled system that at this point, the energy is
transferred between the two resonators optimally fast without
back and forth oscillation [42,56]. In particular, the rate of
heat transfer at zero detuning is given by κeff = −2 Im(λ±) ≈
κ2{1 ∓ Re[

√
1 − (4g/κ2)2 ]}/2. Here, the branch with the up-

per signs corresponds to a mode located predominantly in the
primary resonator R1, and the branch with the lower ones in
the dissipative resonator R2. Consequently, by reaching the
EP at κ2 = 4g, we operate our sample at a point of opti-
mally efficient heat transfer out of R1. The effective coupling
strength in the limit κ1 → 0 is also relevant for Purcell filters
[62].

IV. EXPERIMENTAL OBSERVATIONS

To explore the dissipative dynamics of the two coupled
resonators, we measure the flux- and frequency-dependent
scattering parameter S21 describing the transmission from
port 1 to port 2 for different bias voltages using a vector
network analyzer. We tune the magnetic flux in a range
where the frequency of R2 crosses that of R1. As shown
in Fig. 3(a), we observe a transition from an anticrossing
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into a single mode already indicating the presence of an EP
between these regimes. A broader range of bias voltages is
shown in Appendix A. To generate a quantitative description
of our system, which is required for the investigation of
EPs, we simulate the scattering coefficient using an analytical
circuit model, as shown in Fig. 3(b). Here, we model the
SQUID as a flux-tunable inductor, and the QCR as an effective
resistance Reff describing the dissipation (see Appendix I).
The theoretical model in Fig. 3 is in very good agreement
with the experimental results. Consequently, we can extract
the experimental damping rates of the dissipative resonator
R2 as a function of the bias voltage using the circuit model.
In addition to the damping rates, we extract the coupling
capacitance CC and the critical current of the SQUID, Ic, from
the theoretical model (see Appendices F, G, and H).

To demonstrate the presence of an EP, we show the ex-
tracted damping rates of the bare resonator R2 in the absence
of R1 in Fig. 4(a) as functions of the bias voltage for samples
A and B. The damping rate κ2 is approximately equal in both
samples and its value can be tuned by approximately two
orders of magnitude. At low bias voltages eVb/(2�) < 1, the
rate κ2 is below 4g, and at eVb/(2�) > 1 the damping rate
exceeds 4g. The continuity of the theoretical curve guarantees
a crossing at the critical coupling and, thus, the existence of
the EP. We describe the origin of the tunable damping rates
using a theoretical model that contains the photon absorption
and emission at the QCR given by the rate κQCR, as well as
constant internal losses κint,2, and voltage-dependent residual
losses κr,2. We have designed our sample in such a way that
κQCR covers the critical damping rate, and thus the losses
originating from the QCR are sufficient to realize the EP.
The underlying analysis is based on the excellent agreement
between theory and experiment found for similar devices in
earlier experiments [48]. We can accurately obtain the damp-
ing rate κQCR shown in Fig. 4 using the measured electron
temperatures of the normal-metal island (Appendix C). At
higher voltages, κ2 is dominated by the residual damping coef-
ficient, as discussed in Appendix G. This damping coefficient
includes dephasing, quasiparticle losses, and resistive losses,
and we extract its value based on the experimental rates.

In Fig. 4(b), we show the damping rates of the coupled
circuit defined using Eq. (2) as κeff = −2 Im(λ±). The max-
imum energy decay rate for the mode in R1 is obtained
at the EP as discussed above, and it is given by κmax,1 =
max[−2 Im(λ+)] ≈ κ2/2 = 2g. Thus, in the optimal case, the
decay rate is limited by the coupling strength between the
resonators, a scenario related to the quantum speed limit. We
do not observe a distinctively large increase in the damping
rate of R1 when approaching the EP with increasing bias
voltages since κ2 is already relatively close to the optimal
value 4g at low voltages. Furthermore, κ2 is very sensitive to
the voltage near the EP.

In Fig. 5, we study the time dependence of the damping
rates to demonstrate the temporal control we have over the
system. To this end, we operate the system with a finite
detuning δ. For our samples, the finite detuning provides a
convenient measurement point with relatively low damping
rates, thus allowing us to clearly observe the changes in their
values even when the system is operated at the single-photon
level. Furthermore, at this operation point the measured

damping rates are less affected by the experimental inaccuracy
of the magnetic flux compared to zero detuning. To extract
the time- and voltage-dependent damping rates, we measure
the ring-down of R1 in time domain. During the ring-down,
we apply a nominally rectangular 2-μs-long voltage pulse to
the QCR to study the effect of the induced dissipation from
R2. The finite detuning reduces the sensitivity of the damping
rates to the nonidealities in the pulse reaching the sample.
The pulse increases the dissipation rate, as expected. After
the pulse, the dissipation returns approximately to an equal
level with that before the pulse. The instantaneous response
of the damping rates to the applied voltages shows that we
can control the dissipation on a timescale substantially shorter
than 1 μs. The QCR can be operated even at timescales in
the range of 10 ns [63]. Furthermore, the dependence of the
damping rate on the pulse amplitude follows the theory, as
shown in the inset. The position of the peak is shifted to
higher voltages as compared to Figs. 4(a) and 4(b) owing to
the detuning. The good agreement of the time traces and the
fact that the system returns back to its intrinsic relaxation rate
quickly after turning off the voltage of the QCR shows that
we can reliably control the dissipative dynamics within the
parameter space spanned by κ2 and δ.

V. SUMMARY AND DISCUSSION

We have experimentally realized an exceptional point (EP)
in a superconducting microwave circuit consisting of two cou-
pled resonators. We study the presence of the EP by observing
a transition from an avoided crossing to single modulating
resonance frequency. This point corresponds to the maximum
heat transfer between the two resonators without back and
forth oscillation of the energy. The measurement results are in
very good agreement with our theoretical model. The circuit
is based on a QCR, which operates as a voltage-tunable dissi-
pator, thus enabling the investigation of the crossover from an
underdamped to critically damped and further to overdamped
circuit. In addition to the realization of an EP, the circuit also
behaves as a frequency- and voltage-tunable heat sink for
quantum electric circuits that can be applied, for example, in
quantum information processing for initializing qubits to their
ground state by absorbing energy [45]. The tunability of the
damping rate enables one to obtain the fastest possible photon
absorption allowed by a given coupling coefficient.

In the future, it is interesting to further investigate the
EP by modifying the circuit design. By introducing tunnel
junctions to both resonators, one obtains a continuous line
of EPs instead of an isolated singularity point. Incorporating
qubits also enables the investigation and utilization of the EP
with single energy quanta. Furthermore, one can investigate
resonators with an additional coupling circuit realized with a
SQUID or a qubit [52,54] in addition to the tunable coupling
realized with frequency detuning and a tunable damping real-
ized with a QCR that are employed here. Moreover, the use
of several microwave resonators will result in a more versatile
parameter space [64], and hence yields an interesting platform
for studying fundamental physics. Dynamic encircling of the
EP with topological energy transfer [3,9] can be realized
with superconducting resonators in a straightforward manner
using standard microwave techniques. It requires fast tuning
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of the magnetic field, which can be realized by fabricating a
flux bias line on the chip. Topological energy transfer with
microwave pulses may provide an asset for applications in
quantum information processing and other quantum techno-
logical devices. In addition, EPs are suitable for investigating
PT symmetry on the level of single microwave photons.
Here, superconducting circuits provide an attractive architec-
ture owing to the ability to design system parameters yielding,
for example, ultrastrong- and deep-strong-coupling regimes
[21,65]. Furthermore, we envision EPs as candidates to realize
nonreciprocal signal routing beneficial for active quantum
circuits [60,66,67].

Note added. Recently, we became aware of Ref. [68]
investigating EPs in superconducting circuits with a different
operation principle compared to our system. Our work is fully
independent of this reference.
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APPENDIX A: MEASUREMENTS IN A BROAD RANGE OF
VOLTAGES AND FLUXES

We show experimentally and theoretically obtained scat-
tering parameter |S21| over a broad range of bias voltages
applied at the QCR and magnetic fluxes through the SQUID in
Figs. 6 and 7. The measurements are in good agreement with
the theoretical model.

APPENDIX B: QUANTUM-CIRCUIT REFRIGERATOR

We use a QCR to absorb and emit photons in the resonator
R2. The resonator transition rate from the occupation number
m to m′ can be written as [49]


m,m′ (V ) = M2
mm′

2RK

RT

∑
τ=±1

→
F [τeV + h̄ω2(m − m′)], (B1)

where V = Vb/2, RT is the single-junction tunneling re-
sistance, Mmm′ is the corresponding matrix element, RK =
h/e2 ≈ 25.8 k� is the von Klitzing constant, and the normal-
ized rate for forward tunneling is given by

→
F (E ) = 1

h

∫ ∞

−∞
dE ′nS(E ′)[1 − f (E ′, TS)] f (E ′ − E , TN),

(B2)
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FIG. 6. Scattering parameter of sample A. Measured and simu-
lated scattering parameter |S21| as a function of frequency and flux
for different bias voltages. The bias voltages from top to bottom are
eVb/(2�) = 0.0, 1.0, 1.1, 1.4, 1.7, 2.5, and 3.5. Maximum value in
each panel is normalized separately to unity. The input power at port
1 is approximately −100 dBm. See Fig. 11 for the fitted parameters
and Fig. 4 for the corresponding transition rates.

where f (E , T ) = 1/{exp[E/(kBT )] + 1} is the Fermi-Dirac
distribution, kB is the Boltzmann constant, and the density of
states in a superconductor can be expressed with the help of
the Dynes parameter γD as

nS(E ) =
∣∣∣∣∣Re

(
E/� + iγD√

(E/� + iγD)2 − 1

)∣∣∣∣∣. (B3)

The matrix element describing the transition can be written in
terms of the generalized Laguerre polynomials Ll

n(ρ) as [49]

M2
m,m′ =

{
e−ρρm−m′ m′!

m!

[
Lm−m′

m′ (ρ)
]2

, m � m′

e−ρρm′−m m!
m′!

[
Lm′−m

m′ (ρ)
]2

, m < m′ (B4)

where ρ = πα2
c /(ω2Clx2RK) is an environmental parameter,

Cl is the capacitance per unit length of the coplanar waveg-
uide, 2x2 is the length of the resonator R2, and the capacitance
fraction αc is given in terms of the capacitance between
the normal-metal island and the center conductor CN, and
the single-junction capacitance Cj as αc = CN/(CN + 4Cj ).
In the equations above, we have neglected the effects owing to
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FIG. 7. Scattering parameter of sample B. Measured and simu-
lated scattering parameter |S21| as a function of frequency and flux
for different bias voltages. The bias voltages from top to bottom
are eVb/(2�) = 0.0, 0.6, 1.1, 1.6, 2.4, 3.7, and 6.2. The maximum
value in each panel is normalized to unity. The input power at port
1 is approximately −115 dBm. At eVb/(2�) = 6.2, the effective
resistance obtains the value of 30� and the critical current Ic/Ic,0 ≈
0.3. See Fig. 11 for the the other fitted parameters and Fig. 4 for the
corresponding transition rates.

the charging of the normal-metal island since the capacitance
of the island is relatively large. Furthermore, the rates for
single-photon transitions can be expressed as [49]


m,m−1 = κQCR(NQCR + 1)m,


m,m+1 = κQCRNQCR(m + 1),
(B5)

where κQCR denotes the coupling strength of the QCR, and the
Bose-Einstein distribution at the effective temperature of the
electron tunneling TQCR is given by

NQCR = 1

exp
( h̄ω2

kBTQCR

) − 1
, (B6)

where

TQCR = h̄ω2

kB

⎧⎨
⎩ln

⎡
⎣∑

τ=±1

→
F (τeV + h̄ω2)∑

τ=±1

→
F (τeV − h̄ω2)

⎤
⎦

⎫⎬
⎭

−1

. (B7)

These equations are derived by defining

κQCR = 
m,m−1

m
− 
m,m+1

m + 1
. (B8)

APPENDIX C: ELASTIC TUNNELING IN
NORMAL-METAL–INSULATOR–SUPERCONDUCTOR

JUNCTIONS

Typically, the elastic tunneling is the dominating tunneling
process in NIS junctions. It can be utilized for temperature
control of the normal-metal electrons [69–71], and for precise
thermometry down to millikelvin temperatures [71,72]. Re-
cently, NIS junctions have also been utilized in a realization
of a quantum heat valve [73], and phase-coherent caloritronics
[74]. Figure 8 shows the measured current-voltage character-
istics and normal-metal temperatures.

The electric current through a single NIS junction can be
written as [71,75]

I (V ) = 1

eRT

∫ ∞

0
nS(E )[ f (E − eV, TN)

− f (E + eV, TN)]dE , (C1)

where TN denotes the normal-metal temperature, and V is the
voltage across the junction. For a symmetric SINIS structure,
we apply a voltage Vb = 2V . Importantly, this equation has
a monotonic dependence on the temperature of the normal
metal but only a very weak dependence on the temperature of
the superconductor. Thus, we may use NIS junctions as ther-
mometers measuring the electron temperature of the normal
metal.

The tunneling electrons transfer heat through the insulating
barrier. The average power is given by [71]

P= 1

e2RT

∫ ∞

−∞
nS(E )(E −eV )[ f (E −eV, TN) − f (E , TS)]dE .

(C2)

Based on this equation, we can reduce and increase the
temperature of the normal metal. The applied voltage at the
SINIS junction produces a total Joule heating power P = VbI ,
which is unequally divided between the N and S electrodes.

APPENDIX D: QUANTUM-MECHANICAL MODEL

Here, we analyze the temporal evolution of the coupled
resonators following Ref. [56]. Alternatively, the dynamics of
the system can be solved using, for example, a reconstruction
method [61]. The Hamiltonian can be written in the rotating-
wave approximation as

ĤRWA = h̄ω1â†â + h̄ω2b̂†b̂ + h̄g(âb̂† + â†b̂). (D1)

The first term describes the energy of the primary resonator
R1 with annihilation operator â, the second term the energy of
R2 with annihilation operator b̂, and the third term describes
the coupling between the resonators. Here, we have neglected
driving. Furthermore, this equation is valid only for a linear
resonator. The effects owing to nonlinearity are discussed
below. To solve the dynamics of the system, we utilize the
Lindblad master equation for the density matrix of the coupled
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FIG. 8. Current-voltage characteristics and temperature for sample B. (a) Electric current through a SINIS junction as a function of bias
voltage at different bath temperatures. (b) Measured thermometer voltage Vth as a function of bath temperature T0 at fixed bias current Ith =
17 pA, and Vb = 0. The theoretical curve is calculated using Eq. (C1). We extract the electron temperatures of the normal-metal island using
a linear voltage-to-temperature conversion below 300 mK, and above that we extract the temperatures from the voltages corresponding to
the different experimental bath temperature points. At high temperatures, the low sensitivity reduces the reliability of the extracted island
temperatures. (c) Electron temperature of the normal-metal island as a function of bias voltage at different bath temperatures.

system ρ̂ as

d ρ̂

dt
= − i

h̄
[ĤRWA, ρ̂] + κ1L[â]ρ̂ + κ2L[b̂]ρ̂, (D2)

where the Lindblad superoperator is defined by L[x̂]ρ̂ =
x̂ρ̂x̂† − 1

2 {x̂†x̂, ρ̂}. We can write the resulting equations of
motion as [56]

d〈â〉
dt

= −iω1〈â〉 − ig〈b̂〉 − κ1

2
〈â〉, (D3)

d〈b̂〉
dt

= −iω2〈b̂〉 − ig〈â〉 − κ2

2
〈b̂〉. (D4)

We define the resonator fields as 〈â〉 = A exp(−iω1t ), 〈b̂〉 =
B exp(−iω1t ). Consequently, the equations assume the form

dA

dt
= −igB − κ1

2
A, (D5)

dB

dt
= −iδB − igA − κ2

2
B, (D6)

where δ = ω2 − ω1. These equations can be written in a
matrix form as a time-dependent Schrödinger equation

d

dt
ψ = −iHψ, (D7)

where ψ = (A, B)T, and

H =
(−i κ1

2 g

g −i κ2
2 + δ

)
, (D8)

as given in Eq. (1). Here, H is an effective non-Hermitian
Hamiltonian scaled by h̄. We note that H operates here on
classical field amplitudes instead of quantum states. Never-
theless, Eq. (D7) is analogous to the quantum mechanical
Schrödinger equation. The eigenvalues and eigenvectors of H
are given by Eqs. (2) and (3) in the main text, respectively, and
Fig. 9 shows them as a function of κ2 for zero detuning.

Equations (D5) and (D6) can also be written as a second-
order differential equation

d2A

dt2
+

(
κ1+κ2

2
+ iδ

)
dA

dt
+

(
g2 + iδ

κ1

2
+ κ1κ2

4

)
A = 0.

(D9)

When the resonators are tuned into resonance, δ = 0, we can
express Eq. (D9) as

d2A

dt2
+ κ1 + κ2

2

dA

dt
+

(
g2 + κ1κ2

4

)
A = 0. (D10)

This equation describes a damped harmonic oscillator corre-
sponding to energy transfer between the resonators R1 and R2
at an angular frequency

√
g2 + κ1κ2/4. Due to the asymmetric

damping rates in the two resonators, the total dissipation rate
of the system is time dependent and reaches its maximum
value when the excitations are in R2. The damping ratio is
given by

ξ = κ1 + κ2

2
√

4g2 + κ1κ2

. (D11)

Here, κ2 is a function of voltage Vb, which allows us to
examine the transition from an underdamped system ξ < 1
through critical damping ξ = 1 to an overdamped system
ξ > 1. Critical damping is obtained when |κ2 − κ1| = 4g. The
total damping rate of R1 is given by κ1 = κint,1 + κext, and
of R2 by κ2(Vb) = κint,2 + κQCR(Vb) + κr,2(Vb), where κint,1/2

denote the internal losses, κext the losses to the external
measurement circuit, κQCR(Vb) the photon-assisted tunneling
in Eq. (B8), and κr,2(Vb) the residual voltage-dependent losses
in R2. In our samples, κ2(Vb) 
 κ1 and g 
 κint,1 
 κext,
as discussed below. Therefore, we obtain an approximate
condition for the critical damping as

κ2 = 4g. (D12)

The critical damping, which corresponds to the EP, is obtained
at eVb/(2�) ≈ 1 where the photon number remains low and,
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FIG. 9. Eigenvalues and eigenvectors of the effective Hamiltonian. (a) The real part of the eigenvalues corresponding to the frequency
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the absolute values of which correspond to the decay rates. (c) The squared absolute value of the eigenvector component corresponding to the
resonator R1. Here, the amplitude of the eigenvector �± = (A±, B±)T is normalized to unity. (d) As (c) but for the eigenvector component
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therefore, the slight nonlinearity caused by the SQUID is neg-
ligible. However, at eVb/(2�) > 1, the QCR generates ther-
mal photons that result in photon-number-dependent losses,
as discussed below.

APPENDIX E: SAMPLE PARAMETERS

The main parameters for the samples are summarized in
Table I. The coupling strength between the resonators can
be estimated as [76] g = CCV1V2/h̄ ≈ 2π × 7.2 MHz, where
the voltages are given by Vi = √

h̄ω1/(2xiCl ), i = 1, 2, the
angular frequency of the second mode of the resonator R1 is
ω1/(2π ) ≈ 5.223 GHz for samples A and B, and Cl is the ca-
pacitance per unit length. Consequently, the critical damping
is obtained with κ2 = 4g ≈ 2π × 29 MHz. The external qual-
ity factor corresponding to the leakage from the resonator R1
to the transmission line through the capacitances CTL is given
by [77] Qext = 2x1Cl/(4ZLω1C2

TL) ≈ 9 × 105. Consequently,
the corresponding damping rate is κext = ω1/Qext ≈ 2π ×
6 kHz. The loaded quality factor of the second mode of R1 is
approximately QL = 2 × 104, when the resonators are far de-
tuned (Fig. 10). Thus, the internal losses in R1 dominate over
the losses to the transmission line Qint ≈ QL. Furthermore, we
obtain the damping rate κ1 = ω1/QL ≈ 2π × 300 kHz. The
real part of the complex wave propagation coefficient, γ =
α + iβ, describes the damping in the waveguide, and it can be

calculated as [77] α = nmπ/(4x1Qint ) ≈ 7 × 10−3m−1, where
nm is the mode number such that nm = 2 denotes the second
mode. The internal losses without the photon-assisted tun-
neling in the QCR are somewhat higher in the resonator R2
than in R1 since the design and fabrication of the QCR and
the SQUID have not been optimized for low loss rates. The
internal loss rate for R2 can be extracted at zero detuning
and zero-bias voltage from the saturation level of extracted
κ2 values since κint,1 � κ2(0), and hence the losses in R2
dominate over those in R1. We obtain from the circuit model
the internal loss rate for R2 as κint,2 ≈ κ2(0) = 2π × 16 MHz.
We measure a slight temperature and power dependence of
the quality factor of R1 as expected in the case of two-level
fluctuators dominating the losses [78] (Fig. 10).

The photon number inside R1 when R2 is far detuned can
be estimated as [79] n = 4�2

d/κ
2
1 ≈ 10, where the driving

strength is given by �d = CTLVinV1/h̄, the input voltage is
obtained from the input power as Vin = √

PinZL, and the input
power is Pin ≈ −115 dBm. The input power is −100 dBm
for sample A in Figs. 3 and 6, and −115 dBm for sample B
in Fig. 7. We also measure the resonators at different power
levels. When R1 and R2 are in resonance at Vb = 0, the total
photon number is approximately equally divided between
the resonators if κ1 ≈ κ2. However, in our samples κ1 < κ2,
especially at Vb > 2�/e, and therefore the number of coherent
photons is lower in R2 than in R1. When the Q factor of the
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resonator is reduced to 200, which is of the order of the critical
damping, photon numbers close to unity are obtained with
an input power Pin ≈ −85 dBm. Consequently, the photon
number at the EP is well below unity in our experiments.

APPENDIX F: SHIFT OF RESONANCE

In Figs. 3, 6, and 7, the crossing of the mode frequencies as
a function of the flux shifts slightly toward lower flux values
with increasing bias voltage. We attribute this shift to heating
of the SQUID, which results in a reduced critical current of the
SQUID, and hence a larger inductance and lower resonance
frequency of R2. The extracted critical currents are shown in
Fig. 11. In principle, we vary also the Lamb shift [48], which,
however, is not resolved since the resonance of R2 is very
broad and, therefore, we neglect it in our model.

For simplicity, we do not take the frequency shift orig-
inating from the sample heating into account in the time-
domain measurements in Fig. 5. The dependence of the
damping rates on the frequency detuning decreases with
increasing detuning, i.e., the surface in Fig. 2 is relatively
flat with large δ. Therefore, the effect of the heating is
expected to be weak especially at the lowest pulse ampli-
tudes. We note, however, that we observe a slight increase
in the damping rate before the pulse with increasing pulse
amplitudes. It may originate from an insufficient thermal-
ization time between repeated measurements, resulting in an
increased quasiparticle concentration in the sample. Neverthe-
less, the damping rate before the pulse increases from 2π ×
0.16 MHz only up to 2π × 0.21 MHz, which is substan-
tially below the maximum damping rate of 2π × 0.39 MHz
in Fig. 5. Hence, the heating of the sample is of minor
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FIG. 11. Extracted parameters for the transition rates for samples A and B. (a) The effective resistance in the circuit model as a function
of the bias voltage. (b) Critical current Ic normalized with the maximum critical current Ic,0. (c) Estimated average photon number in the
dissipative resonator R2.
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TABLE I. Sample parameters. The parameters for sample B
that differ from those for sample A are given in parenthesis. See
Appendices E–I and Fig. 14(b) for details. The resonance frequency
of the second mode of the resonator R1, f1, is a measured value, the
characteristic impedances of the transmission lines in the resonator,
Z0, and in the external measurement circuit, ZL, are nominal values.
The lengths of the resonator sections x1 and x2 are design values,
and the effective permittivity is calculated as [77]

√
εeff = c/(2 f1x1),

where c is the speed of light in vacuum. We obtain the values for the
capacitance per unit length Cl, and the capacitance CTL from finite-
element method (FEM) simulations. The capacitance CC is obtained
by fitting the circuit model to the measured scattering parameter
|S21| in good agreement with FEM simulations, and the capacitances
CN, CS, and Cj are calculated using a parallel-plate model. The
coupling strength g is obtained from CC. The loaded quality factor
of the second mode of R1 Qint,1 and the tunneling resistance RT are
measured values, and the Dynes parameter γD is estimated as the
ratio of the asymptotic resistance and the zero-voltage resistance. The
critical current at zero bias Ic,0 is given by the flux corresponding to
the crossing of the modes in the circuit model in good agreement with
a control sample with slightly smaller junction area and a critical
current of approximately 200 nA. The damping rate κ1 is given by
the ratio ω1/Qint,1, and the damping rate κint,2 is extracted from the
saturation value of κ2 at zero bias. The proportionality coefficient for
the residual losses ωr,tot is a fitted value.

Parameter Value

f1 5.223 GHz
Z0 50 �

ZL 50 �

x1 12 mm
x2 6.0 (6.5) mm
εeff 5.73
Cl 155 pF/m
CTL 0.8 fF
CC 3.8 fF
CN 98 fF
CS 460 fF
Cj 6.2 fF
g/(2π ) 7.2 MHz
Qint,1 2.7 × 104 (2.0 × 104)
RT 8.4 (9.5) k�

γD 1 × 10−4

Ic,0 340 (300) nA
κ1/(2π ) 190 (260) kHz
κint,2/(2π ) 16 MHz
ωr,tot/(2π ) 22 MHz

importance in the measurements of the damping rates during
the QCR pulse.

APPENDIX G: RESIDUAL LOSSES IN
THE RESONATOR R2

We attribute the residual voltage-dependent losses to de-
phasing, and to dissipation sources such as quasiparticle
generation in the superconductors and resistive losses in the
normal metal. First, the resonator R2 is slightly nonlinear
owing to the SQUID and, hence, an increasing incoherent
photon number results in dephasing. Dephasing can be added

in Eq. (D2) with a term κφL[b̂†b̂]ρ̂, where the dephasing rate
κφ depends on the number of thermal photons in the resonator.
Similarly, in the case of superconducting qubits, the dephasing
can be written as κφL[σ̂z]ρ̂, where σ̂z is a Pauli operator. The
factor κφ causes a similar effect as κ2 in Eqs. (D2)–(D12)
although it does not decrease the total photon number in
the resonators. The photon-number variance for a thermal
state is of the form [38,39] n(n + 1) and, therefore, thermal
photons cause more dephasing than the coherent photons
with a variance of n, where n is the average photon number.
Consequently, we assume that κφ = ωφn(n + 1), where ωφ is
a proportionality coefficient. Furthermore, as discussed above,
the number of the coherent photons is low in R2 due to the
relatively high loss rate. The steady-state photon number in
R2 can be estimated as [49]

n = κQCRNQCR

κQCR + κint,2
, (G1)

where we assume that the photon number of the effective
bath, to which R2 is coupled through κint,2, vanishes owing to
the very low cryostat temperatures of approximately 10 mK.
The photon number n depends linearly on the bias voltage at
voltages above the superconductor energy gap, as shown in
Fig. 11.

Second, we take the quasiparticle losses into account. The
critical temperature of Nb is approximately 9 K and, there-
fore, the quasiparticle density remains low in it. However,
the critical temperature of Al approximately 1.2 K, which
enables higher quasiparticle density than in Nb. We observe a
decrease in the critical current of the SQUID, which indicates
increased temperature in the Al leads of the SQUID, and
hence heat dissipation. The quasiparticle loss rate [80,81]
κqp ∝ nqp ∝ √

P, where P is the absorbed power. The Al
leads at the NIS junctions receive half of the Joule power
P = IVb at high voltages, whereas the other half is absorbed
to the normal metal. Thus, the power is quadratic in voltage,
which is linear in the estimated photon number. Therefore,
the expected quasiparticle losses are linear in photon number
κqp = ωqpn, where ωqp is a proportionality coefficient. The dc
power dissipated in the junctions is substantially higher than
the microwave input power. At eVb/(2�) = 2, the dc power
is approximately 30 pW compared to a microwave power of
−100 dBm = 0.1 pW. The normal metal in the QCR acts as an
effective quasiparticle trap [81] minimizing the quasiparticle
losses. However, some fraction of the power dissipated at the
QCR leaks to the SQUID.

There is an approximately 10-μm-long section of normal
metal between the actual Nb resonator and the NIS junctions,
which may cause some losses. The loss rate κres at the resistor
depends on the current profile of the microwave mode, which
can depend on the voltage Vb. Nevertheless, we assume these
losses to be small since there is a layer of superconducting
Al below the normal metal due to the shadow evaporation
technique. This Al layer decreases the current in the resistor,
and hence also the resistive losses. The very weak resistive
losses are quadratic in the voltage amplitude of the microwave
resonator which is linear in photon number if the mode
profile does not change. Thus, the loss rate per photon κres

is approximately constant.

134505-11



MATTI PARTANEN et al. PHYSICAL REVIEW B 100, 134505 (2019)

Consequently, the total voltage-dependent losses in R2
including the dephasing, quasiparticle losses in the super-
conductors and the resistive losses are given by κr,2 = κφ +
κqp + κres. We expect the dephasing to dominate over the
quasiparticle and resistive losses. Therefore, in the numerical
analysis, we take the photon-number-dependent losses into
account as

κr,2 = ωr,totn(n + 1), (G2)

with only one fitting parameter ωr,tot effectively describing
the different loss methods discussed above. From the exper-
imental damping rates of the dissipative resonator R2, we
extract the the coefficient ωr,tot ≈ 2π × 22 MHz. The good
agreement with the experimental damping rate κ2 and the
model with the quadratic residual losses κr,2 in Fig. 4(a) gives
further support for the approximation in Eq. (G2). We do not
take this loss rate into account in Eq. (G1) for simplicity, and
also due to the fact that pure dephasing does not decrease the
photon number.

The odd modes of R1 do not show flux dependence as
expected due to the voltage node at the coupling capacitor.
However, they do show some dependence on the voltage Vb.
Similar dependence can be observed also for the even modes
at �/�0 = 0.5 where the inductance of the SQUID ideally
vanishes and thus decouples the QCR from the resonator R1.
We attribute this observation to unintentional asymmetry of
the sample. Furthermore, the QCR may be weakly coupled to
the input and output microwave fields through some spurious
mode of the sample holder. The very broad resonance at
high-bias voltages enables the coupling to the spurious modes.
We note that the spurious modes may be partially responsible
for the κr,2. However, we do not quantitatively model these
losses. Instead, they are effectively included in the parameter
ωr,tot in Eq. (G2).

APPENDIX H: FULL MODEL FOR κ2 AND κeff

The decay rate of the resonator R2, κ2, and the effective
damping rate of the coupled system, κeff, are obtained as
follows. First, we extract the effective resistance correspond-
ing to the QCR by fitting the classical circuit model to
the experimentally obtained scattering parameter S21 using
a least-squares algorithm. In addition to the effective resis-
tances, we extract the critical current of the SQUID from the
theoretical model (Fig. 11). From the same fit, we also extract
the coupling capacitance CC at zero-bias voltage and assume it
to be voltage independent throughout this work. The coupling
capacitance is found to be 3.8 fF which agrees well with the
finite-element-method simulation that yields approximately
5 fF. The internal losses of R1 are extracted separately with
R2 far detuned. Second, we calculate the quality factor of
the resonator R2, QR2, for the obtained effective resistance,
as discussed below. The coupling rate is related to the quality
factor as κ2 = ω2/QR2. The full model shown in Fig. 4(a) is
obtained by fitting

κ2(Vb) = κQCR(Vb) + κr,2(Vb) + κint,2 (H1)

to the experimental transition rates according to Eqs. (B8),
(G1), and (G2). Here, we use ωr,tot as the only fitting parameter
since we fix κint,2 to the saturation value at zero bias, as

discussed above, and κQCR is obtained from Eq. (B8) with
parameters extracted from independent measurements.

Subsequently, we may proceed to the effective damping
rates κeff = −2 Im(λ±), which can be obtained from κ2 with
the help of Eq. (2). The damping rate of R2 above the critical
damping κ2 > 4g results in the two branches of the effective
damping rate κeff at bias voltages Vb � 2�/e. We use Eq. (2)
for both the experimental effective damping rates and the
model in Fig. 4(b).

APPENDIX I: CLASSICAL CIRCUIT MODEL

To simulate the scattering parameter S21, we use a classical
circuit model similar to the one presented in Ref. [57]. We
analyze the samples using standard microwave circuit theory
[82]. The input impedance of the resonator R2 is

ZR2 = ZC +
Z0

{
ZS + Z0 tanh(γ x2) + Z0[Reff+Z0 tanh(γ x2 )]

Z0+Reff tanh(γ x2 )

}
Z0 + tanh(γ x2)

{
ZS + Z0[Reff+Z0 tanh(γ x2 )]

Z0+Reff tanh(γ x2 )

} ,

(I1)

where the impedance of the SQUID and the capacitors be-
tween the SQUID and the center conductor is given by ZS =
iωLS + 2/(iωCS), the impedance of the coupling capacitor
between the resonators by ZC = 1/(iωCC), γ is the complex
propagation coefficient discussed above, and the terminat-
ing impedance consisting of the effective resistance of the
NIS junctions and the capacitor between the normal-metal
island and the center conductor is modeled as an effective
resistor with resistance Reff. The inductance of the SQUID
is calculated as LS(�) = �0/[2π I0| cos(π�/�0)|], where the
maximum supercurrent through the SQUID is I0, and the flux
quantum is �0 = h/(2e).

The scattering parameter S21 describing the voltage trans-
mission from port 1 to port 2 can be calculated using the
transmission matrix method as [82]

S21 = 2

Am + Bm/ZL + CmZL + Dm
, (I2)

where ZL is the characteristic impedance of the external
measurement cables, and(

Am Bm

Cm Dm

)
= M1M2M3M2M1, (I3)

with

M1 =
(

1 1
iωCTL

0 1

)
, (I4)

M2 =
(

cosh(γ x1) Z0 sinh(γ x1)
1
Z0

sinh(γ x1) cosh(γ x1)

)
, (I5)

M3 =
(

1 0
1

ZR2
1

)
. (I6)

We analyze the losses in the resonator R2 also in the absence
of coupling to R1 as shown in Fig. 12. In this case, we omit
matrices M1 and M2 from Eq. (I3). The resonator R2 causes
a dip in the amplitude of the transmission coefficient S21,
whereas R1 causes a peak. The quality factor can be estimated
directly from the ratio of the center frequency and the width of
the peak or dip. Alternatively, more advanced methods can be
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FIG. 12. Simulation of the scattering parameter of resonator R2.
The scattering parameter is presented as a function of magnetic flux
and frequency. We omit R1 in the simulation by letting CTL → ∞.
For clarity, we show the flux-independent resonance frequency of
R1 as the dashed line. Near the mode crossing at � ≈ 0.4 × �0,
a flux detuning of 0.01 × �0 results in a frequency detuning of
approximately 140 MHz. The simulation parameters correspond to
sample B.

used [83]. In addition, these simulations yield the frequency
detuning as a function the magnetic flux.

APPENDIX J: SAMPLE FABRICATION

The samples are fabricated on a Si wafer with a thickness
of 500 μm and a diameter of 100 mm. First, a 300-nm-thick
layer of SiO2 is thermally grown on the wafer with resistivity
ρ > 10 k�cm. Subsequently, a 200-nm-thick layer of Nb is
sputtered on top of the oxide. The resonators are patterned
on the Nb layer with optical lithography and reactive ion
etching. We cover the complete wafer with a 40-nm-thick
layer of Al2O3 fabricated using atomic-layer deposition. This
oxide layer serves as an insulating barrier in the parallel
plate capacitors and separates the QCR lines from the ground
plane. The nanostructures are defined using electron beam
lithography and two-angle shadow evaporation followed by a
lift-off process. The SQUID consists of two Al layers with
thicknesses of 40 nm each. The first Al layer is oxidized
in situ in the evaporation chamber at 1.0 mbar for 5 min. The

SINIS junctions consist of Al (40 nm) and Cu (40 nm), and the
Al layer is similarly oxidized as in the SQUID. The shadow
evaporation technique results in overlapping metal layers.
Scanning electron micrographs of the samples are shown in
Fig. 13.

APPENDIX K: MEASUREMENT SETUP

The measurement setup is schematically presented in
Fig. 14. The samples are measured in a commercial dry
dilution refrigerator with a base temperature of approximately
10 mK. To characterize the samples, we use standard mi-
crowave techniques that are well established in the field of cir-
cuit quantum electrodynamics. The scattering parameters are
measured with a vector network analyzer which contains both
the microwave source and the detector. The microwave signal
is attenuated at different temperature stages to avoid heat
leakage from higher temperatures to the sample. We employ
amplifiers at 4 K and at room temperature. The NIS junctions
are controlled by applying a bias voltage or current through
continuous thermocoax cables from room temperature down
to the base temperature. Magnetic flux for the SQUID is
produced using a superconducting coil with a bias current.

The time-domain measurements are carried out using a
field programmable gate array with a measurement setup
resembling the one used in Ref. [23]. The voltage pulses to
the QCR are produced with an arbitrary waveform generator.
We obtain an accurate in situ calibration of the attenuation in
the measurement cables leading to the QCR from the rapid
increase of the damping rate with increasing pulse amplitudes
at eVb/(2�) = 1.

APPENDIX L: NORMALIZATION OF
SCATTERING PARAMETERS

All measured scattering parameters S21 are normalized.
Initially, we compensate for the phase winding originating
from the electrical delay τ ≈ 50 ns in the measurement setup
outside the sample by multiplying the measured transmis-
sion coefficient by exp(iωτ ). Consequently, the resonance
produces a circle on the complex plane as the frequency is
increased over the resonance. We transform this circle to its
canonical position where max |S21| is on the positive real axis
and the circle intersects the origin. Finally, we normalize the
amplitude to unity by dividing with max |S21|.

5 µm 40 µm3 µm 5 µm

R1

Port 1

R1

R2

(a) (b) (c) (d)

FIG. 13. False-color scanning electron micrographs showing sample structure. (a) Normal-metal island with four NIS junctions. (b) SQUID
with two Josephson junctions. (c) Coupling capacitance between R1 and port 1. (d) Coupling capacitance between R1 and R2.
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FIG. 14. Measurement setup and circuit diagram of the sample. (a) Simplified measurement setup showing the attenuators, and amplifiers
at different temperatures. We measure the sample response to microwave signal from port 1 to port 2. Magnetic field for the SQUID is generated
using a coil with current Im. A bias voltage Vb and bias current for thermometry Ith are applied to the NIS junctions. The temperature of the
normal metal is deduced from voltage Vth measured with an applied bias current Ith. (b) Sample structure presented as an electrical circuit
diagram. The transmission lines of the resonators have characteristic impedances Z0, and the external transmission lines ZL. The sections of the
resonators have lengths x1 and x2. The capacitances at the external ports are denoted by CTL, between the resonators by CC, between the SQUID
with inductance LS and the center conductor of the transmission line by CS, and between the normal-metal island and the center conductor
by CN.
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