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We present a generalized gradient approximation kinetic energy functional family with a simple rational
form and nonempirical parameter derived from the semiclassical energy expansion of neutral atoms. The family
unifies the Pauli-enhancement-factor-based semilocal noninteracting kinetic energy functionals (known as Pauli
functionals) that achieve good, balanced accuracy with respect to metallic and semiconductor systems. We show
that these functionals’ performance can be understood in terms of the small-s expansion, where s is the reduced
density gradient. We derive Pauli functionals parameters from the large-Z kinetic energy limits of neutral atoms,
which prevents overfitting to bulk systems. These results spotlight the current state of the art for semilocal kinetic
energy functionals. For the next generation of functionals, including more constraints and variables, these results
would allow to fix second-order coefficients nonempirically and concentrate on exploring next-order terms in
the small-s expansion.
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I. INTRODUCTION

Orbital-free density functional theory (OFDFT) is a density
functional theory [1] that treats total energy as an explicit
functional of density. This is in contrast to the Kohn-Sham
(KS) scheme [2], which requires a noninteracting orbital
ansatz. OFDFT only requires solving one pseudo-orbital (den-
sity’s square root [3]), while KS orbitals require solving the
entire eigensystem, which scales cubically in the number of
electrons, N3

e . OFDFT enables much larger and faster ab initio
molecular dynamics (AIMD) calculations [4] which can be
used to simulate liquid metals and warm dense-matter systems
when coupled with appropriate high-temperature corrections.

OFDFT’s applicability is restricted by the kinetic energy
functionals’ accuracy that replaces the orbital-based KS ki-
netic energy expression. Current research proposes two types
of kinetic energy functionals: Semilocal one-point functionals
and two-point functionals. The energy density τ of semilocal
functionals depends only on the density and its derivatives
at one spatial point. In two-point functionals, though, the
energy density τ depends explicitly on density at two spatially
separated points.

Semilocal functionals are faster and, so far, attain broader
applicability than two-point functionals although two-point
functionals do have better performance within some cate-
gories like simple metals. Two recent semilocal Pauli func-
tionals [5,6], for example, attained a low average mean
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absolute relative error (MARE) on metals’ and semiconduc-
tors’ general properties.

Because we know the behavior of the exact kinetic energy
density functional Ts[n] in certain limits, we approach the
problem with constraint-based development. On a general-
ized gradient approximation (GGA) level, similar to GGA
exchange-correlation functionals, some exact constraints are
hard to fulfill simultaneously. When constraints conflict with
each other it is necessary to choose or modify them. Here we
investigate kinetic energies of neutral atoms in a large-Z limit
which is a constraint on any universal kinetic functional re-
lated to “charge-neutral” scaling [7]. Fulfilling this condition
is a hard requirement on a GGA level functional and thus we
relax the constraint as detailed in Sec. III.

The large-Z kinetic energy considerations for kinetic en-
ergy functionals were first introduced by Lee et al. [8].
Two main difficulties appeared. First, simple, one-parameter
kinetic functionals were not able to reproduce the large-Z
limit of kinetic energies completely. Second, the partial re-
production of the large-Z limit conflicts with second-order
gradient expansion of kinetic energy functionals (GE2). Fur-
ther analysis of such conflict revealed that kinetic functionals
that recover the first two terms of the kinetic expansion are
more accurate than those that recover GE2 [9] in frozen
density embedding calculations. Here we consider the large-Z
kinetic energy limit of neutral atoms as a desirable alternative
constraint to the second-order gradient expansion constraint
for OFDFT kinetic energy functionals. We apply functional
parameters resulting from the large-Z limit to bulk systems
with pseudopotentials.

We introduce a new functional family RATIONALp that
unifies previously obtained results for these simple yet

2469-9950/2019/100(16)/165111(9) 165111-1 ©2019 American Physical Society

https://orcid.org/0000-0003-4489-6841
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.165111&domain=pdf&date_stamp=2019-10-07
https://doi.org/10.1103/PhysRevB.100.165111


JOUKO LEHTOMÄKI AND OLGA LOPEZ-ACEVEDO PHYSICAL REVIEW B 100, 165111 (2019)

powerful semilocal Pauli functionals. We then obtain a rela-
tively low average MARE on bulk properties for state-of-the-
art semilocal functionals by finding the functional parameters
with large-Z atomic constraints.

II. PAULI FUNCTIONALS

The Pauli term decomposition [10] for kinetic energy
is Ts = TvW + Tθ , where TvW is the von Weizsäcker term
and Tθ is the Pauli energy. The von Weizsäcker term is
TvW = ∫

dr τTF
5
3 s2 in terms of the reduced gradient s =

|∇n|
2(3π2 )1/3n4/3 and Thomas-Fermi kinetic energy density τTF =
3

10 (3π2)2/3n5/3. For semilocal GGA, the Pauli energy term
is written with the help of the Thomas-Fermi kinetic energy
density

Tθ =
∫

dr τTF(r)Fθ (s(r)), (1)

where Fθ (s) is the dimensionless Pauli enhancement factor.
The enhancement factor ensures that the kinetic energy func-
tional’s uniform scaling rules are satisfied automatically [11].
In this paper, we call functionals constructed via this Pauli
decomposition Pauli functionals.

Our proposed functional (along with two other functionals
studied here) are all GGA Pauli functionals that satisfy these
exact constraints:

(i) Positivity of the Pauli term Tθ � 0 [10]. We impose this
by using the more constraining simplification Fθ (s) � 0.

(ii) Conjectured Lieb constraint Ts � TvW + TTF [12]. For
universality, we convert this to the form Fθ (s) � 1.

(iii) Decay of the Pauli energy density lims−→∞ tθ = 0.
This is a constraint from many electron atoms, where at the
density tail only one orbital dominates and the von Weizsäcker
functional is the exact functional [3,13].

(iv) Small-s expansion of Fθ should be of the form 1 −
C2s2 + O(s4). This ensures compatibility with the kinetic
energy’s GE2 [14]. We note that F GE2

θ = 1 − 8
9

5
3 s2 ∼ 1 −

1.48s2.
We note that the constraints are valid for the positive-

definitive definition of the Kohn-Sham kinetic energy density
τKS

s = 1
2

∑Ne
i=0 |∇φi|2, where unit occupancy of each orbital is

assumed.
Table I lists the investigated functionals, showing that

they are identical to the second order and differing at the
fourth order s4 and beyond in the small-s expansion. The
Luo-Karasiev-Trickey (LKT) functional by Luo et al. [6]
has a parameter that corresponds to the value C2 = 0.845 in
the original work, where the main consideration is a balance

TABLE I. Pauli-type GGA functionals, where the functional
has been expanded to a fourth order in the third column, small-s
expansion.

Name Fθ (s) Small-s expansion

LKT cosh−1(
√

2C2s) 1 − C2s2 + 5
6C2

2 s4 + O(s6)

GAUSS exp(−C2s2) 1 − C2s2 + 1
2C2

2 s4 + O(s6)

RATIONALp (1 + C2
p s2)

−p
1 − C2s2 + (1 + 1

p ) 1
2C2

2 s4 + O(s6)

between the positive Pauli potential and bulk performance.
The GAUSS functional was previously introduced by
Constantin et al. [5] with the name Pauli-Gaussian (PG).
In their work, they performed a parameter scan on the
PG with the most important parameters being C2 = 1, a
global optimum for bulk systems, and C2 = 1.48, which is
compatible with GE2. The functional RATIONALp is a new
functional in the context of Pauli-type functionals.

As reported in Refs. [5,6], these simple Pauli functionals
perform quite well against two-point functionals, and the
average MARE over metals and semiconductors is consis-
tently better. Thus, here we focus on deriving parameters for
the functionals from exact constraints and understanding the
functionals’ performance.

We use the RATIONALp functional to emulate LKT and
GAUSS functionals to the fourth order s4 in the small-s
expansion:

RATIONALp= 3
2 = LKT + O(s6), (2)

lim
p→∞ RATIONALp = GAUSS + O(s6), (3)

which are investigated to unify previous results and under-
stand the small-s expansion’s behavior at the fourth order.
To emulate GAUSS we must choose finite p, and here we
choose p = 16. Fourth-order s4 behavior is not known a priori
in GGA functionals, because the only clues of fourth-order
behavior are from fourth-order gradient expansion (GE4) [15],
which requires an additional variable (the reduced Lapla-
cian of density q). We emphasize that in the following for
each functional family LKT, GAUSS, RATIONALp= 3

2 , and
RATIONALp=16 we vary only the C2 coefficient while the
functional form stays fixed.

We also refer to the simplest GGA model: The Thomas-
Fermi–von Weizsäcker (TF-vW) model:

F TF-vW
θ (C2) = 1 − C2s2. (4)

The TF-vW functional is a lower-performant functional and
does not satisfy constraints (i) and (iii), contrary to the func-
tionals in Table I.

III. FUNCTIONAL PARAMETERS FROM
SEMICLASSICAL AVERAGES

A. Introduction

In this section we detail a method to find functional param-
eters from a semiclassical consideration of model systems.
The central concept is the semiclassical average which we
define to be the smooth part of a quantity as a function of
particle number N or atomic number Z . Formally this reads as

E (N ) = Ẽ (N ) + δE (N ), (5)

where Ẽ is the smooth part and δE is the oscillating part. In
general, the smooth part gives the trend of the quantity and is
a relatively simple function. The oscillating term depends on
the exact quantum effects. For some quantities it is possible
to extract the smooth part Ẽ completely by semiclassical
methods and in some cases it can be extracted from oscillating
data. A good example is the total energy of atoms as a function
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of atomic number Z ,

Ẽ atomic(Z ) = −0.7687745Z7/3 + 0.5Z2 − 0.2699Z5/3, (6)

which was derived by Schwinger via semiclassical methods
[16,17] and later refined by Schwinger and Englert [18–20].
The second example is the ionization potential of atoms
[21,22], which was extracted from Hartree-Fock atoms.

In this section we consider semiclassical averages of ki-
netic energy and use it to find parameters for kinetic function-
als. Similar studies have been done in the past. First is Lee
et al. [8], who investigated Kohn-Sham atoms and gradient
expansions of kinetic energy. Later the method was applied to
kinetic functionals in the context of frozen embedded density
functional theory (DFT) [9].

Semiclassical averages are reproduced by the exact kinetic
energy functional; thus they are a constraint on the kinetic
energy functional. Then it is desirable to have functionals
which do satisfy as many as possible of the constraints on
relevant systems.

The section is structured as follows: We first detail how
we determine semiclassical averages of the noninteracting
isotropic harmonic oscillator as an illustrating example.
Then we show how to find parameters by constraining the
functionals to reproduce semiclassical averages of a harmonic
oscillator. The method is adopted and extended from the
original method by Lee et al. [8]. Finally we apply the method
to obtain parameters for kinetic functionals from Kohn-Sham
atoms which do include additional considerations. More
details on the method are included in the Supplemental
Material [23].

B. Semiclassical averages of a harmonic oscillator

We consider kinetic energies T although the method could
apply to any quantity which contains a smooth part. Consider
a noninteracting isotropic harmonic oscillator in three dimen-
sions, Vext = 1

2ω2r2. The smooth part of the total energy is
given by

Ẽharmonic(N ) = 1
4ω(3N )4/3 + 1

8ω(3N )2/3, (7)

where N is the particle number. The result can be obtained
in multiple ways [24] but a straightforward way is to apply
Thomas-Fermi theory to get the first term and apply quantum
correction to the Thomas-Fermi result to obtain the second
term.

The kinetic energy T harmonic is obtained by applying the
virial theorem T = 1

2 E . The analytically known kinetic en-
ergies are plotted in Fig. 1, where the smooth part and the
oscillations are visible. Expression (7) is a semiclassical aver-
age and the smooth part is actually an envelope of valid values
when we consider finite N .

Expression (7) is therefore not the only possible semiclas-
sical average but there exist multiple equally valid semiclas-
sical averages associated with different subsets of harmonic
oscillators. We can study the possible semiclassical averages
by extracting the limits: The upper and lower limits from
E (N ). More quantitatively we can check how much their
coefficient values can deviate from those given in (7).

To determine the upper and lower limits we choose har-
monic oscillators from the upper and lower bounds of the

FIG. 1. Kinetic energies of a noninteracting isotropic harmonic
oscillator in three dimensions. The central semiclassical average is
shown in green and the upper and lower bounds are shown in red and
violet. The central semiclassical average corresponds to the kinetic
energy series T harmonic (7). The harmonic oscillators chosen for each
fit are shown with respective colors.

energy oscillations. We also choose harmonic oscillators
where the T harmonic crosses exact results in order to find how
faithfully a fit to a finite amount of harmonic oscillators
reproduces the semiclassical result. We then do a parabolic
least-squares fit to T

N4/3 in N−1/3 to obtain the coefficients in

T harmonic
fit = a0N4/3 + a1N + a2N2/3.

The fits obtained from upper and lower limits are appropri-
ately named upper and lower and we refer to the fit obtained
from systems near semiclassical series, here T harmonic, as
“central.”

The results are shown in Table II. All three fits reproduce
the Thomas-Fermi value a0 ∼ 0.541 correctly. The central fit
reproduces a2 of T harmonic quite well which is not surprising
considering how we chose the systems for the fit. The upper
and lower limits show a difference in the a2 coefficient.
Reassuringly all the fits produce nearly zero a1 value.

The critical notion here is the fact that the coefficient
a2 can actually have a value within the range (0.22, 0.08)
and all these coefficient values for a2 produce a reasonable
semiclassical average. We apply the semiclassical averages

TABLE II. Semiclassical averages for harmonic oscillator and
Kohn-Sham atoms. For more details see text.

a0 a1 a2

Harmonic oscillator
T harmonic 0.5408 0.0000 0.1300
Upper 0.5409 −0.0001 0.2157
Central 0.5407 0.0008 0.1327
Lower 0.5408 0.0000 0.0866

Kohn-Sham atom
T atomic 0.7688 −0.5000 0.2699
Upper −0.5002 0.2586
Central −0.5000 0.2699
Lower −0.5015 0.2799
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TABLE III. Thomas-Fermi–von Weizsäcker model coefficients
and fits for the three different semiclassical averages.

TF-vW

C2 a0 a1 a2

Upper 1.149 0.5404 0.0182 0.2157
Central 1.032 0.5381 0.0477 0.2600
Lower 1.489 0.5405 0.0068 0.0866

as a constraint on kinetic energy functionals to find values for
free parameters.

C. Constraining kinetic functionals to reproduce semiclassical
average of harmonic oscillator

Ideally the kinetic energy functional would satisfy fully the
constraint imposed by semiclassical averages by reproducing
the correct oscillations. We use a more relaxed condition: The
kinetic energy functional should reproduce a semiclassical
average, not necessarily all of them.

We now detail the method of fitting functional parameters
to a semiclassical average, which is a variant of the method
presented by Lee et al. [8]:

(1) Find a semiclassical average: Choose a set of systems
{Ni} and find the semiclassical average of the kinetic energies
Tfit({Ni}).

(2) Use the densities of those same systems to evaluate the
kinetic energy functional T α

s [n] non-self-consistently (pertur-
batively), where α is the functional parameter to be adjusted.
Then adjust parameter α until T α

fit ({Ni}) and Tfit({Ni}) agree to
the desired accuracy.

We can apply the above procedure to all semiclassical av-
erages we can find. Naturally the central case and the limiting
values hold the most interest. By fitting parameters to multiple
semiclassical averages we address two issues: (i) from the
semiclassical point of view multiple parameter values are
valid and (ii) the densities contain shell oscillations which
might affect the results from the kinetic energy functional.
The second point is sensitivity analysis: How sensitive the
functional parameter is to the choice of systems {Ni}. By
using multiple semiclassical averages the method estimates
how large of variations the shell effects can induce in the
functional parameters.

We return to the harmonic oscillator example. We apply
the method to the three semiclassical averages upper, cen-
tral, and/lower in Table II to find the range of functional
parameters. Results for the procedure with the TF-vW kinetic
energy functional are shown in Table III. The Thomas-Fermi
coefficient a0 is reproduced within reasonable accuracy. The
variation in the C2 parameter is quite large, ∼0.5. There is
discrepancy between the analytical derivation and the param-
eters found from fitting. Analytically the TF-vW functional
with C2 ∼ 1.481 (GE2) produces (7) [24] but the central
semiclassical average produces C2 = 1.032.

As we discussed earlier, for simple functionals, with only
one parameter, we have to choose among multiple constraints.
In the case of the harmonic oscillator the numerical results
for a lower semiclassical average agree with the analytical

considerations so we consider the lower semiclassical average
to be the preferred choice as a constraint.

Studied Pauli functionals are unable to reproduce the a2

coefficients, which shows that some universality is already
lost with the functional form which is not surprising due to
constraint (iii). We can still check how precisely the Thomas-
Fermi coefficient a0 is reproduced. Remember that constraint
(iv) should impose the correct Thomas-Fermi limit. We find
that all the Pauli functionals reproduce a0 ∼ 0.541 with vary-
ing C2 values. Thus constraint (iv) does agree reasonably well
with the semiclassical Thomas-Fermi limit given by T harmonic.

D. Kinetic functional parameters from semiclassical
average of Kohn-Sham atoms

We now apply the method to obtain the kinetic functional’s
parameters from constraining the functionals to reproduce the
semiclassical average of Kohn-Sham atoms. Noninteracting
atoms are not on option because the quantum correction term
of size Z5/3 vanishes [22]. We calculate neutral Kohn-Sham
atoms with Dirac exchange up to atomic number Z = 181
[25]. Following [8] we apply the virial theorem to (6) to obtain

T atomic
s = 0.7687745Z7/3 − 0.5Z2 + 0.2699Z5/3 + O(Z4/3)

(8)

for the Kohn-Sham kinetic energy Ts. We want to use the
atomic kinetic energy T atomic

s and the related semiclassical
averages as a constraint to find the functional parameters.
However, we do not require full reproduction of the semiclas-
sical average but only the coefficient of the last term Z5/3.
We assume that the first term coefficient is fixed to 0.7687745
due to the limited amount of calculated atoms and we are
not interested in the value of the second term for orbital-
free kinetic energy functionals because of more fundamental
reasons. We discuss both aspects in the following. Instead of
the fit introduced in the case of the harmonic oscillator we do
a parabolic least squares fit to Ts

Z7/3 in Z−1/3 to find coefficients
of the expression a0Z7/3 + a1Z2 + a2Z5/3.

The origin of different terms in (6) is well known: The
first is the Thomas-Fermi term a0 = 0.7687745; the second
term, a1 = 0.5, the Scott term, is coming from the atomic
inner core; and the last term, a2 = 0.2699, is due to the
first semiclassical correction to the Thomas-Fermi and Dirac
exchange. The first and last terms are similar to the harmonic
oscillator case (Thomas-Fermi term and its correction) but
there is no equivalent of the Scott term in the harmonic
oscillator.

We have only a limited amount of Kohn-Sham atoms
available and obtaining the limiting Thomas-Fermi coefficient
a0 is difficult so we follow Lee et al. [8,9] and fix a0 =
0.7687745 for all fits. For Kohn-Sham kinetic energies this is
not problematic. For kinetic energy functionals we confirmed
with harmonic oscillators that constraint (iv) coincides with
producing the correct Thomas-Fermi coefficient a0 in the
semiclassical average.

The kinetic energies of Kohn-Sham atoms are shown in
Fig. 2. We use similar naming as in the case of the harmonic
oscillator: Central refers to the semiclassical average related
to T atomic

s (8) and lower and upper refer to the limiting
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FIG. 2. Kinetic energies of Kohn-Sham atoms with semiclassical
averages. The central semiclassical average is shown in green and the
lower and upper bounds in violet and red. The central semiclassical
average corresponds to the kinetic energy series T harmonic (8). The
Kohn-Sham atoms chosen for each fit are shown with respective
colors.

semiclassical averages. The resulting semiclassical averages
are in Table II. It is reassuring that the a1 is consistently cor-
rect. The variation of a2 is within the range (0.2586, 0.2799)
which is a smaller range than in the harmonic oscillator case.
We did not use low-Z atoms (Z < 40) to find the semiclassical
averages as small-Z oscillations are quite prominent and as
a result the lower bound crosses the oscillations at Z ∼ 30.
The discrepancy with the harmonic oscillator case can be
attributed to the different treatment of electronic interaction.

We now discuss the Scott term in depth and its implications
for our procedure.

1. Atomic inner core

The atomic inner core is the region of the atom where
the effective potential is V ∼ Z

r . The electrons which are
mostly in the inner core are called strongly bound electrons
(SBEs) [22]. It was shown by Schwinger that this region
is unambiguously responsible for the Scott term in the total
energy (6).

We also assume that the corresponding Scott term of size
Z2 in the kinetic energy expression (8) is mostly because of
strongly bound electrons. This is hard to show directly but
there is some supporting evidence.

We apply GGA kinetic functionals to Thomas-Fermi den-
sities, which do not contain SBEs, to obtain a fit where a1 ∼ 0.
This is a direct consequence of charge-neutral scaling [7]. On
the other hand, Thomas-Fermi densities are not usable for de-
tailed GGA analysis due to well-known unphysical behavior
near the atomic nucleus. Thus if no SBEs are present in the
density then the coefficient a1 is zero. When applying kinetic
energy functionals to realistic atom densities the coefficient a1

is nonzero.
The typical example of SBEs involves the electrons of

the first hydrogenic shell with the density n0 = Z3

π
e−2Zr . By

applying typical functionals T TF and T vW to n0 we see
that they produce nonzero a1: T TF[n0] = 81

1250 (3π )2/3Z2 and
T vW[n0] = 1

2 Z2. It is in general difficult to point out which
orbitals have strongly bound electrons and which do not as the

TABLE IV. Parameter C2 values for kinetic energy functionals
by using semiclassical averages.

Ts[n] Upper Central Lower

TF-vW 1.2681 1.2854 1.3364
GAUSS 0.8350 0.8403 0.8852
RATIONALp=16 0.8261 0.8311 0.8758
LKT 0.7630 0.7659 0.8089

RATIONALp= 3
2 0.7658 0.7687 0.8118

definition of strongly bound electrons is based on the potential
and not on the orbitals [22].

The strongly bound electrons are not relevant for pseu-
dopotential applications due to the simple fact that pseudo-
densities do not contain such electrons. In general it is much
easier to use kinetic energy functionals to describe kinetic
energies and potentials of densities that vary slowly on the
scale of the Fermi wavelength [7], while strongly bound
electrons are highly localized near the atomic nucleus. Thus
we are not interested in fixing the value of coefficient a1

when searching for functional parameters. The underlying
assumption is that most of the effects coming from strongly
bound electrons are contained in the a1 coefficient.

2. Parameters for Pauli functionals

We apply the fitting procedure to semiclassical averages
of atoms in Table II. The results for different functionals
are shown in Table IV. There is much smaller variation in
the TF-vW functional than in the harmonic oscillator case.
Again there is the discrepancy between the analytical deriva-
tion C2 ∼ 1.481 of (6) and the fitted values C2 = 1.2681 ∼
1.3364. One possible explanation is that including the elec-
tronic interaction self-consistently modifies the densities to
this degree but such exploration is beyond the scope of this
paper.

For Pauli functionals the variation of C2 values is smooth:
C2(lower) > C2(central) > C2(upper). The upper and cen-
tral values are quite close to each other. The similar-
ity in functional forms is seen here: GAUSS results are
close to RATIONALp=16 results and similarly LKT and
RATIONALp= 3

2 results are almost identical.
In the next section we study the bulk performance and we

consider only C2 values from central and lower sets as the
central and upper values are practically identical.

IV. PAULI POTENTIAL

Another important, exact constraint on the kinetic energy
functional Ts[n] is the Pauli potential’s positivity:

Vθ (r) = δTθ [n(r)]

δn(r)
� 0. (9)

Although it is not included in our initial list of constraints,
we are interested in assessing how the functional’s quality
depends on its satisfaction.

The Pauli potential is an important quantity for self-
consistent OFDFT calculations, especially numerically.
Violating the exact constraint vθ � 0 can cause convergence
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TABLE V. Parameter values for which there is a transition in
the Pauli potential of a lithium pseudoatom. Smaller values (than
the ones given here) of coefficient C2 yield a completely positive
Pauli potential. The GAUSS is a special case, because it has a small
negative region near the nucleus, which we do not take into account
in this analysis.

Name Coefficient C2

LKT 0.66
GAUSS* 0.66

RATIONALp= 3
2 0.66

RATIONALp=16 0.66

problems [26]. Thus, creating a functional with a positive
Pauli potential is important for the functional’s physicality
and convergence. Here, we look only at self-consistent Pauli
potentials.

We look at the lithium pseudoatom, which is the most
demanding test for a self-consistent Pauli potential out of
the elements that have bulk-derived local pseudopotentials
(BLPSs) (Li, Mg, Al, In, P, Ga, and As). In our experience,
if the Pauli potential’s positivity is fulfilled self-consistently
for a lithium pseudoatom, then it is fulfilled self-consistently
for all pseudoatoms. The exact Pauli potential is zero for a
lithium pseudoatom, because it only contains one electron in
the valence. All of the chosen functionals have a positive Pauli
potential for lithium if the C2 parameter is chosen below a
maximum value shown in Table V.

Figure 3 shows the Pauli potential for an LKT and
RATIONALp= 3

2 functional with parameter C2 = 0.93. The
Pauli potential has a negative feature at r ∼ 1.8 bohr where
the reduced gradient s goes to zero (shown in Fig. 4).

It is comforting that we can tune each of these functional
parameters to have a positive Pauli potential. More impor-

FIG. 3. Top: Self-consistent Pauli potential for a RATIONALp= 3
2

functional with C2 = 0.93. Bottom: Self-consistent Pauli potential
for an LKT functional with C2 = 0.93. All the functionals in Table V
have quite similar Pauli potentials.

FIG. 4. Reduced gradient s for a lithium pseudoatom calculated
with Kohn-Sham with a Perdew-Zunger local density approximation
(LDA) and local pseudopotential. The reduced gradient is quite
similar in self-consistent functionals.

tantly, even if we do not tune the parameters, the resulting
Pauli potential is negative on a very small range of s according
to our tests (see Fig. 3).

V. BULK RESULTS

We calculate bulk systems to evaluate the effect of param-
eter choice on different functionals. Specifically, we calculate
the metallic systems Li, Mg, and Al in sc, fcc, bcc, and hcp
phases and semiconductor systems GaAs, GaP, GaSb, InAs,
InP, InSb, AlAs, AlP, and AlSb in the zincblende phase. We
evaluate the equilibrium volume V0, energy E0, and bulk mod-
ulus B against the KS reference from [6,27]. The quantities
are obtained by expanding the structures around equilibrium
volume by ±10% with 15 points, which are then fitted to a
Birch-Murnaghan equation of state. All the calculations use
a Perdew-Zunger LDA exchange correlation. We chose two
values of C2 from references for comparison, where C2 = 0.85
corresponds to the LKT parameter a = 1.3 in [6], and C2 =
1.00 corresponds to μ = 1 in [5].

We chose a few other C2 values for comparison: GE2
coefficient C2 = 1.48, C2 coefficients from central and lower
semiclassical averages in Table IV, and C2 = 0.66, which
guarantees the Pauli positivity for all pseudoatoms. For all
C2 coefficients, we use two decimals, which are enough to
assess the performance. We perform all the calculations with
a PROFESS calculator [28] and BLPS [29,30] with a plane-
wave cutoff of 1600 eV. Table VI details the best mean average
error (MAREs) for metals and semiconductors.

The presented functionals and parameters in Table VI have
quite similar performance. It is clear from these results that the
C2 parameters from central and lower semiclassical averages
produce competitive results in terms of average MARE for
this selection of functionals and parameters. These results
validate the relevance of the large-Z expansion (8) for pseu-
dopotential kinetic energy functional development.

Table VI also evaluates the fourth-order coefficient’s ef-
fect. The functional RATIONALp= 3

2 has the same fourth-
order coefficient as LKT, which we see in the results: They
are practically identical. The functional RATIONALp= 3

2 has
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TABLE VI. Results for bulk systems for LKT and GAUSS functionals. The column containing C2 type indicates where we obtained the
value. The best mean average error (MARE) is in bold.

C2 Metals MARE Semiconductors MARE

Functional Type Value V0 (%) E0 (%) B0 (%) V0 (%) E0 (%) B0 (%) Average (%)

LKT GE2 1.48 7.45 1.16 8.89 1.78 0.95 5.07 4.22
Reference 0.85 4.02 0.20 7.67 2.08 2.50 4.23 3.45
Lower 0.81 4.05 0.17 8.08 2.10 2.59 4.44 3.57
Central 0.77 4.09 0.14 8.58 2.13 2.69 4.70 3.72
Pauli positivity 0.66 4.02 0.20 7.72 2.08 2.50 4.40 3.49

GAUSS GE2 1.48 8.30 1.45 13.48 4.22 0.54 14.14 7.02
Reference 1.00 4.30 0.40 6.19 2.65 2.08 6.73 3.73
Lower 0.89 3.97 0.33 6.90 2.62 2.25 6.67 3.79
Central 0.84 3.82 0.28 7.39 2.44 2.38 5.87 3.70
Pauli positivity 0.66 4.02 0.11 9.60 2.22 2.88 4.85 3.95

RATIONALp=16 GE2 1.48 7.46 1.15 9.24 1.74 0.96 4.01 4.09
Reference 1.00 4.51 0.50 5.92 2.93 1.95 8.11 3.99
Lower 0.88 3.96 0.31 7.02 2.48 2.29 6.02 3.68
Central 0.83 3.80 0.26 7.52 2.31 2.42 5.19 3.58
Pauli positivity 0.66 4.04 0.10 9.62 2.22 2.89 4.88 3.96

RATIONALp= 3
2 GE2 1.48 7.46 1.15 9.24 1.74 0.96 4.01 4.09

Reference 0.85 4.04 0.20 7.67 2.08 2.50 4.25 3.46
Lower 0.81 4.05 0.17 8.05 2.10 2.58 4.45 3.57
Central 0.77 4.10 0.14 8.55 2.13 2.69 4.70 3.72
Pauli Positivity 0.66 4.26 0.10 9.72 2.20 2.99 6.21 4.25

a slightly lower average error for the same C2 parameter.
The corresponding functional for GAUSS, RATIONALp=16,
performs similarly (but not identically) to GAUSS, because
p → ∞ is only approximated. For the average MARE, which
is dominated by the error on the bulk modulus, the values
from references are slightly better than the semiclassical
ones. This is no surprise as the C2 values from references
do include the bulk systems in their consideration for the
best coefficient. In this light the semiclassical C2 parameters
do perform quite well. The functional RATIONALp=16 is an
exception but the reference value is tuned for GAUSS and not
for RATIONALp=16.

We conclude that the RATIONALp functional captures
the LKT functionals’ behavior. This underscores that most
of the performance information on bulk systems already is
contained in the fourth-order small-s expansion. GAUSS and
RATIONALp=16 have a slightly lower performance on aver-
age for MARE, when compared to LKT and RATIONALp= 3

2 ,
mostly because of the higher error on the semiconductors’
bulk modulus. During the course of investigation, we studied
other values of p, too, but for this test set it seems that p = 3

2
(and consequently, LKT) are quite optimal.

What is clear from the set is that for Pauli functionals
satisfying condition (iii) the coefficient of the fourth-order
term in the small-s expansion is more relevant than how
exactly Fθ (s) decays to zero in the limit s −→ ∞.

We assess the performance in more detail for each quantity.
For semiconductor volumes there is no obvious pattern over
all results. For both metals and semiconductors only the
GE2 gives differentiation results: Considerably higher error
for metals and lower error for semiconductors. The bulk
modulus is the most volatile for calculational details but it

is also the most interesting as it probes the flexibility of the
functional beyond simple equilibrium volume and its error
for metals has minima in the range C2 = 0.66–1.48. The
semiconductor bulk modulus also has error minima in the
range C2 = 0.66–1.48 for LKT and RATIONALp= 3

2 but for
GAUSS and RATIONALp=16 the error minima seems to have
shifted below C2 = 0.66. For energy the pattern is clear: The
KS values are reached below C2 = 0.66 for metals and above
C2 = 1.48 for semiconductors.

VI. DISCUSSION AND CONCLUSION

Our new family of functionals, RATIONALp, captures
LKT and GAUSS functionals’ behavior. The difference in
performance on bulk systems for these functionals is mostly
determined by the fourth-order term in the small-s expansion.
For functional development, this implies that continued efforts
in this direction will involve more variables to improve accu-
racy, such as a reduced Laplacian q.

Large-Z methodology has been applied in the literature
multiple times before, but this is the first time it is applied
by explicitly targeting kinetic energy functionals to use with
pseudopotentials. We have clarified and extended the method
proposed by Lee et al. [8]. The concept of the semiclassical
average does provide an explanation from a semiclassical
perspective of why there are multiple coefficient values for
the TF-vW model in the literature [31], even for the same
system.

We found the large-Z methodology easy to apply, making it
a convenient check for future functionals. It provides another
reference system in addition to the bulk system, albeit a
non-self-consistent one. We expect that our investigations and
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improvements upon the large-Z methodology are useful for
future studies.

For future work, a few points do deserve deeper discussion.
First, large-Z energies can be derived from GE2. From this
viewpoint, the method’s applicability as a guideline beyond
order O(s2) in functional development is doubtful. As such,
it does serve as a useful tool either to prevent overfitting to
bulk systems or to find parameters for a functional. In the
current approach, we only roughly account for errors but we
do provide an estimate for the variation of C2.

The C2 parameters found from the large-Z method perform
quite well considering that they are applied to a bulk environ-
ment. While good parameters can be found with numerical
minimization of target properties it is reassuring that similar
parameters can be found from semiclassical considerations.
There is also the subtle promise that parameters obtained via
these methods perform well also on properties that are not
explicitly targeted.

Overall, simple Pauli functionals do perform well, and,
considering their simplicity, they perform excellently. This
is especially true for RATIONALp, which does not require
any special functions. Pauli functionals offer significant im-
provements, and they are the current state of the art of GGA
functionals; here, with the help of Pauli functionals, we shed
light on how to find coefficients without overly relying on bulk
system performance.

ACKNOWLEDGMENTS

This work was supported by the Academy of Finland
Projects No. 279240, No. 284621, and No. 312556 and by
Vicerrectoría de Investigación UdeA (Estrategia de Sosteni-
bilidad 2018-2019). The authors are also grateful to CSC, the
Finnish IT Center for Science Espoo, and the Applied Physics
Department of Aalto for computations.

[1] P. Hohenberg and W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[2] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[3] M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation
for the density and ionization energy of a many-particle system,
Phys. Rev. A 30, 2745 (1984).

[4] W. C. Witt, B. G. del Rio, J. M. Dieterich, and E. A. Carter,
Orbital-free density functional theory for materials research,
J. Mater. Res. 33, 777 (2018).

[5] L. A. Constantin, E. Fabiano, and F. Della Sala, Semilocal
Pauli-Gaussian kinetic functionals for orbital-free density func-
tional theory calculations of solids, J. Phys. Chem. Lett. 9, 4385
(2018).

[6] K. Luo, V. V. Karasiev, and S. B. Trickey, A simple generalized
gradient approximation for the noninteracting kinetic energy
density functional, Phys. Rev. B 98, 041111(R) (2018).

[7] J. P. Perdew, L. A. Constantin, E. Sagvolden, and K. Burke,
Relevance of the Slowly Varying Electron Gas to Atoms,
Molecules, and Solids, Phys. Rev. Lett. 97, 223002 (2006).

[8] D. Lee, L. A. Constantin, J. P. Perdew, and K. Burke, Condition
on the Kohn-Sham kinetic energy and modern parametrization
of the Thomas-Fermi density, J. Chem. Phys. 130, 034107
(2009).

[9] L. A. Constantin, E. Fabiano, S. Laricchia, and F. Della Sala,
Semiclassical Neutral Atom as a Reference System in Density
Functional Theory, Phys. Rev. Lett. 106, 186406 (2011).

[10] M. Levy and H. Ou-Yang, Exact properties of the Pauli potential
for the square root of the electron density and the kinetic energy
functional, Phys. Rev. A 38, 625 (1988).

[11] M. Levy and J. P. Perdew, Hellmann-Feynman, virial, and scal-
ing requisites for the exact universal density functionals. Shape
of the correlation potential and diamagnetic susceptibility for
atoms, Phys. Rev. A 32, 2010 (1985).

[12] E. H. Lieb, Some open problems about Coulomb systems,
in Mathematical Problems in Theoretical Physics, edited by
K. Osterwalder, Lecture Notes in Physics Vol. 116 (Springer-
Verlag, Berlin, 1980), pp. 91–102.

[13] R. M. Dreizler and E. K. U. Gross, Density Functional Theory:
An Approach to the Quantum Many-Body Problem (Springer,
Berlin, 2012).

[14] D. Kirzhnits, Quantum corrections to the Thomas-Fermi equa-
tion, Sov. Phys. JETP 5, 64 (1957).

[15] C. H. Hodges, Quantum corrections to the Thomas-Fermi
approximation—the Kirzhnits method, Can. J. Phys. 51, 1428
(1973).

[16] J. Schwinger, Thomas-Fermi model: The leading correction,
Phys. Rev. A 22, 1827 (1980).

[17] J. Schwinger, Thomas-Fermi model: The second correction,
Phys. Rev. A 24, 2353 (1981).

[18] B.-G. Englert and J. Schwinger, Statistical atom: Handling the
strongly bound electrons, Phys. Rev. A 29, 2331 (1984).

[19] B.-G. Englert and J. Schwinger, Statistical atom: Some quan-
tum improvements, Phys. Rev. A 29, 2339 (1984).

[20] B.-G. Englert and J. Schwinger, New statistical atom: A numer-
ical study, Phys. Rev. A 29, 2353 (1984).

[21] L. A. Constantin, J. C. Snyder, J. P. Perdew, and K. Burke, Com-
munication: Ionization potentials in the limit of large atomic
number, J. Chem. Phys. 133, 241103 (2010).

[22] B.-G. Englert, Semiclassical Theory of Atoms, 3rd ed., Lecture
Notes in Physics Vol. 300 (Springer, Berlin, 1988).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.100.165111 for detailed information on fit-
ting the functional from the semiclassical average method and
tables with equilibrium volumes, energy, and bulk moduli for
metals and semiconductors per kinetic functional.

[24] M. Brack and R. Bhaduri, Semiclassical Physics, Frontiers in
Physics (Addison-Wesley, Reading, MA, 1997).

[25] Electronic configurations for atoms up to Z = 173 are from
[32,33]. Eight additional atoms were extrapolated for the trend
by adding electrons to the 6g shell after Z = 173.

[26] V. Karasiev and S. Trickey, Issues and challenges in orbital-free
density functional calculations, Comput. Phys. Commun. 183,
2519 (2012).

[27] C. Huang and E. A. Carter, Nonlocal orbital-free kinetic energy
density functional for semiconductors, Phys. Rev. B 81, 045206
(2010).

165111-8

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1103/PhysRevA.30.2745
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1021/acs.jpclett.8b01926
https://doi.org/10.1103/PhysRevB.98.041111
https://doi.org/10.1103/PhysRevB.98.041111
https://doi.org/10.1103/PhysRevB.98.041111
https://doi.org/10.1103/PhysRevB.98.041111
https://doi.org/10.1103/PhysRevLett.97.223002
https://doi.org/10.1103/PhysRevLett.97.223002
https://doi.org/10.1103/PhysRevLett.97.223002
https://doi.org/10.1103/PhysRevLett.97.223002
https://doi.org/10.1063/1.3059783
https://doi.org/10.1063/1.3059783
https://doi.org/10.1063/1.3059783
https://doi.org/10.1063/1.3059783
https://doi.org/10.1103/PhysRevLett.106.186406
https://doi.org/10.1103/PhysRevLett.106.186406
https://doi.org/10.1103/PhysRevLett.106.186406
https://doi.org/10.1103/PhysRevLett.106.186406
https://doi.org/10.1103/PhysRevA.38.625
https://doi.org/10.1103/PhysRevA.38.625
https://doi.org/10.1103/PhysRevA.38.625
https://doi.org/10.1103/PhysRevA.38.625
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1103/PhysRevA.32.2010
https://doi.org/10.1139/p73-189
https://doi.org/10.1139/p73-189
https://doi.org/10.1139/p73-189
https://doi.org/10.1139/p73-189
https://doi.org/10.1103/PhysRevA.22.1827
https://doi.org/10.1103/PhysRevA.22.1827
https://doi.org/10.1103/PhysRevA.22.1827
https://doi.org/10.1103/PhysRevA.22.1827
https://doi.org/10.1103/PhysRevA.24.2353
https://doi.org/10.1103/PhysRevA.24.2353
https://doi.org/10.1103/PhysRevA.24.2353
https://doi.org/10.1103/PhysRevA.24.2353
https://doi.org/10.1103/PhysRevA.29.2331
https://doi.org/10.1103/PhysRevA.29.2331
https://doi.org/10.1103/PhysRevA.29.2331
https://doi.org/10.1103/PhysRevA.29.2331
https://doi.org/10.1103/PhysRevA.29.2339
https://doi.org/10.1103/PhysRevA.29.2339
https://doi.org/10.1103/PhysRevA.29.2339
https://doi.org/10.1103/PhysRevA.29.2339
https://doi.org/10.1103/PhysRevA.29.2353
https://doi.org/10.1103/PhysRevA.29.2353
https://doi.org/10.1103/PhysRevA.29.2353
https://doi.org/10.1103/PhysRevA.29.2353
https://doi.org/10.1063/1.3522767
https://doi.org/10.1063/1.3522767
https://doi.org/10.1063/1.3522767
https://doi.org/10.1063/1.3522767
http://link.aps.org/supplemental/10.1103/PhysRevB.100.165111
https://doi.org/10.1016/j.cpc.2012.06.016
https://doi.org/10.1016/j.cpc.2012.06.016
https://doi.org/10.1016/j.cpc.2012.06.016
https://doi.org/10.1016/j.cpc.2012.06.016
https://doi.org/10.1103/PhysRevB.81.045206
https://doi.org/10.1103/PhysRevB.81.045206
https://doi.org/10.1103/PhysRevB.81.045206
https://doi.org/10.1103/PhysRevB.81.045206


SEMILOCAL KINETIC ENERGY FUNCTIONALS WITH … PHYSICAL REVIEW B 100, 165111 (2019)

[28] M. Chen, J. Xia, C. Huang, J. M. Dieterich, L. Hung, I.
Shin, and E. A. Carter, Introducing PROFESS 3.0: An advanced
program for orbital-free density functional theory molecular dy-
namics simulations, Comput. Phys. Commun. 190, 228 (2015).

[29] B. Zhou, Y. A. Wang, and E. A. Carter, Transferable local pseu-
dopotentials derived via inversion of the Kohn-Sham equations
in a bulk environment, Phys. Rev. B 69, 125109 (2004).

[30] C. Huang and E. A. Carter, Transferable local pseudopotentials
for magnesium, aluminum and silicon, Phys. Chem. Chem.
Phys. 10, 7109 (2008).

[31] R. G. Parr and W. Yang, Density-Functional Theory
of Atoms and Molecules, International Series of Mono-
graphs on Chemistry (Oxford University Press, New York,
1994).

[32] CRC Handbook of Chemistry and Physics, 84th ed.,
edited by D. R. Lide (CRC Press, Boca Raton, FL,
2003).

[33] B. Fricke and G. Soff, Dirac-Fock-Slater calculations for the
elements Z = 100, fermium, to Z = 173, At. Data Nucl. Data
Tables 19, 83 (1977).

165111-9

https://doi.org/10.1016/j.cpc.2014.12.021
https://doi.org/10.1016/j.cpc.2014.12.021
https://doi.org/10.1016/j.cpc.2014.12.021
https://doi.org/10.1016/j.cpc.2014.12.021
https://doi.org/10.1103/PhysRevB.69.125109
https://doi.org/10.1103/PhysRevB.69.125109
https://doi.org/10.1103/PhysRevB.69.125109
https://doi.org/10.1103/PhysRevB.69.125109
https://doi.org/10.1039/b810407g
https://doi.org/10.1039/b810407g
https://doi.org/10.1039/b810407g
https://doi.org/10.1039/b810407g
https://doi.org/10.1016/0092-640X(77)90010-9
https://doi.org/10.1016/0092-640X(77)90010-9
https://doi.org/10.1016/0092-640X(77)90010-9
https://doi.org/10.1016/0092-640X(77)90010-9

