
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Naderi, Kourosh; Babadi, Amin; Roohi, Shaghayegh; Hamalainen, Perttu
A reinforcement learning approach to synthesizing climbing movements

Published in:
IEEE Conference on Games 2019, CoG 2019

DOI:
10.1109/CIG.2019.8848127

Published: 01/08/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Naderi, K., Babadi, A., Roohi, S., & Hamalainen, P. (2019). A reinforcement learning approach to synthesizing
climbing movements. In IEEE Conference on Games 2019, CoG 2019 Article 8848127 (IEEE Conference on
Computatonal Intelligence and Games; Vol. 2019-August). IEEE. https://doi.org/10.1109/CIG.2019.8848127

https://doi.org/10.1109/CIG.2019.8848127
https://doi.org/10.1109/CIG.2019.8848127

A Reinforcement Learning Approach To
Synthesizing Climbing Movements
Kourosh Naderi, Amin Babadi, Shaghayegh Roohi, and Perttu Hämäläinen

Department of Computer Science
Aalto University

Helsinki, Finland
firstname.familyname@aalto.fi

Abstract—This paper addresses the problem of synthesizing
simulated humanoid climbing movements given the target holds,
e.g., by the player of a climbing game. We contribute the first
deep reinforcement learning solution that can handle interactive
physically simulated humanoid climbing with more than one
limb switching holds at the same time. A key component of
our approach is Self-Supervised Episode State Initialization (SS-
ESI), which ensures diverse exploration and speeds up learning,
compared to a baseline approach where the climber is reset to an
initial pose after failure. Our results also show that training with
a multi-step action parameterization can produce both smoother
movements and enable learning from slightly fewer explored
actions at the cost of increased simulation time per action.

Index Terms—reinforcement learning, climbing movements,
state initialization, action parameterization

I. INTRODUCTION

Deep reinforcement learning (Deep RL) has become in-
creasingly popular since the demonstration of its super-human
performance in playing Atari games [1]. Following this, RL
has been successfully applied in many contexts, e.g., games
[2], physically-based animations [3], [4], and robotics [5].
However, formulating a task in the form of RL and designing
a meaningful reward function are challenging and problem-
dependent tasks. One of the still unexplored and nontrivial
avenues is synthesizing plausible humanoid climbing move-
ments.

Using reinforcement learning to synthesize physically-based
movements has been an active area of research for years. How-
ever, many state-of-the-art approaches rely on high-quality
reference motions such as motion capture animation data,
which are expensive or impossible to record depending on
the character and the environment. Another limitation of
current approaches is their focus on non-extreme movements,
such as locomotion, where the agent’s interaction with the
environment is limited.

This paper addresses the problem of synthesizing climb-
ing movements in simulated indoor bouldering environments
based on given target hands/feet hold positions (see Fig. 1).
In a bouldering environment, the climbers start on the ground
in front of the wall, and they are asked to start by getting
hands/feet to some predefined hold(s). The climber’s goal is
to reach some specified goal hold (usually at the top of the

Fig. 1: Climbing movements synthesized by the trained policy
on a climbing route. The user specified commands are shown
as the red arrows. Red crosses denote letting a limb be not
connected with any hold.

wall) by performing various climbing movements, some of
which can be challenging and cumbersome.

This paper proposes a reinforcement learning-based frame-
work for solving humanoid climbing problems in physically
simulated environments. Our framework is able to synthesize
climbing movements that are physically plausible, and can
involve moving more than one-limb at a time or have free
limbs (see Fig. 1). The main difficulty of the climbing problem
is that the training requires a large amount of simulated
experience in order to explore a sufficiently wide range of
climbing movements. In order to mitigate this issue, motivated
by the success of the reference state initialization approach of
[3], we compare two episode state initialization strategies by
evaluating their effect on exploring various movements. We
also demonstrate that movements with different smoothness
can be synthesized using different action parameterizations.
Our proposed framework is able to explore a wide range of

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

climbing movements with a high success rate.
The rest of this paper is organized as follows: Section

II reviews some of the related work. In Sections III and
IV, we introduce our training environment, formulate the
climbing problem in the form of reinforcement learning, and
investigate an exploration method for better performance in
learning climbing movements. Finally, we conclude the paper
with discussions on the experiments, results, limitations and
possible future work in Sections V, VI and VII, respectively.

II. RELATED WORK

Our main contribution is to formulate and solve the hu-
manoid climbing problem using reinforcement learning. Thus,
at first we review the latest RL approaches for learning how to
act in environments with continuous state and action spaces.
Next, we discuss the state-of-the-art approaches for solving
the climbing problem in physically-simulated settings.

A. Reinforcement Learning in Continuous Environments

Reinforcement learning studies the process of learning to
act in an environment through trial and error in order to max-
imize rewards. Thanks to impressive advances in deep neural
networks, RL has experienced several major breakthroughs
in the last five years [1], [6], [7]. Although much of the
work focuses on discrete actions like playing classic Atari
games, the state-of-the-art has also advanced tremendously in
problems with high-dimensional continuous action spaces [8],
which we briefly overview in this part.

Most continuous control RL relies on Monte Carlo gradient
estimates computed from simulation data. However, simply
following the gradient can be unstable. To mitigate this, trust
region family methods have been introduced to solve this issue
by limiting the amount of deviation between policies in each
update [9]. Proximal Policy Optimization (PPO), a offspring
of this family, uses a surrogate loss function instead of a hard
limit [10]. PPO has produced remarkable results in a wide
range of continuous domains, and has become the default
algorithm in the compute graphics community [2], [3]. PPO
is also the algorithm used in this work to solve the humanoid
climbing problem, using the Unity ML-Agent framework [2].
A more recent approach with state-of-the-art results is called
soft actor-critic (SAC), which uses maximum entropy principle
to apply off-policy learning [5]. It has been shown that it
can be successfully used in real-world robotic problems with
reasonable sample complexity [11].

An alternative to policy gradient methods is to formulate
policy updates as fitting the policy distribution to the ex-
plored actions, each action weighted based on its estimated
value or advantage. This bridges RL to iterative distribution
fitting optimization methods like CMA-ES. PPO-CMA utilizes
distribution adaptation techniques inspired by CMA-ES to
solve the premature convergence problem of PPO [12]. A
similar approach has been used in Maximum a Posteriori
Policy Optimisation (MPO) [13] and its recent variant [14],
and has shown great results in DeepMind control suite [15]
and OpenAI Gym [16] environments.

B. Synthesizing Climbing Movements

Many previous studies of climbing motion synthesis exist.
[17] plans one-limb climbing movement for a four-limbed
robot by sampling for center of mass of the robot and obtaining
a closed form solution for the moving limb. [18] plans one-
limb movement of humanoid climber using a reinforcement
learning approach and uses transfer learning to adopt the
planning to the new wall, however to move the body inverse
kinematics is used. In this paper, we propose a reinforcement
learning approach that can be used for an interactive climbing
simulation or a game. In contrast to [18] our approach can
handle multiple simultaneously moving limbs and the climber
can have free limbs which leads to synthesizing more complex
movements.

[19], [20] showed that climbing movements can emerge
from physically-based movement optimization. However, the
character was limited to perform slow and more balanced
climbing movements by moving one-limb at a time, e.g.,
move hands and then legs to climb the wall. [21] introduces a
hierarchy of low-level optimization and high-level path plan-
ner to synthesize more plausible and dynamic/agile climbing
movements limited to moving two limbs at a time. In their
work, the agent could decide on alternating between slow and
dynamic climbing movements. This work later was enhanced
in [22] by utilzing neural network predictions to synthesize
more successful transitions and complex movements such
as dynamic jumps or dynos. There also exists work that
focuses on subproblems such as climber finger and grasping
simulation [23]. [24] introduces a method called 2PAC that
can synthesize motions including climbing for an arbitrary
character by contact planning and a novel formulation of the
kinematic constraints, which allows them to generate a quasi-
static center of mass trajectory for the character. However, all
these optimization approaches are computationally expensive.
In contrast, the promise of RL is that although the training
phase can be costly, the trained neural network policy can be
very lightweight and applicable to resource-constrained real-
time applications like computer games.

III. PRELIMINARIES

A. Climbing Environment

Environment: Fig. 2 shows the climbing environment for
training. The climber starts from T-pose in front of 16 random-
ized holds. The position of each hold h is denoted by xh. The
holds are positioned as a 4× 4 grid with random perturbation
added. The position of free limbs, i.e., limbs that are not
attached to a hold, is denoted by x−1. Holds are modeled as
spheres with radius of 15cm with ball-and-socket joints that
climber’s hands/feet can be attached to.

Climbing State: Our climber has 1.75m height and 70kg
weight, although it is trivial to generalize this framework to
other character anatomies. The climber has 15 bones with a
total of 44 degrees of freedom, which consist of 30 target joint
angles and 14 joint strength values for all the bones excluding
the root. The state of the climber at time t is denoted by

st = {〈xb,vb,qb, ωb, τb, Iwall(b), Iground(b)〉 ∀b ∈ B}, where
B is the set of all bones, and bone state comprises 3D
position, linear velocity, rotation quaternion, angular velocity,
and strength. The strength τb corresponds to the maximum
torque parameter of the physics engine’s joint motor that
controls bone b. Two indicator functions Iwall(b) and Iground(b)
are also used for determining whether the bone b is touching
the wall and the ground or not, respectively.

Climbing Stance: The assignment of the holds to the
climber’s hands/feet is called a climbing stance and denoted by
σ = {xll,xrl,xlh,xrh}. Each xi ∈ σ can be set to be free x−1
or attached to a hold xh ∈ H on the wall. At the beginning of
the training and/or climbing, the climber stands on the ground
at T-pose where it is in stance σ0 = {x−1,x−1,x−1,x−1}
and state s0.

B. Reinforcement Learning

In reinforcement learning, we have an agent in an environ-
ment, and the goal is for the agent to learn how to act in
order to maximize the reward received from the environment.
At each timestep t, the agent observes the current state ot, and
chooses its next action at using its policy πθ (at | ot), which
is a mapping from states to a distribution over actions. After
executing the action at, the agent receives a scalar reward rt,
and observes the new state ot+1. The goal is to maximize
the expected accumulated reward, i.e., E

[∑T
t=0 γ

trt

]
, where

γ ∈ [0, 1] is the discount factor.
In deep reinforcement learning and continuous control,

the policy is usually modeled using a neural network,
whose parameters are denoted by θ. The policy network
of πθ (at | ot) usually outputs the mean µθ (at | ot) and
covariance Cθ (at | ot) to specify the observation-dependent
distribution over actions. In this paper, we use ML-Agents [2],
a Unity1 plugin that provides an open-source2 implementation
of Proximal Policy Optimization (PPO) [10], a popular RL
algorithm for continuous control.

IV. METHOD: REINFORCEMENT LEARNING FRAMEWORK
FOR CLIMBING

This section introduces our reinforcement learning frame-
work for synthesizing climbing movements. In Section IV-A,
we formulate climbing movement synthesis as a reinforcement
learning problem. In Sections IV-C and IV-B, we propose
an exploration strategy that greatly affects the variety of
learned movements. Finally, in Section IV-D, we explain how
different action parameterizations can be used for smoothing
the climbing movements. All parameter values are reported in
Section V-A.

A. Reinforcement Learning Formulation

We now explain how learning humanoid climbing move-
ments is formulated as a reinforcement learning problem.

1https://unity.com/
2https://github.com/Unity-Technologies/ml-agents

1) Agent’s Observation: At each timestep t, The observa-
tion vector ot is defined as follows:

ot = 〈st, σc, σd, I(σc), I(σd), I(σc 6= σd)〉 , (1)

where st and σc are the agent’s current climbing state and
stance (as defined in Section III). σd is the desired climbing
stance for hands/feet positions set by the user or a high-level
path planner while σc depends on the current state of the
climber and shows its current hands/feet’s positions. I(σc) and
I(σd) indicate whether the hands/feet are attached to the holds
in the current and desired stance, respectively. I(σc 6= σd)
expresses which elements in the current and desired stances
differ from each other.

2) Agent’s Action: The sampled action vector at at
timestep t has 44 values in the range [−1, 1]. The first
30 elements of at denote the randomized target angles of
climber’s joints, and the last 14 elements are mapped to
the range [0, τmax] to be used as the joints’ strength. Joint
limits and τmax are set such that the climber has human-like
limitations.

3) Reward Function: Defining the reward rt was one of
the challenges in developing this framework. If a binary reward
such as rt ∈ {−1, 1} is used for only implying the success
and failure of the climber, the learning is prohibitively slow
due to the problem of sparse rewards. In order to speed up
the learning process, the instantaneous reward function should
be informative enough to guide the policy towards getting
the hands/feet closer to the target stance at each timestep.
Motivated by Deepmimic’s reward function [3], we used the
following distance-based reward function:

rσt =I(dt)
∑

i∈{ll,rl,lh,rh}

[
kσexp(−cσ‖σc,i − σd,i‖)

+ I(σc,i = σd,i)

]
−Iground(s)

, (2)

where I(dt) is an indicator function for specifying whether
the agent has become closer to the target stance more than
it was ever before. Without I(dt) the agent oscillates near
the target holds instead of attaching its hands or feet to them.
Using I(dt) yields more stable reaching behaviors. kσ and cσ
are tuning parameters. I(σc,i = σd,i) is 1 when climber’s
hands/feet reach their desired positions σd,i. Note that in
principle, the reward should be a function of the observation
and action. Thus, the data for computing I(dt), i.e., previous
closest achieved distance, should be added to the observation.
However, the observation of Eq. 1 appears to work in practice.

Using the reward function shown in Eq. 2 does not guaran-
tee that the policy produces smooth, energy conserving climb-
ing movements. In order to encourage smooth movements, we
incorporate a reward function based on the strengths of the
joints, formulated as:

rτt = kτI(dt)exp

−cτ ∑
i∈{31,...,44}

(at[i] + 1)
2

 , (3)

where I(dt) has the same functionality as in Eq. 2. The
function sums over sampled strength values produced by the

https://unity.com/
https://github.com/Unity-Technologies/ml-agents

Fig. 2: (a) Initial hold positions with their randomization
radius r. The climber is at T-pose in front of wall. (b) The
neighboring holds for the climber’s left hand. The neighbor
holds include holds that are inside the shaded area, and
connected by dashed lines to the hold that is shown by red dot.
(c) The four shaded areas show the valid regions of the holds
to be reached by the climber’s hands/feet based on climber’s
hip position.

policy. cτ and kτ are tuning parameters. kτ is lower than kσ
in Eq. 2 to make smoothness less important than the main
objective of the policy is getting hands/feet to the target stance.
Finally, rt is calculated as the sum of Eq. 2 and Eq. 3, i.e.,

rt = rσt + rτt . (4)

4) Training Episodes and Termination Condition: PPO
assumes that experience is collected during training as
episodes that start from some initial climbing state and run
up to a time limit Tepisode or a terminal climbing state. In our
case, a climbing state is terminal if the climber reaches the
target stance σd or any part of the climber’s body except its
feet touches the ground.

B. Exploration of Target Stances

The climber explores different climbing movements by
sampling a target stance for each episode. However, not every
transition is valid from a given episode’s initial climbing state.
A transition from a climbing state s and the stance σ, to
the desired stance σd is valid if all of the following Validity
Conditions are met:
• Connectivity Limit: At least one hand should be con-

nected in both σ and σd, except for when the climber is
at T-pose (σ = σ0) and only σd needs to have at least
one connected hand.

• Distance Limit: The distances between hand-to-hand,
foot-to-foot, and hand-to-foot should not exceed the
climber’s body reach in both current and target stances.

• Limb Movement Limit: σ and σd should have at most
two different elements.

In this paper, we use the following target stance sampling
strategy. To sample a random target stance, we first randomly
perturb all holds on the wall around the initial grid locations
within r = 33cm (Fig. 2-(a)). Then, we sample new target

holds for 1 or 2 limbs among the neighboring holds of
the moving limbs, as illustrated in Fig. 2-(b). The limb’s
neighboring holds includes the following:
• x−1, i.e., the target can be just freeing the limb.
• The holds inside of the shaded area for the limb (Fig.

2-(c)). The shaded area is within rbody around the current
climber’s hip position.

• The holds connected by dashed-lines to the hold attached
to the moving limb.

The target holds for the moving limbs are selected uniformly
from neighbour holds set.

C. Exploration of Climbing States
As shown by [3], the initial state distribution of training

episodes can have a huge impact on learning complex hu-
manoid movements. Their RSI technique initializes the agent
to a random state sampled from reference motion capture data.
In our case, the initial climbing state of an training episode has
an important role in feasibility and exploration of the climbing
moves. Promoting diverse exploration of climbing moves is
conditioned to having rich initial climbing state distribution.
We implement and compare the following two climbing state
initialization approaches:

1) Standard episodic RL (Baseline): Here, similar to
common continuous control benchmarks like MuJoCo envi-
ronments, we initialize the climber to the T-pose in front
of a randomized wall, as illustrated in Fig 2, and climbing
continues one target stance after another. We reset back to
T-pose and randomize the wall after failure or a time limit
(Tbaseline). Failures are defined as reaching a terminal state (see
Section IV-A4) without reaching the target stance. Note, that
each episode of experience seen by PPO only includes one
move to one desired stance, which makes value estimation
much less noisy, as value does not depend on future desired
stances. In initial testing, we found this to greatly improve
performance.

Algorithm 1 Uniform Exploration on Seen Climbing States
1: for iteration = 1, 2, ..., Imax do
2: S = {s0} //Initial climbing state distribution
3: while Training budget ND not exceeded do
4: RandomizeScene
5: Sample s uniformly from S
6: RandomRelocate s on the wall if all limbs

connected, see Fig. 3
7: Sample σd from Section IV-B
8: Run πθ from s until episode ends at se (see Section

IV-A4)
9: S = S ∪ {se} if either of the hands connected

10: Update θ using PPO based on the observed experi-
ence tuples [ot,at, rt,ot+1]

2) Self-supervised episode state initialization (SS-ESI):
As detailed in Alg. 1, we gradually expand the set of possible
initial climbing states S by collecting both failed and suc-
ceeded climbing moves (Line 9). In this case, each episode

Fig. 3: Before selecting a new desired stance (Alg. 1 Line
7), the climber is randomly relocated on the climbing wall to
allow more diverse movement. The positions of the holds not
used by the climber are also randomly perturbed.

comprises only one climbing move that attempts to reach a
single desired stance. In effect, the episode trajectories fork
previous trajectories, forming an exploration tree. For each
training iteration, we start in Line 2 in T-pose (s0). Before
each policy update, Lines 4-9 gradually gather more climbing
states in S. se is added to S if at least one hand is connected
to a hold. In order to have more diverse and uniform climbing
movement experience, we make sure in Alg. 1 that:
• The initial climbing state (s) of the training episodes is

selected uniformly (Line 5) from seen/explored climbing
states and relocated (Line 6) on the climbing wall, as
illustrated in Fig. 3. We do this relocation only if all hands
and feet are connected to avoid breaking the dynamics
simulation.

• The sample distribution of target stances (Line 7) is
balanced such that we sample a similar amounts of feet
and hand moves.

D. Action Parameterization

We compare both single-step and multi-step actions. Multi-
step actions simulate every action that comes from the policy
for L steps instead of only 1 step. Compared to single-step
action, using multi-step actions yields less experience tuples
for the same amount of timesteps simulated.

V. EXPERIMENTS

In this section we explain our experiments with training of
the climber. We train the climber with 3 different settings:

1) Using 1-step action, and exploring the climbing move-
ment by Alg. 1 (see SS-ESI in Section IV-C2).

2) Using 1-step action, and exploring the climbing move-
ment by Baseline approach (see Section IV-C1).

3) Using 4-step action (see Section IV-D), and exploring
the climbing movement by Alg. 1.

The first 2 training settings allow comparing the state initial-
ization strategies of Section IV-C1 and IV-C2. The initializa-
tion strategy of Section IV-C2 (Alg. 1, SS-ESI) performed
better; hence, we used it when testing the 4-step actions.

A. Training Parameters

Table I determines the parameter values used to train
the climber with experiments. The first column establishes
parameter values used for exploration strategies, action pa-
rameterization and designing of our reward function. The
second column defines PPO’s parameter values. Imax, ND, and
Tepisode are maximum training iterations, experience budget,
and maximum steps in training episode, respectively, that are
used in Alg. 1. α is the initial learning rate value used in
gradient decent updates of PPO. β is the PPO entropy loss
weight, and ε is the clipped surrogate loss parameter. γ is the
reward discount factor, and λ is the regularization parameter.

TABLE I: Parameters used during the training

Name Value Name Value
rbody 130cm ND 20480

τmax 250N.m Tepisode 5 sec
cσ 4 Minibatch size 2048

cτ 3.6 Num. epoch 3

kσ 0.8/L β 5.0e−3

kτ 0.2/L γ 0.995

Tbaseline 50 sec ε 0.2

Imax 1e7 λ 0.95

α 1.0e−4

Both the value and policy networks have 3 hidden layers
with 256 units with tanh activation functions.

B. Training Procedure and Curriculum

In order to train the climber for moving more than one limb
at a time, we increase the chance of sampling a target stance
that requires 2-limb movement from 0% to 50% gradually as
the training reaches half of max iterations.

During the training, we used a decaying learning rate where
it started from the initial value specified in Table. I and
decayed to 2.5e−7. However, we divided the training into 10
segments such that each segment comprises 10% of max train-
ing iterations and at the beginning of each segment the learning
rate restarts at the initial value. This process helps to learn
climbing movements better (see Fig. 4), the motivation for
restarting the learning rate is to allow the policy optimization
to reconverge as the optimization landscape gradually changes
because of curriculum learning.

C. Evaluation Settings

All the training settings must be evaluated using the same
distribution of climbing movements. We use Alg. 1 to collect
1k data evaluation episodes, i.e., succeeded or failed climbing
moves, on trained models saved every 750k simulation steps
during the training. This ensures a diverse and challenging
evaluation distribution. In addition, kσ and kτ in Eq. 2 and 3
are set to 0.8 and 0.2 for evaluation of all experiments.

VI. RESULTS

Here, we compare the training settings in terms of average
success rate and cumulative reward. We train the models with
their own exploration strategies and action parameterization,

Fig. 4: The effect of restarting learning rate every 15M
experience tuples. The motivation for this is to allow the pol-
icy optimization to reconverge as the optimization landscape
gradually changes because of curriculum learning.

Fig. 5: The effect of our proposed Self-Supervised Episode
State Initialization (SS-ESI) approach on the diversity of
successful transitions during training. The green and blue dots
show successful transitions of hands and feet, respectively, in
the climbers local coordinates.

and gather 1k climbing movement samples for every model
that is saved in every 750k of training iterations with the
following evaluation settings. As the results depend somewhat
on random seed, we repeat the experiments 5 times.

A. Visualizing the Exploration Methods

Fig. 5 illustrates how the episode initial state sampling
affects exploration. Until 15M experience tuples, the policy
fails a lot in performing successful climbing moves. With the
baseline, where a failure resets the climbing to the T-pose, leg
moves get almost no exploration until 15M experience tuples,
and as the training continues, the learned policy explores an
uneven distribution of the hand and foot movements. SS-ESI
(Alg. 1) explores both hand and foot moves much more evenly
during all training iterations.

B. Quantitative Results

Fig. 6 and Fig. 7 show the learning curves using both
the baseline and the proposed self-supervised episode state
initialization (SS-ESI) technique. As expected, the baseline
learns much slower initially, although the difference in Fig.
6 becomes smaller as training progresses. Furthermore, Fig.

Fig. 6: Mean and standard deviation of episode return, from
5 independent training runs.

Fig. 7: Mean and standard deviation of episode success rate,
from 5 independent training runs.

7 shows that the 1-step baseline approach has lower success
rate than our approach in performing climbing movements.
This difference does not vanish as training progresses. We
may conclude that in complex and long movement sequences
like climbing, SS-ESI can be helpful.

Furthermore, using multi-step action is the recommended
choice, as the figures show that it leads to more rapid learning,
and higher episode returns. As an additional benefit, the
multi-step actions produce smoother, visually more pleasing
movements. A visual inspection of the movements reveals that
multi-step actions lead to wider movement arcs and thus wider
exploration of climber states, which may explain the better
performance.

On the other hand, increasing the number of simulation
steps per action makes collecting experience more costly.
If the step count is increased too much, it also limits the
complexity and temporal resolution of movements. However,
our experiments show that a moderate increase of steps per
action can be beneficial, compared to the baseline of taking a
new action at every simulation step.

VII. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We have formulated the problem of simulated humanoid
climbing as a reinforcement learning problem. Our experi-
ments show that 1) our proposed self-supervised episode state
initialization approach improves exploration and speeds up
learning, and 2) using multi-step actions likewise improves

learning and also leads to visually smoother and more realistic
movements. As a result, we can produce an efficient neural
network policy for interactive physically simulated climbing.
This has applications in both games and cognitive practice
of real-life climbing [25], and the episode state initialization
approach may be useful in other movement problems where
long sequences of complex movements need to be trained
without reference data.

A primary limitation that will be addressed in future work
is that we do not presently model the finger and climbing hold
details. We have also limited our experiments to moving only
1 or 2 limbs at the same time. While this can model a large
variety of real-life climbing movements, simulating climbing
on a high skill level also needs to handle dynamic full-body
leaps. We believe our approach can be extended by introducing
leaping movements to the training curriculum, although this
will likely need much more simulated experience and/or a
more efficient policy optimization method than PPO. Good
candidates for this are PPO-CMA [12], SAC [5], or relative
entropy regularized policy iteration [26].

ACKNOWLEDGMENT

This work has been supported by Academy of Finland,
grants 299358 and 305737.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[3] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, p. 143,
2018.

[4] L. Liu and J. Hodgins, “Learning to schedule control fragments for
physics-based characters using deep q-learning,” ACM Transactions on
Graphics (TOG), vol. 36, no. 3, p. 29, 2017.

[5] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[9] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
region policy optimization.” in Icml, vol. 37, 2015, pp. 1889–1897.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[11] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[12] P. Hämäläinen, A. Babadi, X. Ma, and J. Lehtinen, “PPO-CMA:
Proximal policy optimization with covariance matrix adaptation,” arXiv
preprint arXiv:1810.02541, 2018.

[13] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller, “Maximum a posteriori policy optimisation,” arXiv
preprint arXiv:1806.06920, 2018.

[14] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa,
D. Belov, N. Heess, and M. Riedmiller, “Relative entropy regularized
policy iteration,” arXiv preprint arXiv:1812.02256, 2018.

[15] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq et al., “Deepmind control suite,”
arXiv preprint arXiv:1801.00690, 2018.

[16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[17] T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem,” The International Journal
of Robotics Research, vol. 25, no. 4, pp. 317–342, 2006.

[18] B. Libeau, A. Micaelli, and O. Sigaud, “Transfer of knowledge for a
climbing virtual human: A reinforcement learning approach,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 2119–2124.

[19] S. Jain, Y. Ye, and C. K. Liu, “Optimization-based interactive motion
synthesis,” ACM Transactions on Graphics (TOG), vol. 28, no. 1, p. 10,
2009.

[20] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions on
Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[21] K. Naderi, J. Rajamäki, and P. Hämäläinen, “Discovering and
synthesizing humanoid climbing movements,” ACM Trans. Graph.,
vol. 36, no. 4, pp. 43:1–43:11, Jul. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3072959.3073707

[22] K. Naderi, A. Babadi, and P. Hämäläinen, “Learning physically based
humanoid climbing movements,” in Computer Graphics Forum, vol. 37,
no. 8. Wiley Online Library, 2018, pp. 69–80.

[23] T. Olsen, S. Andrews, and P. Kry, “Computational Climbing for Physics-
Based Characters,” The ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA posters), 2014.

[24] S. Tonneau, P. Fernbach, A. D. Prete, J. Pettré, and N. Mansard, “2pac:
Two-point attractors for center of mass trajectories in multi-contact
scenarios,” ACM Transactions on Graphics (TOG), vol. 37, no. 5, p.
176, 2018.

[25] K. Naderi, J. Takatalo, J. Lipsanen, and P. Hämäläinen, “Computer-aided
imagery in sport and exercise: A case study of indoor wall climbing,”
in Proceedings of Graphics Interface 2018, ser. GI 2018. Canadian
Human-Computer Communications Society / Société canadienne du
dialogue humain-machine, 2018, pp. 93 – 99.

[26] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa,
D. Belov, N. Heess, and M. A. Riedmiller, “Relative entropy regularized
policy iteration,” CoRR, vol. abs/1812.02256, 2018. [Online]. Available:
http://arxiv.org/abs/1812.02256

http://doi.acm.org/10.1145/3072959.3073707
http://arxiv.org/abs/1812.02256

