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On energy-aware M/G/1-LAS queue with batch arrivals

Pasi Lassilaa,∗, Samuli Aaltoa

aDepartment of Communications and Networking, Aalto University, Finland

Abstract

We analyze an energy-aware MX/G/1 queue under LAS scheduling with a setup delay and an idle timer that controls the delay
before the server enters a sleep state. Through a classical busy period analysis, the expression for the mean conditional delay is
derived, which generalizes the earlier well-known result for the ordinary M/G/1-LAS queue. We also analyze the performance-
energy tradeoff and show that two well-known cost metrics, weighted sum and product of the mean delay and mean power, are
minimized by setting the timer equal to zero or infinite, i.e., a finite idle timer is never used.

Keywords: MX/G/1 queue with setup delay, Least Attained Service, mean delay analysis, performance-energy tradeoff

1. Introduction1

Energy-aware queueing models have been recently devel-2

oped in order to study the performance-energy tradeoff inherent3

in modern data servers supporting sleep states. The considered4

queueing models are typically variations of the single-server5

M/G/1 queue with a setup delay, where the setup delay reflects6

the delay penalty from waking up a server once it has been put7

to sleep to save energy, see [3, 6, 7, 8, 10]. Also, multisever8

variants of the models have been studied, see [2, 3, 4, 11].9

In a number of recent papers the single-server M/G/1 model10

with setup delays also includes an idle timer, which allows post-11

poning the decision to go to sleep until after the timer expires.12

The model has been analyzed for different scheduling disci-13

plines, including FIFO [7, 10], PS [6] and SRPT [8]. In this14

paper, we consider the same model but assume the Least At-15

tained Service (LAS) scheduling discipline, sometimes also re-16

ferred to as Foreground Background (FB), which always serves17

the job with the least amount of attained service.18

The conditional mean delay of a job of size s in an ordinary
M/G/1 queue with LAS scheduling and Poisson arrivals has the
well-known form, see, e.g., [9],

E[TM/G/1−LAS(s)] =
λE[X2

s ]
2(1 − ρs)2 +

s
1 − ρs

, (1)

where λ is the arrival rate of the jobs, Xs is the random variable19

for the service times X truncated to s and ρs is the fraction of20

time the server is busy serving jobs with service times Xs.21

As our main result, by applying ideas from [1], [8] and [9],22

we generalize (1) to the energy-aware MX/G/1 queue with LAS23

scheduling receiving batches that arrive according to a Poisson24

process with rate λb. As an important side result we obtain that25
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for two common cost metrics characterizing the performance-26

energy tradeoff, the so-called ERWS (Energy Response time27

Weighted Sum) and ERP (Energy Response time Product), the28

metrics are minimized by setting I = 0 or I = ∞. This is the29

same result as has been already earlier proved for FIFO [7],30

PS [6] and SRPT [8], and gives further evidence that the result31

holds generally for any work conserving discipline.32

The paper is organized as follows. Section 2 introduces the33

system model. The mean delay analysis is in Section 3 and nu-34

merical examples are in Section 4. Finally, Section 5 concludes35

the paper.36

2. System model37

An energy-aware server supporting processor sleep states can38

be modeled reasonably as a single server queue with appropri-39

ate energy-aware features. We consider a single server system40

under the following assumptions. New jobs arrive to the queue41

according to a batch Poisson process with arrival rate λb and42

the batch size β is an i.i.d random variable. The service time43

requirement of a job from the server is characterized by the44

i.i.d. continuous random variable X with cumulative distribu-45

tion function denoted by F(t) and density f (t). Thus, our model46

corresponds to the MX/G/1 queue. The load of the queue ρ is47

given by ρ = λbE[β]E[X]. The system is stable if ρ < 1.48

The job processing and energy-aware controls operate as fol-49

lows. When the server is busy, jobs are processed according50

to the LAS scheduling discipline giving always service to the51

job with the least attained service, and if there are multiple jobs52

with the same least amount of attained service, they are served53

according to the PS discipline. Upon completing the last job in54

a busy period, the server becomes idle and a timer I is initiated55

with I being an i.i.d. random variable with a general distribu-56

tion. If a new batch of jobs arrives before the timer expires,57

the processor becomes immediately busy again and starts serv-58

ing the jobs. If, on the other hand, the timer expires, the server59

enters the sleep state, where it can not anymore process jobs.60
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The duration of the sleep time is controlled by a parameter k,61

which measures the number of batches to arrive until the server62

is started again. As soon as k batches have accumulated, the63

server is started and the server enters the setup state, but the64

service of the jobs will only start after a setup delay, which is65

denoted by D. The setup delay D is an i.i.d random variable66

with a general distribution.67

As described above, the server has clearly four states: busy,
idle, sleep and setup. In each of these states the power con-
sumption is denoted by Pbusy, Pidle, Psleep and Psetup with a nat-
ural ordering

Pbusy ≥ Psetup > Pidle > Psleep ≥ 0.

We denote by E[T ] the overall mean delay of the jobs and by68

E[T (s)] the conditional mean delay of a job with size s. Sim-69

ilarly, the mean power consumption of the system is denoted70

by E[P]. Note that E[P] is independent of the scheduling disci-71

pline, as long as it is work-conserving, and can be found in [8].72

In our analysis, we will focus on deriving the mean conditional73

delay E[T (s)].74

3. The energy-aware MX/G/1-LAS queue75

Consider the energy-aware MX/G/1 queue as described in76

Section 2. We follow the classic approach and study the sys-77

tem at the arrival instant of a test job of size s. We also refer to78

this as a type-s job for short.79

A fundamental observation already made in [9] is that under
LAS scheduling from the type-s job point of view the system
behaves as a priority queue: all jobs are served until they have
attained service up to s, and if the original size of an arbitrary
job exceeds s, after having attained service up to s the job has
no bearing on the test job with size s. Thus, from the point of
view of the type-s job the server only experiences a workload
characterized by the truncated service time Xs = min{X, s} with
the first two moments given by

E[Xs] =

∫ s

0
t f (t) dt + s(1 − F(s)) and

E[X2
s ] =

∫ s

0
t2 f (t) dt + s2(1 − F(s)).

Thus, the fraction of time ρs that the server is busy serving jobs
with service times Xs is clearly

ρs = λbE[β]E[Xs]. (2)

The conditional mean delay of a type-s job, E[T (s)], consists
of two components, see also (1),

E[T (s)] = E[W(s)] + E[R(s)], (3)

where E[W(s)] is called the mean conditional waiting time and
E[R(s)] is the mean conditional residence time. The mean con-
ditional waiting time E[W(s)] is in the case of LAS scheduling
defined as the time it takes for the server to serve all other jobs
in the system up to s, and the mean conditional residence time

E[R(s)] is the delay from serving the test job itself with size s.
With the modified definition of ρs, see (2), the mean conditional
residence time E[R(s)] remains same as in (1),

E[R(s)] =
s

1 − ρs
. (4)

However, the derivation of the mean conditional waiting time80

E[W(s)] requires a detailed busy period analysis.81

3.1. Busy period description82

We begin by introducing the structure of the busy period. A83

central role in our analysis is played by the notion of a type-s84

busy period, which is defined as a busy period during which all85

arriving jobs are served until their attained service reaches s or86

they complete since their original service time requirement was87

less than s.88

An illustration of the regenerative cycle is given in Figure 1.89

The regenerative cycle is defined such that it begins the moment90

that the idle timer expires and the server goes to sleep state. In91

the figure, this is marked as a cross on the left. The time that92

the server is in the sleep state is called period 1. It ends when93

k batches have accumulated in the system, at which point the94

setup delay begins. In the figure, new arriving batches are indi-95

cated by arrows and we have k = 2. The time that the server is96

in the setup state is called period 2. After a random delay char-97

acterized by the random variable D, the server becomes busy98

and starts processing according to PS the jobs that accumulated99

during periods 1 (sleep) and 2 (setup), since none of the jobs100

has received service so far.101

From the point of view of the test job with size s that arrives102

at a random time instant, the first busy period that starts after103

period 2 begins with two sub-busy periods, where (i) the server104

is working on jobs until their attained service reaches s and (ii)105

when the server is serving those jobs for which attained service106

s was not enough. Of these, the first sub-busy period is a type-107

s busy period that was started by all the jobs that accumulated108

during sleep and setup, and we refer to this as period 3. We109

denote by B3(s) the length of the associated type-s busy period.110

Note that in a complete regeneration cycle, there is only one111

B3(s) busy period. After B3(s) is completed the server is still112

busy, but it is working on jobs for which reaching attained ser-113

vice s was not enough. In the figure, we denote this time by114

B>s. In our analysis, this period is referred to as period 4.115

As shown in Figure 1, new arrivals during period 4 interrupt116

the on-going sub-busy period B>s and trigger a new type-s busy117

period. However, now the type-s busy period corresponds to118

a type-s busy period in the ordinary MX/G/1 queue since it is119

started by a single batch of arrivals. The length of one such120

type-s busy period is denoted by B5(s). IF there are no new121

arrivals, after completing B5(s) and the following B>s the sys-122

tem becomes idle and the idle timer I is sampled. Unless the123

timer expires, a new busy period begins with the arrival of a124

new batch, which initiates a new B5(s) busy period since the125

server is still in idle state. In the figure, we have one such ad-126

ditional busy period starting with a B5(s) busy period with two127

arrivals and ending with the subsequent B>s. The idle timer I is128
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Figure 1: Illustration of the regenerative cycle.

sampled again, and in the figure the cycle completes when the129

idle timer expires before any new arrival, indicated by the cross130

on the right in Figure 1. As can be seen, during a regeneration131

cycle there can be several B5(s) type-s busy periods and collec-132

tively they are referred to as period 5. The periods when the133

server is working on the remaining workload from the type-s134

busy periods all together constitute the earlier introduced pe-135

riod 4. Similarly, jointly all idle periods during a regeneration136

cycle are referred to as period 6. Finally, independent of when137

the type-s job arrives, there will be an associated type-s busy138

period due to the other jobs that arrive at the same time in the139

same batch as the type-s job.140

Remark: Note that the regenerative cycle definition is identi-141

cal with our earlier papers [7, 6, 8]. However, without any major142

modifications to the analysis the regeneration point could also143

be selected as the point where the queue empties.144

3.2. Busy period analysis145

The mean conditional waiting time can be expressed as

E[W(s)] =

6∑
i=1

piE[Wi(s)], (5)

where pi is the probability that the type-s job arrives during146

period i and E[Wi(s)] is the mean waiting for an arrival during147

period i. Next we derive the probabilities that the type-s job148

arrives during the different periods.149

In general, the probabilities pi are given by the ratio of the
mean number of arrivals during each period i to the mean total
number of arrivals in a cycle, denoted by E[N]. The mean num-
ber of arrivals in a cycle is independent of the scheduling policy
and is given by, see [6, 8],

E[N] = E[β]
k + λbE[D] + λbE[Itot]

1 − ρ
, (6)

where E[Itot] denotes the mean cumulative idle time during a
cycle. The number of idle periods during a cycle obeys a geo-
metric distribution with success probability P{I < A}, where A
denotes a random variable for interarrival times. Thus, we have

E[Itot] =
E[min{I, A}]

P{I < A}
.

The mean number of jobs that arrive during period 1 (sleep)
and period 2 (setup) equal E[β]k and E[β]λbE[D], respectively.

Thus, we have

p1 =
E[β]k
E[N]

, p2 =
E[β]λbE[D]

E[N]
. (7)

Periods 3 and 5 together correspond to the fraction of time that
the server is processing jobs until their attained service reaches
s, i.e., p3 + p5 = ρs, and also p4 + ρs = ρ. Of these, p3 depends
on the mean length of the type-s busy period B3(s), and can be
expressed as

p3 =
E[β]λbE[B3(s)]

E[N]
. (8)

Thus, we get for p4 and p5 the following

p4 = ρ − ρs, p5 = ρs −
E[β]λbE[B3(s)]

E[N]
. (9)

Finally, period 6 is the total idle period, for which we have

p6 =
E[β]λbE[Itot]

E[N]
. (10)

In our analysis of the conditional waiting times E[Wi(s)] in150

(5), we need the first and second moments of the type-s busy151

periods B3(s) and B5(s). They are analyzed next.152

3.3. Moments of B3(s) and B5(s)153

We consider first B3(s), i.e., the type-s busy period that starts154

immediately after the setup delay is over. Its first and second155

moments are given below.156

Proposition 1. The first two moments of B3(s) are given by

E[B3(s)] =
E[S 0]
1 − ρs

,

E[B2
3(s)] =

E[S 2
0]

(1 − ρs)2 + λbE[S 0]
E[β](E[X2

s ] + b E[Xs]2)
(1 − ρs)3 ,

where

E[S 0] = E[β](k + λbE[D])E[Xs] and

E[S 2
0] = (k + λbE[D])E[β](E[X2

s ] + b E[Xs]2)

+ (E[β]E[Xs])2(k(k − 1) + 2kλbE[D] + λ2
bE[D2]).

3



Proof. The type-s busy period B3(s) has been started by all ar-
rivals during periods 1 (sleep) and 2 (setup) each having service
time Xs. During the busy period new arrivals each with service
times Xs enter from batches at rate λb. The length of the type-s
period B3(s) can be characterized as

B3(s) = S 0 +

N3∑
n=1

B3,n,

where S 0 represents the total service time from all jobs in
the batches that accumulated into the system during sleep and
setup, N3 is the number of new batches that arrived during
S 0 and B3,n are type-s sub-busy periods in an ordinary M/G/1
queue receiving jobs at rate λb and service times

Ys =

β∑
i=1

Xs,

i.e., the total workload from a batch. Thus, B3(s) corresponds157

to an M/G/1 queue with arrival rate λb and service times Ys158

with an exceptional initial workload S 0, for which the first two159

moments are given by, see [12],160

E[B3(s)] =
E[S 0]
1 − ρs

,

E[B2
3(s)] =

E[S 2
0]

(1 − ρs)2 + λbE[S 0]
E[Y2

s ]
(1 − ρs)3 .

The properties of Ys are considered first, and its first and second
moments are given by

E[Ys] = E[β]E[Xs] and

E[Y2
s ] = E[β]E[X2

s ] + E[Xs]2(E[β2] − E[β]). (11)

Then conditioning on the length of the setup delay D, the
amount of work that accumulates during sleep and setup can
be expressed as

S 0 |D =

k+ND∑
i=1

Ys,

where ND represents the number of batches that arrive during
the given setup delay, which obeys ND ∼ Poi(λbD), i.e., the
Poisson distribution with parameters λbD. Thus, we find, given
D, the first two moments

E[S 0|D] = E[k+ND]E[Ys] and

E[S 2
0|D] = E[k+ND]E[Y2

s ] + E[Ys]2(E[(k+ND)2] − E[k+ND]).

Utilizing (11) and unconditioning on D, we finally arrive at the161

result. �162

Next we consider the type-s busy period B5(s), which corre-163

sponds to normal type-s busy periods that starts after B3(s) is164

over and the server has become idle. Recall that during a com-165

plete regeneration cycle there can be several B5(s) busy periods166

until the cycle ends when the idle timer expires. The moments167

of B5(s) are given below.168

Proposition 2. The first two moments of B5(s) are given by169

E[B5(s)] =
E[β]E[Xs]

1 − ρs
,

E[B2
5(s)] =

E[β](E[X2
s ] + b E[Xs]2)

(1 − ρs)3 .

Proof. The type-s busy period B5(s) has been started by a batch
of arrivals with service times Xs and during the busy period new
arrivals have the same properties. Thus, B5(s) can be character-
ized as a normal busy period in an M/G/1 queue with arrivals
rate λb and service times Ys with first two moments given by
(11). Thus, by standard busy period results the first two mo-
ments of B5(s) are

E[B5(s)] =
E[Ys]
1 − ρs

and E[B2
5(s)] =

E[Y2
s ]

(1 − ρs)3 ,

from which the result follows. �170

3.4. Conditional mean waiting times and final result171

Now we begin the analysis of the components of the mean
conditional waiting times in (5). Due to the batch arrival pro-
cess, no matter when the type-s job arrives, it will experience
a waiting time due to other jobs that arrived in the same batch.
The mean number of other jobs in the batch in addition to the
type-s job is denoted by b and is given by, see, e.g., [1],

b =
E[β2]
E[β]

− 1.

The mean conditional waiting time due to these other jobs in a172

batch is denoted by E[Wb(s)] and is given below.173

Proposition 3. The mean waiting time of a type-s job due to
other jobs in its batch is given by

E[Wb(s)] =
b E[Xs]
1 − ρs

. (12)

Proof. Consider a modified M/G/1 queue with arrival rate λb

and service times Ys having E[Ys] = E[β]E[Xs], i.e., total trun-
cated service time requirement of a batch. The mean condi-
tional waiting time E[Wb(s)] is the same as the mean length of
a busy period of such a modified queue having an initial work-
load of size Z0 with mean equal to E[Z0] = bE[Xs]. Thus, we
can express E[Wb(s)] as, see [12],

E[Wb(s)] =
E[Z0]

1 − λbE[Ys]
=

b E[Xs]
1 − ρs

.

�174

Next we derive the expressions for the mean conditional de-
lays E[Wi(s)] in (5). If the type-s job arrives during period 1
(sleep), it is one of the k initial batches. Similarly as in [8], the
type-s job must wait until the end of period 1, the setup delay,
then a modified B3(s) busy period, where the number of batches
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during sleep equals k−1, and finally the delay due to other jobs
in its own batch. Thus, Corollary 1 in [8] and Proposition 1 give

E[W1(s)] =

k − 1
2λb

+ E[D] +
E[β](k − 1 + λbE[D])E[Xs]

1 − ρs
+ E[Wb(s)]. (13)

where the third term corresponds to the mean length of a B3(s)175

busy period with k − 1 batches.176

As analyzed in [8], if the type-s job arrives during period 2
(setup), the job must wait until the end of the remaining setup
delay with mean E[D2]/(2E[D]), then a modified B3(s) busy pe-
riod, where the mean setup delay equals E[D2]/E[D] (elapsed
and remaining setup delay), and the delay due to other jobs in
the same batch. Thus, Corollary 2 in [8] and Proposition 1 yield

E[W2(s)] =

E[D2]
2E[D]

+
E[β](k + λbE[D2]/E[D])E[Xs]

1 − ρs
+ E[Wb(s)], (14)

where the second term corresponds to the mean length of a177

B3(s) busy period with mean setup delay E[D2]/(2E[D]).178

If the type-s job arrives during periods 3 or 5, the type-s job
needs to wait until the end of the on-going type-s busy period,
either B3(s) or B5(s), and the delay due to other jobs in its own
batch. Thus, we have

E[Wi(s)] =
E[B2

i (s)]
2E[Bi(s)]

+ E[Wb(s)], i = {3, 5}. (15)

In (15), recall that the moments of B5(s) are the same given in179

Proposition 2.180

Finally, if the type-s job arrives during periods 4 or 6, a delay
is only incurred due to the other jobs in the batch and thus

E[W4(s)] = E[W6(s)] = E[Wb(s)]. (16)

Now we have all the elements ready from the analysis and181

below we give the expression for the mean conditional delay182

E[T (s)] in the energy-aware MX/G/1-LAS queue.183

Theorem 1. For an energy-aware MX /G/1-LAS queue, the
mean conditional delay E[T (s)] is given by

E[T (s)] = E[TMX /G/1-LAS(s)]

+
E[β]
E[N]

(
k(k − 1)

2λb
+ kE[D] +

λb

2
E[D2]

)
1

(1 − ρs)2 , (17)

where E[N] is given by (6) and E[TMX /G/1-LAS(s)] refers to the
conditional mean delay in the ordinary MX /G/1-LAS queue
given by

E[TMX /G/1-LAS(s)] =

E[β]λbE[X2
s ]

2(1 − ρs)2 +
b E[Xs](2 − ρs)

2(1 − ρs)2 +
s

1 − ρs
. (18)

Proof. By applying equations (7)-(10), (13)-(16) and Propo-
sitions 1-3 in the general expression for the mean conditional

waiting time E[W(s)], see (5), we obtain after simplifications

E[W(s)] =
E[β]λbE[X2

s ]
2(1 − ρs)2 +

b E[Xs](2 − ρs)
2(1 − ρs)2

+
E[β]
E[N]

(
k(k − 1)

2λb
+ kE[D] +

λb

2
E[D2]

)
1

(1 − ρs)2 .

Then by combining this with E[R(s)] from (4) in the general ex-184

pression of E[T (s)] in (3), we obtain the final expression. In the185

expression, only term relating to the energy-aware features is186

the last term in E[W(s)] above, which vanishes as E[Itot] → ∞187

resulting in the mean conditional delay of the ordinary MX/G/1-188

LAS queue with only idle and busy states given by (18). �189

Apparently, the explicit expression of E[TMX /G/1-LAS(s)] in
Theorem 1 is not directly available easily in the literature, as
far as we know. The z-transform of the distribution of the num-
ber of jobs in the ordinary MX/G/1-LAS queue can be found in
[13], but it is in a somewhat implicit form and obtaining, e.g.,
the mean is not straight forward. The result can be elegantly
derived directly also by observing that E[TMX /G/1-LAS(s)] equals
the work present in the system (from the Pollaczek–Khinchin
formula), the work brought by the batch containing the size-s
job and the extra work that arrives during its sojourn time, i.e.,

E[TMX /G/1-LAS(s)] = λbE[Y2
s ]/2(1 − ρs) + (bE[Xs] + s)

+ λbE[TMX /G/1-LAS(s)]E[Ys].

Applying (11) above gives the desired result.190

Observe that when the mean total idle time goes to infinity,191

i.e., E[Itot] → ∞ following from selecting I = ∞, and setting192

E[β2] = E[β] = 1, corresponding to the normal Poisson arrival193

process with b = 0, the expression for E[T (s)] in Theorem 1194

yields the result of the ordinary M/G/1-LAS queue (1).195

Finally, the decomposition of the delay E[T (s)] into the non-196

energy-aware component and an additional energy-aware cost197

term in (17) has a similar form as in the corresponding expres-198

sion of the delay in the SRPT queue, see Theorem 4 in [8].199

The overall mean delay E[T ] is readily obtained from

E[T ] =

∫ ∞

0
E[T (s)] f (s) ds. (19)

Exponential service times: Assuming that the service times
are exponential with E[X] = 1/µ, it can be verified from (17)
and (19) that the mean delay E[T ] is given by

E[T ] =
1 + b

2

µ(1 − ρ)
+

k(k−1)
2λb

+ kE[D] + λb
2 E[D2]

k + λbE[D] + λbE[Itot]
. (20)

The result (20) is identical with the corresponding expression200

for PS in [6] and FIFO in [5], which is intuitive due to the mem-201

oryless property of the exponential service times.202

3.5. Application to performance-energy trade-off203

Next we consider the implications of Theorem 1 and the pos-
sibility of selecting the timer I to optimize the performance
energy-tradeoff of the system. Two popular metrics to char-
acterize the tradeoff include ERWS and ERP. ERWS is the
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weighted sum of the mean delay E[T ] and the mean power E[P]
and ERP their product, i.e.,

ERWS = w1E[T ] + w2E[P] and ERP = E[T ] E[P],

where w1 and w2 are weights.204

To optimize the performance-energy tradeoff, we have the205

following problem. The objective is to minimize the ERWS or206

ERP by appropriately selecting the idle timer I distribution and207

its parameters. Below we state the result for this.208

Corollary 1. The optimal policy for selecting I to minimize209

ERWS or ERP is to select I = 0 or I = ∞.210

Proof. In the ERWS and ERP cost metrics, the mean delay E[T ]211

is obtained from Theorem 1 and by integration with respect to212

the service time distribution in (19). As mentioned earlier, the213

mean power E[P] is independent of the scheduling policy and214

is given in [8]. The form of the factor in the mean conditional215

delay E[T (s)], see Theorem 1, containing the total mean idle216

time E[Itot] has exactly the same form as in the correspond-217

ing energy-aware MX/G/1-SRPT queue, see Theorem 4 in [8].218

Thus, by Proposition 7 in [8] the optimal selection for I is de-219

terministic with I = 0 or I = ∞. �220

The result above shows that the optimum is always either221

to immediately switch off I = 0 or never to switch off I = ∞.222

The optimal idle timer control policy remains the same for LAS223

scheduling as has been already shown for FIFO in [7], PS in [6]224

and SRPT in [8]. Thus, Corollary 1 provides further evidence225

that the optimal timer selection is independent of the scheduling226

policy, at least for typical work conserving policies.227

4. Numerical examples228

Next we illustrate our results through numerical examples.229

The following power consumption values are used: Pbusy =230

Psetup = 200 W, Pidle = 120 W and Psleep = 15 W. The setup231

delay is deterministic with D = 10 s. These values reflect ca-232

pabilities of modern servers and are also used in, e.g., [8]. The233

batch size is geometrically distributed with E[β] = 2 and the234

mean service times are E[X] = 1 s.235

4.1. Mean delay with LAS compared with PS and FIFO236

We first consider the delay performance with idle timer I = 0237

(server goes to sleep immediately when queue empties) and238

k = 1 (server wakes up when first batch arrives). The mean239

delay of LAS, see Theorem 1 and eq. (19), is compared against240

the corresponding performance under PS and FIFO, see [6] and241

[5] for the exact formulae. Figure 2 depicts the relative mean242

delay of LAS (blue curves), PS (green curves) and FIFO (red243

curves) for Pareto distributed sizes with shape parameter 2.5244

(solid lines) and hyperexponential sizes with two phases µ1 = 2245

and µ2 = 0.2 (dashed lines). For both distributions the remain-246

ing parameters have been fixed such that E[X] = 1. The relative247

delay is taken as the ratio of the mean delay for the correspond-248

ing scheduling discipline and the given distribution to the mean249

delay with exponential service times. For the exponential ser-250

vice times all scheduling disciplines give the same result, shown251

as the horizontal line with black in Figure 2. FIFO clearly gives252

highest delays as the variability increases (note that in this case253

Pareto and hyperexponential end up having the same 2nd mo-254

ments and hence there is only one solid red curve for FIFO). On255

the other hand, LAS performs still clearly better than PS also in256

this system with setup delays and batch arrivals.257

FIFO, par+hypexp

{PS, FIFO, LAS},exp

PS, par PS, hypexp

LAS, hypexp

LAS, par

0.0 0.2 0.4 0.6 0.8

0.6

0.8

1.0

1.2

1.4

Figure 2: Relative mean delay as a function of the load for FIFO, PS and LAS
disciplines with different service time distributions.

4.2. Performane-energy tradeoff258

Here we first illustrate the implications of Corollary 1 on the259

performance energy-tradeoff, which states that I = 0 or I = ∞260

is the optimal timer value for the ERWS and ERP cost metrics,261

but a priori it is not known which one is the case.262

We first consider the ERWS cost metric with w1 = w2 = 1.263

Figure 3 (upper panel) depicts the relative ERWS cost, defined264

as the ratio of the ERWS cost with I = 0 to the ERWS cost with265

I = ∞ corresponding to the ordinary MX/G/1-LAS queue, as266

a function of the load for the same distributions as earlier, i.e.,267

exponential (red curve), hyper-exponential (green curve) and268

Pareto (blue curve). Note that the results for Pareto and hyper-269

exponential distributions are practically indistinguishable. As270

can be seen, at low loads selecting I = 0 is optimal, which is271

intuitive, and with the given parameters the situation changes272

roughly at load ρ = 0.2. Interestingly, the distribution has very273

little impact on this.274

The relative ERP cost, defined analogously as for the ERWS275

cost, is given in Figure 3 (lower panel). In this case, we observe276

that the ERP cost is always higher in the energy-aware system277

with I = 0 in the considered load region than in the non-energy-278

aware system with I = ∞. This is due to the very long setup279

delay relative to the service times, in our case. If the setup delay280

could be reduced to, say D = 1 s, the ERP cost at lower loads281

would be lower with I = 0 than I = ∞. The sensitivity to the282

service time distribution appears to be somewhat higher for the283

ERP cost metric than for the ERWS cost metric.284

The previous results highlighted the optimality result with re-285

spect to specific forms of the cost function, namely ERWS and286

ERP. However, the performance-energy tradeoff can also be an-287

alyzed by considering how the idle timer I affects the mean288

power E[P] and mean delay E[T ] separately. Figure 4 displays289

the mean delay E[T ] as a function of the mean power E[P] as290
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Figure 3: The relative ERWS (upper panel) and ERP (lower panel) costs under
LAS scheduling with different distributions as a function of the load.

the idle timer value is varied from I = 0 to I = ∞ (ordinary291

M/G/1-LAS queue without setup delay) for four load values292

ρ = {0.1, 0.2, 0.4, 0.6}. In the figure, the results for exponen-293

tially distributed service times are shown with solid lines and294

the results with Pareto distributed service times are shown with295

dashed lines. As is expected, the mean delay E[T ] is always296

lower with Pareto distributed service times for a given value of297

the mean power E[P] (recall that the mean power is insensitive298

to the service time distribution) and the difference is greater at299

higher loads. The main observation in Figure 4 is that at lower300

loads, see results for ρ = {0.1, 0.2}, we can observe a tradeoff301

between E[T ] and E[P]: by increasing I, E[T ] can be reduced302

at the expense of a higher E[P]. However, at higher loads, see303

results for ρ = {0.4, 0.6}, there is no tradeoff: both E[T ] and304

E[P] can be simultaneously minimized by selecting I = ∞, i.e.,305

the optimal idle time selection is to never switch off the server.306

With the used parameter values in this example, the load where307

the tradeoff disappears is between ρ = [0.2, 0.4].308

5. Conclusions309

We analyzed an energy-aware MX/G/1-LAS queue with a310

setup delay and idle timer, which is used to delay the server311

from entering the sleep state too quickly. The expression for312

the conditional mean delay of a test job with size s was derived313

by applying classical busy period analysis. The expression in-314

ρ = 0.1
ρ = 0.2 ρ = 0.4

ρ = 0.6

I = 0

I = Inf

100 120 140 160 180
0

2

4

6

8

10

12

14

E[P]

E
[T
]

Figure 4: The mean power vs. mean delay plot as a function of I for different
values of the load ρ for exponentially distributed service times (solid lines) and
Pareto distributed service times (dashed lines).

terestingly has a convenient form consisting of the mean condi-315

tional delay in the ordinary MX/G/1-LAS queue and an additive316

factor containing the effects of the setup delay and idle timer.317

As a corollary of our result, the idle timer control problem to318

minimize the ERWS and ERP cost functions had a simple solu-319

tion: either the timer is set equal to zero or infinite.320

The above optimality result on the idle timer has been pre-321

viously observed also for FIFO, PS and SRPT scheduling. The322

optimality in these cases, including LAS in this paper, follows323

from the particular structure of the mean delay and mean power324

consumption for a given scheduling policy. It is plausible that325

the result holds generally for any work-conserving scheduling326

discipline. However, it remains as an elusive open problem how327

this could be formally proven without the precise assumption of328

the scheduling policy.329
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