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A Framework for Access Coordination in IoT
Oscar Novo

Ericsson Research, Finland
Aalto University, Finland

Abstract—IoT systems have typically been designed with the
assumption that all their resources are available on a concur-
rent access basis. Conversely, some IoT scenarios only operate
correctly if the access to certain resources is given in mutual
exclusion fashion and limited to a confined number of nodes. For
example, it might not be appropriate that a intrusion detection
system prevents a fire suppression service to unlock the doors of
a building.

This article proposes a service-oriented, resource scheduling
framework for IoT systems. The framework is based on the
Binary Floor Control Protocol, a protocol designed for managing
shared resources in conference systems. The article introduces the
design model of the framework and presents an implementation
of it. Based on this, the performance of the framework is
evaluated and compared with the current state-of-the-art HTTP
solutions for references. In addition, the framework is evaluated
with respect to its suitability to be used in IoT. The results confirm
that our approach is suitable for IoT environments and achieve
good scalability.

Index Terms—IoT, Internet of Things, Shared Resources,
BFCP

I. INTRODUCTION

Since its early days, one of the main goals of the Inter-
net of Things (IoT) has been to provide connectivity to an
entirely new set of devices [1] such as digitalized assets,
equipment, vehicles, and processes in factories. As a result
of this, home appliances, wearables, vehicles, and industrial
electronics have become increasingly more connected to the
Internet. Furthermore, the Internet of Things has been built on
the assumption that the interaction and communication in IoT
can always be done in a concurrent manner [2]. Contrarily
to this claim, however, there are some specific IoT scenarios
where the mutual exclusion of the information is essential for
achieving valid outcomes.

For instance, it is of paramount importance that a fire alarm
controls the access of a front door lock to provide an escape
route for the residents of the building in the event of a fire.
On the other hand, other IoT services, such as the intrusion
detection system of the building should be prevented from
simultaneously controling that front door lock.

Finding a solution to this problem is definitely not a simple
matter. One possible solution could be to store a local policy
in every IoT device. As a result, an IoT device would auto-
matically check its local policy before granting each specific
request. However, some types of IoT devices, in particular
class 0 and class 1 devices, cannot implement their own local
policies due to their limited capabilities. According to [3],
class 0 and class 1 devices have very limited memory and
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Fig. 1: Overview of the Logical Entities of the Framework

processing power. They are, therefore, only capable of per-
forming simple operations and communicating on the Internet
using a constraint protocol stack. Despite that, the rest of the
IoT devices (class 2 and class 3 devices) are less constrained
and could implement their own local policy. However, many
IoT scenarios are very dynamic making this possibility very
unlikely. Basically, every time a new device is added or deleted
from the system, the local policy of each IoT device belonging
to that system has to be updated accordingly. In consequence,
this option is no longer feasible for an IoT system with large
number of devices.

This article presents a resource scheduling framework for
IoT as a solution to this problem. The framework is based
on the Binary Floor Control Protocol (BFCP) [4], a protocol
to manage joint or exclusive access to the audio and video
resources of a conference system [5]. Using the Binary Floor
Control Protocol, participants of a conference can automati-
cally request to use the audio and video of that conference
reducing the switching delay between speakers and improving
the interactivity.

Even though the Binary Floor Control Protocol has been
designed for conference systems, it is suitable for service-
oriented IoT scenarios due to its low overhead. The binary
encoding achieves a small message size, reducing the memory,
CPU and battery consumption in constrained devices. Besides,
it can run over UDP, incurring in fewer delays and retransmis-
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sion packets.
The article, additionally, describes the implementation of

the framework. The last part of the article evaluates the
performance of our implementation and the suitability to use
the Binary Floor Control Protocol in our framework.

For convenience, a new term, floor, is introduced to describe
a temporary permission to access or manipulate a specific
shared resource or set of resources. The term has been adopted
from the Binary Floor Control Protocol documentation [4],
and it will be used throughout the article.

The rest of the article is organized as follows: the related
work is briefly discussed in Section II, Section III describes
in detail the different components of the framework and their
interfaces. The implementation of the framework is described
in Section IV, and Section V evaluates it. Finally, section VI
consists on concluding remarks.

II. RELATED WORK

Several research work have studied the management of
complex IoT systems [6]–[9]. In particular, these approaches
facilitate the configuration of complex smart environments for
end users by combining services that are provided by IoT
devices. Thus, an end user does not need to understand a
complex system. The system can automatically deduce the
different interactions between the different IoT devices. For
instance, [10] and [11] respectively introduce a technique to
facilitate the composition of heterogeneous services for end
users in smart homes. Similarly, [12] presents a system for

rapid reconfigurability in factory automation with the objective
of evolving and adapting to mass customization.

However, our work fundamentally differs from those studies
in several aspects. Firstly, our research focus on managing the
access to share resources in IoT systems to prevent different
IoT services executing opposite actions in the same resource
at the same time. Secondly, our approach enables arbitrary
and independent IoT services to successfully operate between
them. Lastly, our approach can be combined with the existing
IoT composition systems, contributing to atomically control
the access of the resources among different IoT services.

III. PROPOSED ARCHITECTURE

In order to coordinate the access of different IoT resources
in a network, we have implemented a new framework. The
focus in this section is to describe this framework in more
detail and highlight the different design decisions that have
been taken during its development.

A. Components

The architecture can be divided into three logical entities:
floor participants, floor chairs, and floor control servers.
Figure 1 depicts an example that combines the different logical
entities together. On a high level, the example contains the
following components: a single floor control server, two floor
participants, and a floor chair. These components communi-
cate in a centralized fashion through the Binary Floor Control
Protocol [4].



The floor control server, in addition to providing informa-
tion about the different participants in the system, maintains
the state of the floors, including which floors are in the
IoT system and who holds them. Floor participants are IoT
devices that request floors and information about the floors
from the floor control server, while floor chairs are logical
entities that manage the floors and grant, deny, or revoke them
according to the situation. Although the example shows one
single floor chair, many floor chairs managing several floors
simultaneously can be included in the system.

Floor participants need to know which resources are asso-
ciated in a network domain. They can obtain this information
by using an entity called Resource Directory. A Resource
Directory [13] is an IoT component used to discover IoT
resources held on a network. Usually, sleeping IoT nodes
and networks with inefficient multicast traffic prevent direct
discovery of those resources. Thus, nodes can perform direct
IP address lookups of those resources using the Resource
Directory. The communication with the Resource Directory
is done through the Constrained Application Protocol [14].

B. System Interactions

In continuing with our example, Figure 2 provides a detailed
representation of the different iterations between the different
components of the framework. In the figure, a fire alarm has
presumably detected a fire in the building and, among other
actions, needs to unlock the front door of the building to
provide an escape route for the residents of the building and
allow a quicker response from the firefighters. First, the fire
alarm needs to know the IP address and port of the front
door lock. We assume that the fire alarm does not know that
information and needs to look it up in the Resource Directory.
The Resource Directory responds with the information of
the door lock and includes in the response message a new
parameter, called floorID, that indicates if the access to that
particular result is managed by our framework. Generally, not
all IoT resources are necessarily managed by the framework.
However, for simplicity, this example only focuses on a subset
of managed IoT resources.

Once the necessary information of the front door lock is
gathered, the fire alarm first contacts the floor control server to
request permission to access the door lock. In addition, the fire
alarm asks the floor control server to handle the floor request
with the highest priority (priority: 4). Currently, the front door
lock does not have any floor chair assigned to it, and it is up
to the policy implemented in the floor control server to grant
or deny the request. In this particular case, access to the door
lock is immediately granted by the floor control server. In the
hypothetical case that the front door lock was already granted
to another node, the floor control server could revoke that
access and give it to the fire alarm instead.

In the meantime, the CO2 detector installed in the same
building has detected high levels of carbon dioxide and re-
quests the control of the ventilation system to automatically
start the building’s ventilation fans. As in the case of the fire
alarm, the CO2 detector first discovers the IP address and port
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Fig. 3: Floor State Machine

of the ventilation system and requests permission to access it
to the floor control server. In such case, the ventilation system
is managed by a floor chair. Hence, the floor control server
forwards the request to this specific floor chair. The action
taken by the floor control server for pending requests is a
matter of its local policy. A floor control server may perform
its own decision automatically if a decision is not made by
the floor chair after a certain period of time.

Similarly, the fire alarm also needs to have access to the
ventilation system of the building to control the smoke created
by the fire. The fire alarm repeats the same steps as before and
first discovers the location of the ventilation system and, later,
requests the permission to the floor control server. However,
since the floor request of the fire alarm has higher priority
(priority: 4) than the request of the CO2 detector (priority: 1),
the floor control server prioritizes the floor request of the fire
detector and informs the floor chair about that. Afterwards,
the floor chair decides to grant the access permission to the
fire alarm. Later, once done with it, the fire alarm releases the
floor of the ventilation system. In this particular case, the CO2

detector controling the ventilation system may be dangerous,
since injecting more oxygen to the building might cause the
fire to spread quickly. Therefore, the floor chair could prevent
it by denying the floor of the ventilation system to the CO2

detector (not shown in Figure 2).

C. Message Processing in the Floor Control Server

As explained before, floor control servers are logical entities
that maintain the state of the floors in an IoT system.

When a floor participant requests a floor using the floor
request operation, the floor control server stores this informa-



tion in the system and assigns the pending state to the floor.
Pending requests are the requests that have not been authorized
by a floor chair. When the floor chair of a floor authorizes a
request, the floor is moved from the pending to the accepted
state. In case the floor chair denies this floor’s access to the
floor participant, the floor is removed from the system. If there
is no chair assigned to a floor, this floor can be moved directly
to the accepted state or deleted from the system based on the
floor control server’s local policy. A floor in the accepted state
will eventually move to a granted state.

A floor is also removed from the system when the floor
participant assigned to it releases the floor or a floor chair
revokes it. In addition, when a floor is released from a
particular request, all the floors assigned to that request are
also released.

Figure 3 describes the different states (squares) of a floor
and the transitions between them (arrows). A floor has seven
states: pending, accepted, granted, denied, canceled, revoked,
and released. The state of a floor changes based on the inputs
it receives.

Only the reception of a new floor request message in the
floor control server can create a floor. On the other hand, a
floor is removed from the system when it is in the denied,
canceled, revoked, or released state. During its natural life
cycle a floor is created in the pending state, moved to the
accepted state at some point of its life cycle, and destroyed
after the granted state has been achieved.

IV. IMPLEMENTATION

Based on our study, a prototype of the framework was
implemented. In order to easy the implementation of the
prototype, the solution did not use a Resource Directory to
discover the resources of the IoT network. By contrast, the
information of every resource was hard-coded separately in
each floor participant. This design decision did not affect the
functionality of the prototype. The rest of the components in
the framework were implemented in the C language.

In addition, we measured the source lines of code (SLOC)
of the floor participant and floor control server components
using the SLOCCount tool1. The result was 4,288 and 7,492
lines of code respectively. The Binary Floor Control Protocol
was implemented following the standards [4].

A. Handling Floors in the Floor Control Server
Different approaches can be used to manage floors inside

the floor control servers. In this respect, a queue data type
seems to be a good choice of design, since the floors, as well
as the queues, are handled in order of addition.

Queue data types are linear structures where each element of
the queue is inserted and removed according to the first-in first-
out (FIFO) principle. In the FIFO principle, the first element
added to the data structure will be the first one to be removed.
Queue data types are normally used when the elements in a
system have to be processed in the order they have been added.
The design model chosen in the implementation of the floor
control server is depicted in Figure 4.
1 https://dwheeler.com/sloccount/
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Fig. 4: Floor Management Design

The chosen design defines a global list for each floor
request. This queue stores the information of the pending,
accepted, and granted states of the floor state machine. The
global queue structure is divided into three parts: pending part,
accepted part, and granted part. Every element of the queue
contains the floor information related to a specific request of
a floor participant. Each of these states are implemented as
a doubly-linked-list (also known as two-way linked list, or
symmetrically linked list). This list behaves as a normal queue
data structure but with the advantage that element insertions
and deletions can be done from any position in the list and
the list can be traversed in both directions.

When a floor participant requests a floor using a floor
request message, a new element in the queue is created and
attached to the pending part of the global queue. Once the
chair accepts the floor request for this floor participant, the
floor control server moves the node from the pending part to
the accepted part of the queue. If the chair does not indicate
any priority, the node is inserted in the last position of the
accepted part of the queue. In case the chair does not accept
this particular request for this floor participant, the node is
removed from the pending list. When a floor participant is
allowed by the floor control server to start using a floor,
the node holding the request information is moved from the
accepted part of the queue to the granted part. Once the floor
participant releases the floor, the floor control server removes
the node from the granted part.

An example of the design implementation is depicted in
Figure 5. It shows a floor request identified by FloorRequestID
1 requesting floor 1 and another floor request identified by
FloorRequestID 2 requesting simultaneously floors 1 and 2.
In this example, the floor control server gives more priority
to floor 1 than floor 2. Therefore, while floor 1 is already
granted in the floor request identified by FloorRequestID 1,
floor 2 remains ungranted in the other floor request waiting
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first for floor 1 (which has more priority) to be released.
Granting the floors in order of priority is a method to prevent

deadlocks in the IoT services. A deadlock is a persistent
and circular-wait condition, where each process involved in
a deadlock waits indefinitely for the resources held by other
processes while holding the resources needed by others. In our
system, a deadlock is when a set of floors is stopped waiting
for the resources held by other floors to be released, leading
to a situation that makes it impossible for any of them to
continue.

In order to break this condition, floors are acquired in order.
This method is called Linear Ordering of Resources, and it
enforces to first accept the high priority floors before the low
priority ones.

Given that P is the priority to request a floor and P ∈ Z, F
is the set of floors Fp where p ∈ P , an IoT service holding a
resource Fh

1 can request a resource F k
2 if it meets the following

condition:

Request(Fh
1 , F

k
2 ) =

{
1, ∀h, k ∈ P : h ≤ k

0, otherwise
(1)

V. EVALUATION

This section evaluates two important aspects of our archi-
tecture. First, it evaluates the performance of the floor control
server regarding its throughput, latency, and scalability. In
addition, the results obtained from the performance evaluation
of the floor control server are compared to the state-of-the-
art HTTP solutions. Two of the most popular HTTP servers,
Apache2 and NGINX3, were included for references. Apache
and NGINX are responsible of serving over 50% of the traffic
on the Internet. Apache has been the most popular server on
the Internet since the early 90s. On the other hand, NGINX

2 https://apache.org/ 3 https://www.nginx.com/

has grown in popularity since its release in 2002 due to its
ability to scale easily.

Additionally, this section provides a qualitative analysis of
the Binary Floor Control Protocol and its feasibility to be used
in the IoT area.

A. Experiment Setup

The experiment setup consists of two Ubuntu-16.04 laptops.
Both laptops are directly connected via an Ethernet cable es-
tablishing an IPv4 connection between them. The floor control
server and the state-of-the-art HTTP servers are installed in
a laptop with an Intel R©CoreTMi7-950M processor at 3.07
GHz and 16GB of RAM. Rather than having all the server
instances running on the laptop at the same time, only one
server is active at a time while the others are inactive to prevent
unnecessary consumption of resources.

The second laptop is an Intel R©CoreTM2 Duo T9600 at
2.80 GHz with 4GB of RAM. This laptop runs the bench-
mark tools used to evaluate the different implementations.
The performance of Apache and NGINX are measured with
the ApacheBench tool. ApacheBench is a benchmarking tool
designed to test the performance of the HTTP servers.

To the best of our knowledge, there is no benchmark tool
available for the Binary Floor Control Protocol. Consequently,
we developed our own benchmark tool in Python 34 scripting
language. The tool allows us to run in parallel various floor
participants during a certain time and allows us to specify the
number of requests sent to the floor control server. The tool
uses a basic congestion control where each floor participant
sends a hello message and waits for the response before issuing
a new request. After 10 seconds, the request times out and the
loss is recorded in a different counter.

A hello message is used by the floor participants to check
the liveliness of the floor control servers. A floor control server
confirms that is alive on reception of a hello message by
sending an acknowledge message back to the floor participant
indicating which primitives and attributes supports.

Each floor participant in the benchmark tool re-uses a single
TCP connection for all its requests. Similarly, in order to
better compare the performance of the floor control server
against the HTTP servers, the keep-alive option of HTTP/1.1
is applied through all the ApacheBench experiments. The keep
alive option allows an HTTP client to re-use a single TCP
connection for all its consecutive requests.

B. Performance Evaluation

For this experiment, we evaluate the throughput, latency,
and scalability of the floor control server and compare the
results with the Apache and NGINX servers. The throughput
is evaluated connecting a set of floor participants to the floor
control server through the BFCP benchmark tool. The floor
participants stress the floor control server by continuously
sending requests to it for 60 seconds. The concurrency factor is
increased from 1 to 5,000 simultaneous participants. To avoid
bias, we repeated all the experiments five times.

4 https://www.python.org
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As a baseline, we show how Apache and NGINX servers
scale under the same scenario using the ApacheBench tool.
Figure 6a depicts the results of our experiment. The floor
control server behaves similarly to Apache up to 10 concurrent
clients. Beyond that point, it increases steadily its throughput
to 60,000 request per second for hundred concurrent clients,
achieving a higher peak performance than NGINX. After
that, the performance of both servers decrease significantly
to 40,000 request per seconds for 5,000 concurrent clients.
Primarily, our implementation exhibits a better performance
than Apache and is comparable to NGINX, achieving a better
peak performance than both HTTP servers.

Our next experiment consists on evaluating the latency of
the floor control server. Figure 6b illustrates the total response
time, in milliseconds, of the floor control server to server a
specific number of requests from a single floor participant.
We gradually increase the number of requests generated by the
floor participant from 1 to 60,000. Similar experiments were
performed with Apache and NGINX. Overall, the performance
of the floor control server is comparable to NGINX. Even our
system achieves slightly better response times than NGINX
and performs 3 times better than Apache.

The last experiment involves evaluating the scalability of
the floor control server. In this experiment a specific number
of requests ranging from 0 to 60,000 are sent to the floor
control server through 10, 100, and 1,000 concurrent clients.
The graphs shows the total time required for the floor control
server to complete all the requests. Similar experiments are
done for the HTTP servers using the ApacheBench tool.
According to Figure 6c, the floor control server have a similar
performance than NGINX for 10 and 100 concurrent clients.
However, the response times rise to around 6 seconds for
1,000 concurrent clients. Even though NGINX performs better
than our solution for highly concurrent scenarios, our solution
outperforms Apache in terms of scalability.

As a baseline, the performance of the floor control server
is overall acceptable. However, we run the experiments in
a reasonably powerful computer. Thus, we believe that the
hardware capabilities will be a much bigger limiting factor
than the software for running the floor control server.

C. The Binary Floor Control Protocol

The messages in the Binary Floor Control Protocol are
encoded in binary format. The message format starts with a
fixed 12-bytes header followed by a set of attributes whose
minimum length is 1 byte. Figure 7 provides an overview
of the different message sizes of the protocol. The Figure
shows the sizes of five of the most commonly used operations:
Floor Request, Floor Release, Chair Action, Floor Query,
and Floor Status. The size of each message is calculated in
four different ways to provide a better understanding of the
protocol overhead. In the first two categories only one floor is
carried out in each message. The difference between these two
categories lies in the number of attributes; the first category
includes only the mandatory attributes, while the second
category includes all the possible attributes in each message.



Fig. 7: Binary Floor Control Protocol Message Size

The last two categories carry the information of five floors. In
the same way, the third category includes only the mandatory
attributes in the message while the last category includes them
all. Besides that, we assumed for each calculation that the
size of every string value in the messages is 40 (UTF-8-
encoded) bytes. Figure 7 shows that almost all the messages
are considerable small in size with the exception of the second
and fourth category of the Floor Status message. Those two
categories include all the attributes in the message. However, it
is very unlikely that a Floor Status message includes all those
attributes. Attributes that describe the reason why a participant
requested a floor or provides information about the requester
of the floor are seldom used in the majority of the scenarios.
Nevertheless, all the messages in Figure 7 could still fit within
a single IP packet avoiding fragmentation. According to these
results, the small size overhead of the Binary Floor Control
Protocol is comparable to CoAP [14]. Additionally, the Binary
Floor Control Protocol handles fragmentation, keeping large
messages to be fragmented at the IP layer.

VI. CONCLUSION

This article introduces a novel service-oriented approach
to managing exclusive access to shared resources in the IoT
systems. Currently, the IoT systems assume that the IoT
resources can be accessed concurrently and simultaneously at
any time. However, such practices might incur in undesirable
outcomes in some specific IoT scenarios. For instance, when
an IoT service simultaneously receives opposite orders from
different devices.

Concurrency is not a new topic in computer science. Con-
currency has already been addressed by several studies propos-
ing different standards. In this matter, rather than creating a
new solution, our approach attempts to embrace the existing
solutions and adapt them to the IoT area. In this regard,
our solution adopts the Binary Floor Control Protocol, a
protocol designed for managing shared resources in conference
systems. Even though the Binary Floor Control Protocol [4]
has been designed for conference systems, the evaluation study
performed for this article shows its feasibility in IoT scenarios.

Its relatively small overhead in terms of packet size makes it
suitable for IoT.

Furthermore, we developed an implementation of our novel
approach based on that study. However, part of this proposed
architecture is still subject to ongoing research. Expanding the
solution to a decentralized architecture, as well as security, will
require further study.
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