
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Zhu, Chao; Chiang, Yi-Han; Mehrabi, Abbas; Xiao, Yu; Yla-Jaaski, Antti; Ji, Yusheng
Chameleon

Published in:
IEEE Transactions on Vehicular Technology

DOI:
10.1109/TVT.2019.2924911

Published: 01/09/2019

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Zhu, C., Chiang, Y.-H., Mehrabi, A., Xiao, Y., Yla-Jaaski, A., & Ji, Y. (2019). Chameleon: Latency and Resolution
Aware Task Offloading for Visual-Based Assisted Driving. IEEE Transactions on Vehicular Technology, 68(9),
9038-9048. Article 8768075. https://doi.org/10.1109/TVT.2019.2924911

https://doi.org/10.1109/TVT.2019.2924911
https://doi.org/10.1109/TVT.2019.2924911

9038 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

Chameleon: Latency and Resolution Aware Task
Offloading for Visual-Based Assisted Driving

Chao Zhu , Yi-Han Chiang , Abbas Mehrabi , Yu Xiao , Antti Ylä-Jääski ,
and Yusheng Ji , Senior Member, IEEE

Abstract—Emerging visual-based driving assistance systems in-
volve time-critical and data-intensive computational tasks, such as
real-time object recognition and scene understanding. Due to the
constraints on space and power capacity, it is not feasible to install
extra computing devices on all the vehicles. To solve this problem,
different scenarios of vehicular fog computing have been proposed,
where computational tasks generated by vehicles can be sent to and
processed at fog nodes located for example at 5G cell towers or mov-
ing buses. In this paper, we propose Chameleon, a novel solution
for task offloading for visual-based assisted driving. Chameleon
takes into account the spatiotemporal variation in service demand
and supply, and provides latency and resolution aware task of-
floading strategies based on partially observable Markov decision
process (POMDP). To evaluate the effectiveness of Chameleon,
we simulate the availability of vehicular fog nodes at different
times of day based on the bus trajectories collected in Helsinki,
and use the real-world performance measurements of visual data
transmission and processing. Compared with adaptive and random
task offloading strategies, the POMDP-based offloading strategies
provided by Chameleon shortens the average service latency of task
offloading by up to 65% while increasing the average resolution
level of processed images by up to 83%.

Index Terms—Vehicular fog computing, task offloading, assisted
driving, POMDP.

I. INTRODUCTION

EMERGING visual-based assisted driving applications,
such as see-through and cooperative lane-change, involve

time-critical and data-intensive computational tasks, such as
real-time object recognition and scene understanding from im-
ages/video. Obviously, processing visual data demands for a lot
more computing power, compared with other sensor data like

Manuscript received January 23, 2019; revised April 28, 2019; accepted June
15, 2019. Date of publication July 22, 2019; date of current version September
17, 2019. This work was supported in part by the Academic of Finland under
Grant 317432 and Grant 297892, in part by the European Union’s Horizon
2020 Research, Innovation Program under Grant 815191 and Grant 825496,
in part by JSPS KAKENHI under Grant JP18KK0279, and in part by the
Nokia Center for Advanced Research and Technology Industries of Finland
Centennial Foundation. The review of this paper was coordinated by Prof. J.
Ren. (Corresponding author: Yu Xiao.)

C. Zhu and Y. Xiao are with the Department of Communications and Net-
working, Aalto University, 02150 Espoo, Finland (e-mail: chao.1.zhu@aalto.fi;
yu.xiao@aalto.fi).

Y.-H. Chiang and Y. Ji are with the Information Systems Architecture Science
Research Division, National Institute of Informatics, Tokyo 101-8430, Japan
(e-mail: yhchiang@nii.ac.jp; kei@nii.ac.jp).

A. Mehrabi and A. Ylä-Jääski are with the Department of Computer
Science, Aalto University, 02150 Espoo, Finland (e-mail: abbas.mehrabi
davoodabadi@aalto.fi; antti.yla-jaaski@aalto.fi).

Digital Object Identifier 10.1109/TVT.2019.2924911

GPS fixes and motion data. Due to the space, weight, and cost
constraints [1], computing capacity of most vehicles may not be
high enough to handle such tasks. On the other hand, offloading
these tasks to the cloud is not applicable, due to the remarkable
transmission delay.

To provide low-latency processing for assisted driving, a novel
computing paradigm called vehicular fog computing (VFC) [2]–
[6] has been proposed. Its key idea is to offload computational
tasks from the client vehicles where data is generated to fog
nodes located at for example 5G cell towers or buses with
extra computing power. In either scenario, only one-hop com-
munication is required, which greatly shortens the transmission
delay [7]. Moreover, turning moving vehicles like buses into fog
nodes enables on-demand fog computing, and reduces service
migration between fog nodes when client vehicles are traveling
along with fog nodes [8].

Due to the mobility of vehicles, the density of client vehicles
and therefore the amount of tasks generated by client vehicles
vary with time and place. Meanwhile, the availability of fog
nodes carried by vehicles, called vehicular fog nodes in this
paper, depends on the driving routes of the carriers. The spa-
tiotemporal variation in both supply and demand of computing
services adds a layer of complexity to the scheduling of task
offloading from client vehicles to fog nodes.

Depending on the availability of computing resources, in
order to complete tasks within latency constraints, a widely
adopted approach is to decrease the quality of data to be pro-
cessed with the amount of computing resources. In case of
visual-based assisted driving, the quality of data can be measured
with image resolution. More computing power is required for
processing images with higher resolution, which are expected
for providing more accurate scene understanding.

To address these challenges, we propose Chameleon, a task
offloading scheme that reduces service latency while increasing
the supported quality levels of visual data to be processed within
application specific latency constraints, taking into account the
mobility of vehicles and the impact of data quality (e.g. res-
olution) on processing delay. Chameleon is applicable to the
scenarios where both infrastructural (e.g. 5G cell towers) and
vehicular (e.g. bus-carried) fog nodes are available. It solves
the above-mentioned challenges from two perspectives. Firstly,
it analyzes the spatiotemporal variation in the workload of fog
nodes based on vehicular traffic patterns in urban areas. Sec-
ondly, it allows each client vehicle to decide whether to offload
based on the received information about fog node workload.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3537-6414
https://orcid.org/0000-0003-2850-3120
https://orcid.org/0000-0002-8758-0882
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-2069-1721
https://orcid.org/0000-0003-4364-8491
mailto:chao.1.zhu@aalto.fi
mailto:yu.xiao@aalto.fi
mailto:yhchiang@nii.ac.jp
mailto:kei@nii.ac.jp
mailto:abbas.mehrabidavoodabadi@aalto.fi
mailto:antti.yla-jaaski@aalto.fi

ZHU et al.: CHAMELEON: LATENCY AND RESOLUTION AWARE TASK OFFLOADING FOR VISUAL-BASED ASSISTED DRIVING 9039

Chameleon formulates the optimization of task offloading as
a partially observable Markov decision process (POMDP) and
solves the problem through stochastic dynamic programming
approach [9].

To evaluate the effectiveness of Chameleon, we simulate
the scenario of assisted driving in VFC using the real-world
vehicular traffic data and applications of image-based object
recognition. We take an area of 67 square kilometers in Helsinki
city center for case study. Compared with the existing solu-
tions, including adaptive and random task offloading strategies
[10], the POMDP based task offloading strategies provided by
Chameleon reduce the average service latency by up to 65% and
increase the average resolution level of processed images by up
to 83%.

The key contributions of this work are summarized below:
� We analyze real-world traffic data collected from HERE

maps [11] and discover the spatiotemporal patterns shown
in vehicular traffic density.

� We develop Chameleon, a novel task offloading scheme
that tries to process higher resolution images within appli-
cation specific latency constraints, taking into account the
spatiotemporal variation in vehicular traffic density and the
impact of image resolution on processing delay.

� We prove the effectiveness of Chameleon through large-
scale simulation, using the profiles of an image-based ob-
ject recognition application and real-world bus trajectories
as input.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III describes the system. The
variation of fog node workload is analyzed in Section IV. The
formulation of POMDP is presented in Section V. Section VI
discusses the evaluation configuration and final results. We
discuss the limitation of our work and present the future plan
in Section VII before we conclude in Section VIII.

II. RELATED WORK

A. Task Offloading

In the past few years, plenty of works [12]–[15] have been
devoted to the studies of task offloading in mobile edge/fog com-
puting. Based on the trade-off between reduced computation cost
and increased transmission cost, edge/fog nodes or sometimes
the clients decide whether to offload, where to offload and what
to offload.

Beside reducing computation latency, offloading computa-
tional tasks to edge/fog servers can reduce the energy consump-
tion of user equipments (UEs). In [12], Cao et al. divided tasks
into non-offloadable and offloadable types, and then proposed
an optimal adaptive algorithm to minimize energy consumption
subject to delay constraints. In [13], Deng et al. evaluated the
dependency of tasks and proposed a particle swarm optimizer
based algorithm for energy conservation while satisfying strict
delay requirements. These papers [12], [13] are limited to single-
UE scenarios. In [14], You et al. assumed a multi-UEs scenario
where time is divided into slots and partial tasks generated
by UEs may be offloaded according to channel quality, local
computing energy consumption, and fairness among the UEs.

Similarly, in [15], Munoz et al. provided a trade-off analysis
between the energy consumption and the execution delay for
the partial task offloading decision in the multi-UEs scenario.

The targets of all aforementioned papers on task offloading
is to minimize UE’s energy within latency constrains.Compared
with UEs like mobile devices, vehicles have relatively sufficient
power supply. Therefore, instead of energy consumption, we
take a different aspect of task offloading in assisted driving to
focus on the trade-off between service latency and quality of
data.

B. Task Offloading for Assisted Driving

The evolution of assisted driving applications comes along
with various compute-intensive and time-critical tasks, which
have limited its usages on vehicles lacking computing resources.
VFC, which enables vehicles to offload computational tasks
to fog nodes within one-hop communication, has provided a
promising approach to addressing the intensive computation
burden. A few existing works have investigated the potentials of
task offloading for assisted driving applications in VFC. In [16],
Chen et al. proposed a resource cognitive intelligent architecture
based on the learning of network contexts to manage computing
and communication resources for low-latency task offloading. In
[17], Xiao et al. reduced the service response time and improved
the efficiency of power usage in fog computing by balancing the
workload of fog nodes. However, differently from Chameleon,
none of the previous works has considered the spatiotemporal
variation in vehicular traffic density and the impact of fog node
workload on task processing latency.

III. SYSTEM DESCRIPTION

In this section, we present the related terms, and introduce the
procedure of task offloading.

A. Terminology

Fog nodes: In Chameleon, we consider two types of fog
nodes: 1) infrastructural fog nodes—the computing nodes co-
located with network infrastructures (e.g. 5G cell towers), and
2) vehicular fog nodes—the computing nodes carried by mov-
ing commercial fleets (e.g. buses) with on-board opportunistic
communication modules (e.g. Wi-Fi and DSRC).

Tasks: An assisted driving application consists of a set of
tasks. For example, assisted lane changing can be implemented
with real-time object recognition from images collected from
neighboring vehicles. In Chameleon, each task is considered as
the basic unit for offloading. One task will be offloaded as a
whole to one fog node.

Fog node workload: In this paper, we assume that all the
client vehicles run the same visual processing tasks and generate
service demand at the same speed. Thus, the workload of a fog
node is directly affected by the number of neighboring client
vehicles, which is closely related to the density of vehicle traffic
on the road. From the analysis of real-world traffic message
channel (TMC) data (including location, average speed and traf-
fic jam factor) collected from [11], we find that the variation in

9040 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

Fig. 1. System architecture.

the number of client vehicles which fall into the communication
range of a specific fog node and the corresponding workload
generated by these client vehicles changes on a weekly basis.
We will analyze the variation of the workload of fog nodes in
details in Section IV.

Observation of fog node workload: Instead of broadcasting
the workload information, we propose that after completing one
offloaded task, the fog node would send the information about its
current workload together with the processed results to the client
vehicle. The client vehicle can get a workload observation only
when a task offloading completes. Otherwise, the client vehicle
is not aware of the workload of fog node.

Time bucket: Within a certain time period, we find that the
vehicular traffic density changes regularly. We define these time
periods as time buckets.

Task utility: The utility for processing a task, which decays
along with the service latency and increases with the image
resolution. In Chameleon, task utility unifies service latency
and image resolution, and can be tuned according to application
specific requirements. For example, if the application is more
latency sensitive, the task utility will be more heavily weighted
in favor of service latency, and vice versa.

B. Process of Chameleon

In vehicular network, frequent communication with a single
point or central controller equipped on a specific fog node may
not be feasible due to the high mobility of vehicles. Therefore,
we design a distributed task offloading scheme, where each
client vehicle makes the task offloading strategy by itself. Fig. 1
illustrates the procedure of task offloading in Chameleon. As-
sume that tasks are generated continuously with a fixed arrival
rate. Accordingly, a time bucket can be equally divided into a
sequence of time slots. We assume that the variation in the fog
node workload in a specific time bucket evolves as a Markov
chain. We record the workload state of the fog node in each
time slot and use a probability transition matrix to describe
the transition of the Markov chain from Sn to Sn+1, where
Sn denotes the workload state of fog node at time slot n. The
workload probability transition matrix is updated on a daily or
weekly basis. In Chameleon, we aim at finding a sequence of

task offloading actions to maximize the cumulative task utility
during each time bucket. The whole process consists of 4 steps
as shown below.
� Fog node selection: In the initial stage, a client vehicle

needs to figure out which fog nodes are located within its
communication range. It broadcasts one-hop probe mes-
sages and collects responding messages from fog nodes.
The responding messages contain the information about
the location and the workload probability transition matrix
of fog nodes in current time bucket. According to the
responding messages, the client vehicle can choose one fog
node for offloading. In this paper, we just adopt a simple
fog node selection scheme, in which the client vehicle
would select the fog node with the shortest communication
distance for task offloading [6], [18].

� Offloading service initialization: We illustrate the process
of seeking the task offloading strategy for a certain time
bucket in Fig. 1. Assume the fog node workload is Sn and
the client vehicle receives an observation On at time slot
n. Based on On, the client vehicle selects an offloading
action An, receives a reward rn, and the fog node work-
load changes into Sn+1, where Sn+1 depends only on the
transition matrix and Sn. The client vehicle then receives
an observationOn+1, which is dependent on Sn+1 andAn.
According to the received observation, the task offloading
strategy instructs the client vehicle to offload or locally
process the task generated in each time slot. In Chameleon,
the POMDP based task offloading strategy tries to achieve
the maximum cumulative reward rn in the current time
bucket.

� Task offloading: During the task offloading procedure, the
client vehicle will continuously get workload observations
from the fog node. By mapping the observations into the
task offloading strategy, the vehicle can get a sequence of
optimal offloading decisions (i.e., selecting an appropriate
image resolution for task offloading at each time bucket).
According to the task offloading strategy and the received
workload observations, tasks generated in one time bucket
would be decided to be either processed locally or offloaded
with appropriate image resolution.

� Service interruption and termination: In vehicular net-
work, the connection between a client vehicle and a fog
node may be lost due to the mobility of client vehicles
and/or fog nodes. To avoid task interruption, fog nodes need
to monitor the quality of the communication channel and
stop task offloading service once the channel quality falls
below a certain threshold. For instance, when client vehicle
is moving out from the coverage of the connected fog node,
the fog node will inform the client vehicle to stop offloading
new tasks and the service running on the corresponding
fog node will be terminated once the remaining tasks are
processed.

IV. FOG NODE WORKLOAD

In this section, we analyze the fog node workload variation
based on the real-world datasets. Specifically, we explore the

ZHU et al.: CHAMELEON: LATENCY AND RESOLUTION AWARE TASK OFFLOADING FOR VISUAL-BASED ASSISTED DRIVING 9041

Fig. 2. Temporal variation of traffic jam in Helsinki during 3rd Sep. and 6th
Oct., 2018.

Fig. 3. Bus delays.

spatiotemporal variation in vehicular traffic density by analyzing
the TMC data, and examine the variation of the workload of
vehicular fog nodes by investigating the bus trajectories. Fur-
thermore, we explore the influence of the time buckets length
on the deviation of the vehicular traffic density.

A. Temporal Variation in Vehicle Density

To identify the temporal variation of vehicular traffic density,
we collected the TMC data in a region of 67 square kilometers
in Helsinki using Here Traffic API [11] for about one month
from 3rd Sep. to 6th Oct., 2018. The TMC data contains the
traffic reports received from vehicles, including the location,
direction, average speed of the traffic flow. From the TMC data,
we can get the jam factor, which represents the expected quality
of travel [11]. The jam factor is a number between 0 and 10. The
larger the jam factor is, the higher the vehicular traffic density is.
The temporal variation of the jam factor is illustrated in Fig. 2.
We find that the vehicle density changes dramatically within one
day but remains stable during certain time periods. For example,
suppose the length of a time period is one hour. As illustrated in
Fig. 2, the jam factor changes within the range from 2.6 to 2.8
during 11:00∼12:00, compared with a range from 2.7 to 3.3 in
the time period 12:00∼13:00. In addition, the temporal variation
of the vehicular traffic density exhibits a repetitive pattern on a
weekly basis.

B. Availability of Vehicular Fog Node

Due to the mobility of vehicular fog nodes, whether they show
time- and place-varying workload should be validated in the first
place. To identify the workload pattern of vehicular fog nodes,
we collected bus trajectories by using the open high-frequency
positioning (HFP) API provided by HSL [19] in Helsinki region

Fig. 4. Jam factor deviation under different length of time buckets.

during the same period as mentioned previously. Fig. 3a illus-
trates the variation of bus delays during one day. We can see
that the buses are most of time punctual (except early moring
and late night). We analyze the kernel density estimation (KDE)
of bus delays in Fig. 3b. From the figure, we can see that the
delays of most buses were limited to 500 seconds and the mode
of bus delays was 137 seconds. Since the buses have daily-fixed
trajectories, the supply of vehicular fog computing follows a
regular pattern according to pre-defined time tables.

C. Length of Time Bucket

To explore the impact of the length of time bucket on the
deviation of the density of vehicle traffic, we select the TMC
information in two days (03/09/2018, Monday and 09/09/2018,
Sunday) for analysis and illustrate the deviation between the
maximum and the minimum of jam factor under different length
of time buckets in Fig. 4.

The smaller the deviation, the more stable the fog node
workload within one time bucket. As shown in Fig. 4a, the
deviation between the max and the min is around 0.3 when the
length of time buckets is 30 minutes in weekdays. However,
with the refinement of the time buckets, the deviation reduces
to 0.09 when the length of time bucket drops to 5 minutes.
Furthermore, as illustrated in Fig. 4b, the length of time bucket
can be relaxed to 15 minutes to keep a similar deviation (under
0.1) for weekends. By exploring the spatiotemporal variation in
the density of vehicular traffic, the length of time buckets can be
customized for different days of each week.

V. POMDP FORMULATION

In this section, we introduce the formulation of POMDP. As
listed in Table I, we first present the notations of POMDP and
explain their coincidence to the related terms in task offloading.
Then, we give the POMDP’s recursion function and illustrate
the methodology for seeking the optimal offloading strategy for
task offloading.

A. Notations of POMDP

1) States: Assume the fog node workload in specific time
bucket evolves as anM -state Markov chainL = {l1, l2, ..., lM},
where li ∈ Z+ and with the interpretation that the greater the
index, the heavier the fog node workload l1 < l2 < · · · < lM .

2) Transition Probability: We use a probability transition
matrixR to denote the transition of states, whereRij = P{Ln =

9042 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

TABLE I
NOTATIONS AND DEFINITIONS

lj |Ln−1 = li} means that the probability of the state Ln at time
slot n is lj given that at the last time slot it is li. For brevity, we
denote the ith row of R by Ri.

Regarding the variation of the fog node workload, the work-
load probability transition matrix within a time bucket can be
learned from the historical records with Monte Carlo method.
For example, suppose the time bucket is 5 minutes and the
task arrival rate is 1 task/second. Then, the time bucket can be
divided into 300 time slots. Given a fog node, we record its
workload state at each time slot during the same day of each
week. For example, to get the workload transition matrix of
a fog node within the first time bucket on Mondays, we can
record the workload state of the fog node on every second during
00:00∼00:05 on Mondays. From a large amount of historical
records, the probability transition matrix R of the time bucket
of the fog node can be learned as following:

Rij = P{Ln = lj |Ln−1 = li} =
N(e(li to lj))

N(e(li))
, (1)

where e(li) and e(li to lj) represents the events that the workload
state of the fog node stays at li and transfers from li to lj ,
respectively. N is a function that counts how often the event
occurs.

3) Actions: For each application, we suppose K-level image
resolutions can be chosen for task offloading, which is Q =
{q1, q2, ..., qK} and {qi ∈ Z+}. Assume q1 < q2 < · · · < qK ,
with the interpretation that the greater the index, the higher the
image resolution.

Due to the limited computing capacity of client vehicles, we
assume that client vehicles can only process tasks with the lowest
level of image resolution. Thus, there are |Q|+ 1 actions for task
offloading and are denoted by A = {0} ∪Q, where An ∈ A =
qi > 0 means offloading the task with image resolution level qi

at time slot n, and An = 0 means processing the task locally
with image resolution level q1.

4) Observations: In Chameleon, we assume that there is no
extra connection between fog node and client vehicle unless a
task offloading occurs. Thus, the state of the fog node workload
at a time slot will be made available to the client vehicle at
the beginning of the next time slot, only if a task offloading
is attempted by the client vehicle at the current time slot [20].
Otherwise, the client vehicle has no idea about the fog node
workload at the current time slot. Let O = {�} ∪ L be the
observation set. We get the workload observation On at time
slot n as:

On =

{
Ln−1 if An−1 > 0

� if An−1 = 0,
(2)

where � indicates there is no workload observation.
5) Rewards: The higher the image resolution, the higher

probability of detecting small objects. We regard the rewards
of task offloading as the task utility, which decays along with
the service latency and grows along with the image resolution.
According to [21], we use a linear function to model the task
utility for offloading an image with resolution level qi when the
fog node workload state is li:

Ur(li, qi) = φa(t(li, qi) + p(li, qi)) + (1 − φ)bqi, (3)

where the task utility grows a utility per second and b utility
per resolution level. t(li, qi) and p(li, qi) denote the transmis-
sion and processing latency of task offloading, respectively.
The parameter φ ∈ [0, 1] models the latency sensitivity. If the
application is more sensitive to the service latency, φ can be
tuned to be larger, and vice versa.

For simpilification, we set the value of a to −1 and b to 1.
Additionally, the client vehicle can process the task locally by
itself. The task utility for local processing is:

Ul = −φp(�, q1) + (1 − φ)q1 (4)

B. Recursion Function and Solution

Due to the uncertainty of fog node workload state, we use an
information vector pn = 〈pn(1), pn(2), ..., pn(M)〉 to denote
the conditional probability distribution of the fog node workload
state at time slot n [9]. Given the initial information vector p0,
the past offloading decisions A0, A1, ..., An−1 and the past and
present observationsO0, O1, ..., On, the probability of staying at
state li at time slot n can be calculated by using Bayes’ formula
as following:

pn(i) = P{Ln = li|p0;An−1, . . . , A0;On, . . . , O0}, (5)

where i = 1, ...,M .
According to Eq. (2), the probability distribution at time slot

n is updated as below,

pn =

{
Ri if An−1 > 0, On = li

pn−1R if An−1 = 0.
(6)

ZHU et al.: CHAMELEON: LATENCY AND RESOLUTION AWARE TASK OFFLOADING FOR VISUAL-BASED ASSISTED DRIVING 9043

According to Eq. (3), the expected task utility at time slot nth

is described as below,

Ur(pn, An) = E[−φ(t(li, An) + p(li, An))pn + (1 − φ)An].
(7)

For simplification, we use Ul to denote the task utility for
local processing. According to Eq. (4), the expected task utility
at time slot n can be calculated as:

U(pn, An) =

{
Ur(pn, An) if An > 0,

Ul if An = 0.
(8)

We use δ = {A0, A1, ..., Ai, ...} and δ∗ = {A∗
0, A

∗
1, ..., A

∗
i ,

...} to denote an arbitrary task offloading strategy and the optimal
one, respectively. According to [9], the maximum of expected
cumulative discounted task utility under optimal offloading strat-
egy δ∗ can be calculated as:

V(p) =
∞∑

n=0

[γnU(pn, An)|p0, δ
∗], (9)

wherep0 is an initial probability distribution onL and γ ∈ (0, 1)
is a discount factor weighing present costs more heavily than
future costs.

We useΔ = {δ} to denote the set of task offloading strategies.
The optimal task offloading strategy δ∗ can be calculated as:

δ∗ = argmax
δ∈Δ

∞∑
n=0

[γnU(pn, An)|p0, δ]. (10)

According to [20], the problem of seeking optimal task of-
floading strategy can be formulated as a POMDP. For an infinite
horizon optimization problem, the recursion function of the
maximum accumulative discounted task utility is given as [9],
[20]:

V(p) = max{Ul + γV(pR),

max
A∈Q

{Ur(p, A)}+ γ
∑
j∈L

V(Rj)p(j)}. (11)

According to [20], we obtain the stationary and time-invariant
optimal task offloading strategy by utilizing incremental pruning
[22].

VI. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of Chameleon.
We first investigate the profiles of an image-based object recog-
nition application, and see how image resolution influences the
transmission and processing latency in case of task offloading.
Then, we give the simulation settings regarding the real-world
TMC data and bus trajectories, and observe the temporal varia-
tion in the task offloading service demand and supply. Finally,
we illustrate the achieved performance of the POMDP based
offloading strategies, and compare it with two existing task
offloading strategies.

Fig. 5. Experiments of image transmitting and processing.

A. Application Profiling

1) Transmission Latency: To profile the transmission latency
in task offloading, we implement an image transmitting applica-
tion, where a client vehicle is continuously transmitting images
to a fog node. As shown in Fig. 5a, we parked a vehicle in the
center of an open-parking ground and let it act as a fog node.
Meanwhile, we drive another vehicle through the open-parking
ground in both directions. While the client vehicle is moving,
images with different resolutions are being transmitted from var-
ious communication distances. The length of the open-parking
ground is about 300 m and the transmission latency is recorded
every 20 m. Due to the limitation of the site, the speed of the
client vehicle is very low, which is under 2.5 m/s. We place a
laptop with Airport Extreme wireless card in each vehicle and
install an 802.11ac router Huawei b618 on the top of the fog
node.

To evaluate the impact of frame rate on the transmission la-
tency, we fix the image resolution to 720p and select 3 frame rates
for experiments, which are 5, 10 and 20 image/s, respectively.
As shown in Fig. 5b, the transmission latency increases with the
extension of communication distance. When the communication
distance exceeds 120 m, we cannot measure the transmission
latency, due to the lost of connection. By comparing the trans-
mission latency of different frame rates, we can see that the frame
rate does not have an obvious impact on transmission latency due
to the large bandwidth of 802.11 ac radio access technology.

To further evaluate the impact of image resolution, two image
resolutions (i.e., 360p and 720p) are selected for transmitting
and the frame rate is fixed to 5 image/s. As shown in Fig. 5c,
with the increase of communication distance, the transmission
latency of 360p images stays stable at a certain level (less than
25 ms) while that of 720p images increases rapidly (from 20 ms
to 65 ms). In VFC scenario, it is hard to predict the variation in
communication distance between two vehicles. For reliability

9044 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

concern, we set the transmission latency of images with 360p
resolution to 25 ms and that of images with 720p resolution to
65 ms over 802.11 ac radio access technology.

According to [7], the average units per transaction (UPT) of
LAA (License Assisted Access) standards of 5G radio access
technologies can achieve 100mbps within 90 m coverage radius.
Accordingly, for infrastructural fog nodes with 5G radio access
technology, we set the transmission latency of 360p images (with
125 KB datasize) to 10 ms and that of 720p images (with 250 KB
datasize) to 20 ms, respectively.

2) Processing Latency: To profile the processing latency of
the images under different levels of fog node workload, we use
a real-time object detection application – YOLO [23] for image
processing. We assume the computing devices equipped on the
client vehicles are kind of computers with normal GPU cards and
those on the fog nodes are kind of GPU servers. We collected
1000 driving-scene images with 360p and 720p resolution from
a dash-cam and ran YOLO [23] on a Linux-OS desktop (with
Quadro K2200 CPU, 4 GB memory) and a GPU server (NVIDIA
Corporation GV100, 16 GB memory) respectively, to recognize
the objects in the images. Due to the memory limitation, up to 5
YOLO processes on the GPU servers and only 1 YOLO process
on the desktop can be simultaneously operated. According to
Fig. 5d, the processing latency of the image processing in the
fog node outperforms that in the client vehicle for both 360p and
720p images. However, when the fog node workload is heavy
(more than 5 processes), the new coming task needs to wait
for the access to GPU memory until the YOLO processes being
processed are completed. Regarding the specification of assisted
driving applications, suppose that the service latency cannot
exceed 200 ms [24]. According to Fig. 5c and Fig. 5d, each
fog node is restricted to have maximum 10 connections to client
vehicles in parallel. Because in this case, the worst situation is
that one task with 720p image is offloaded to the fog node when
there are already 5 tasks using the fog node memory. Then the
service latency of that task is the summation of the delay for
transimitting, waiting for GPU memory access and processing,
which is 60 + 65 + 65 = 190 ms (the worst case is that one of
the tasks in the GPU memory is with 720p image).

We define two states of fog node workload, which are Busy
and Idle to denote whether the fog node GPU memory is fully
occupied or not. For simplification, we use the set of L = {0, 1}
to denote the two states, respectively. According to Fig. 5d, we
set the workload state to 1 when there are more than 5 client
vehicles connected to a fog node. Otherwise, we suppose the fog
node workload state is 0. For a task with 360p image, we set the
processing latency of the task in the client vehicle to 75 ms and
that in the fog node to 25 ms when its workload state is 0. When
the fog node workload state is 1, the new coming task needs
to wait for at most 65 ms for the GPU memory access. Thus, it
takes 90 ms for the fog node to process the task with 360p image
and 130 ms to process the task with 720p image. As illustrated
in the Fig. 5d, it takes more than 280 ms for the client vehicle to
process one task with 720p image, which is intolerable for the
assisted driving applications. Thus, we just consider three kinds
of task offloading actions, which are processing task locally
with 360p image and offloading task with 360p image and 720p

TABLE II
IMAGE TRANSMISSION AND PROCESSING LATENCY

Fig. 6. Visualization of fog nodes. Each color represents the traces of a specific
fog node. However, due to the limitation of color palette, colors may not be
distinguished from each other.

image respectively, and use set A = {0, 1, 2} to denote them.
We summarize the application profiles in Table II.

B. Simulation Scenario

1) Area and Time: To evaluate the impact of the temporal
features of vehicular traffic, we select an area of 1 square
kilometers in Helsinki region. The latitude of that area ranges
from 24◦53′16′′ to 24◦54′25′′, while the longitude ranges from
60◦12′16′′ to 60◦12′49′′. According to Fig. 4 and Fig. 2, we set
the length of time bucket to 5 minutes and select two time buckets
to represent the time periods with high and low vehicular traffic
density as following.

* Time Bucket I: 08 : 00 ∼ 08 : 05, September 17, 2018
* Time Bucket II: 20 : 00 ∼ 20 : 05, September 17, 2018
We collect the bus trajectories and TMC data within the area

in the above two time buckets.
2) Fog Nodes and Client Vehicles: We visualize the bus

trajectories in the selected area in two time buckets in Fig. 6. The
route of each bus is represented by a specific color. As shown
in the Fig. 6, the number of buses appeared in Time Bucket I is
larger. In details, 25 buses appeared in the selected area in the
first time bucket, compared with 17 buses in the latter. Besides
the vehicular fog nodes, ten 5G cell towers are evenly placed in
the selected area in the simulation and act as the infrastructural
fog nodes. We suppose vehicular and infrastructural fog nodes
utilize 802.11ac and 5G access technologies for communication,
respectively. According to the measurements mentioned previ-
ously in Section VI-A, we set the radial coverage of vehicular
fog nodes to 120 m and that of infrastructural fog nodes to
90 m [7].

From the analysis of the TMC data, we get that the average
speed of vehicular traffic flows in these two time buckets are
28 km/h and 36 km/h, respectively. From the correlation between

ZHU et al.: CHAMELEON: LATENCY AND RESOLUTION AWARE TASK OFFLOADING FOR VISUAL-BASED ASSISTED DRIVING 9045

Fig. 7. Service time of different types of fog nodes.

the average speed and vehicular traffic density learned from
real-world traffic flows [25], 40% and 15% of the road are
occupied by vehicles in the Time Bucket I and II, respectively.
Suppose the total length of road in that area is about 3 km and
the length covered by a vehicle is about 5m, the number of
vehicles appeared in Time Bucket I and II can be calculated
accordingly, which are 240 and 90, respectively. We generate
240 and 90 vehicle routes in these two time buckets in SUMO
[26], following the method used in [27]. These vehicles act as
client vehicles and continuously generate images for processing
with the rate of 5 images/s.

3) Fog Node Selection: In Chameleon, we adopt the fog node
selection method presented in [8]. This method assigns the fog
node which is closest to the client vehicle for task offloading. As
introduced in Section III, the service from the fog node would
be interrupted if the client vehicle is not in its coverage. We
define the service time as the duration from a connection is
established until the connection is disconnected. We illustrate
the KDE of the service time of fog nodes in Fig. 7. From Fig. 7a
and Fig. 7b, we can see that the service time of vehicular fog
nodes is longer than that of the infrastructural fog nodes in both
two time buckets. This is because compared with infrastructural
fog nodes, vehicular fog nodes could travel along with client
vehicles. Furthermore, the service time of the infrastructural
fog nodes is shorter in Time Bucket II compared with that in
Time Bucket I. This is because when vehicular traffic becomes
more congested, the average speed of vehicular traffic flows will
decrease and client vehicles will stay longer in the coverage of
the infrastructural fog nodes.

C. POMDP-Based Offloading Strategy

The larger the value of φ, the higher the sensitivity to latency.
Notably, the POMDP based task offloading strategies achieve a
same performance with φ ∈ [0, 0.8]. To analyze the POMDP
based strategies in details, we set the latency sensitivity pa-
rameter to 0.95. Fig. 8 illustrates the KDE of task offloading
actions with infrastructural and vehicular fog nodes in the two
time buckets. From Fig. 8a, we can see that the client vehicles
tend to offload processing tasks of 720p images if the fog node
is an infrastructural one, process images locally or offload but
rather 360p images if the fog node is a vehicular one. This is
because compared with Wi-Fi, 5G access radios equipped on in-
frastructural fog nodes are more advanced and the transmission
latency of task offloading would be greatly reduced. Compared

Fig. 8. Distribution of task offloading actions with different types of fog nodes
when φ = 0.95.

Fig. 9. Maximum cumulative task utility vs. WVP matrix.

with Fig. 8a and Fig. 8b, we can see that client vehicles are
more likely to process tasks locally when the vehicular traffic
becomes congested. This is because local processing would
avoid increasing the workload of the fog nodes.

By Monto-Carlo method, we can calculate the probability
transition matrix of each fog nodes in each time bucket. To
illustrate the internal principle of POMDP offloading strategy,
we select one infrastructural fog node located in the center of
the area (24◦53′48′′, 60◦12′30′′) and present their probability
transition matrices, RI and RII , in time bucket I and II as
following:

RI =

[
0.967 0.033

0.034 0.966

]
, RII =

[
0.999 0.001

0.999 0.001

]
.

Compared with the first rows of two matrices, we can see that
there is a high probability that the fog node workload would keep
at state 0 at the next time slot if the fog node workload is state 0
at current time slot in Time Bucket II. However, the probability
of the fog node workload state changing from 0 to 0 in Time
Bucket I is lower than that in Time Bucket II. This is because
the density of vehicular traffic is higher in Time Bucket I and
the state of fog node workload would be more likely change to
1 in the future.

Fig. 9 illustrates the expected cumulative task utility in the two
time buckets with φ = 0.9. Compared with Fig. 9a and Fig. 9b,
we can see that the expected cumulative task utility in Time
Bucket II is larger than that in Time Bucket I. This is because the
service demand of task offloading is lower in Time Bucket II and
therefore the tasks have shorter processing time. Besides, Fig. 9
shows the optimal task offloading strategies in these two time
buckets. The client vehicle would estimate the state probability
distribution of the fog node workload based on the workload

9046 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

Fig. 10. Performance of various offloading strategies.

probability transition matrix and get the optimal task offloading
actions by mapping the received workload observations to the
task offloading strategies. For example, in Time Bucket I, if the
initial state probability distribution of the fog node workload
p0 = 〈0.8, 0.2〉, which means the probability of the fog node
workload stays at state 0 is 0.8 and state 1 is 0.2, then the best
task offloading action for the client vehicle is to offload the task
with 720p image (Action: 2) to the infrastructural fog node.
Notably, the same task offloading action will be chosen for the
client vehicle when the probability of the fog node workload falls
into the range from 0.75 to 0.82 (described as S9 in Figure 9a).

D. Comparison Between Task Offloading Strategies

For comparison, we implement two reference task offloading
strategies – Random and Adaptive [10]. With Random strategy,
the action of each task offloading are randomly chosen from the
set A = {0, 1, 2}, which means the task would be randomly
decided to be processed locally or offloaded with a random
resolution image without the awareness of fog node workload.
According to our knowledge, the Adaptive strategy is the best
solution that we can adopt for the comparison in our system
model, which uses a probability distribution method to scale
the offloading actions linearly with the number of processes
running on the fog node. For instance, if the maximum number
of tasks that can be simutaneously processed on a fog node is
10 and the number of tasks run on the fog node is 1, then the
probabilities that the client vehicle offloads the task with 360p
and 720p resolution are 10% and 90%, respectively.

Thus, we tune the value of latency sensitivity parameter φ
from 0.8 to 1 to generate different POMDP based task offloading
strategies. Fig. 10a illustrates the performance of different task
offloading strategies in Time Bucket I. From the figure, we can
see that the tasks achieve the highest image resolution approach
with the POMDP offloading strategy withφ = 0.8. More specif-
ically, the POMDP based task offloading strategy with φ = 0.8
increases the average resolution level of processed images by
66% and 83%, as compared with Random and Adaptive task
offloading strategies, respectively. When φ = 1, tasks would
be offloaded without taking into account the image resolution
benefits. In this case, the POMDP based task offloading strategy
shortens the average latency by 65% and 58%, as compared with
Random and Adaptive task offloading strategies, respectively.
Meanwhile, the average resolution level of processed images
decreases by 34% and 30%. This indicates that the POMDP
based task offloading strategies can reduce the service latency

Fig. 11. Distribution of task offloading actions with different task offloading
strategies.

or increase the resolution level of image processed depending on
the specific demand of application. Moreover, the POMDP based
task offloading strategy improves both latency and resolution
metrics in case φ = 0.9. Specifically, at this point, it reduces
the average service latency by 14% and 10% while increasing
the average resolution level of processed images by 2% and 17%
compared with Random and Adaptive task offloading strategies,
respectively. As shown in Fig. 10b, in Time Bucket II, the
POMDP based task offloading strategies increase the average
resolution level of processed images by 60% with φ = 0.8 and
shorten the average latency by 52% with φ = 1 compared with
Random task offloading strategy, which are less than the achieve-
ments in Time Bucket I. This indicates that the POMDP based
task offloading strategies achieve better performance in reducing
service latency and increasing resolution level of processed
images when the vehicular traffic is more dense.

Fig. 11 compares the KDE of task offloading actions between
different values ofφ. We can see that when the sensitivity param-
eter is less than 0.85, the tasks are more likely to be offloaded
with resolution set to 720p. With the increase of the latency
sensitivity parameter, the tasks are more likely to be offloaded
with resolution set to 360p. According to Fig. 11a and Fig. 11b,
we can see that whenφ = 0.9 orφ = 0.95, more tasks with 720p
images are offloaded in Time Bucket II. This is because when
the vehicular traffic is not congested, more computing resources
of the fog nodes are available for the individual client vehicle
and the client vehicle would be more likely to offload tasks.

In summary, the POMDP based task offloading strategies
provided by Chameleon moderate the resolution level of images
for task offloading, taking into account the variation in fog
node workload. Chameleon could reduce the service latency or
increase the resolution level of processed images according to
the specific demands of assisted driving applications.

VII. LIMITATION AND FUTURE WORK

In this section, we discuss the limitation of our work and
present the future plan. In our simulation, we estimate the
workload of the fog nodes by the vehicular traffic-load and
this could cause the overestimation problem because not all
vehicles are running visual applications in real life. However,
it is hard to exactly estimate the number of client vehicles
(i.e., service demand of the assisted driving applications). In the
future work, we will study the development of assisted driving

ZHU et al.: CHAMELEON: LATENCY AND RESOLUTION AWARE TASK OFFLOADING FOR VISUAL-BASED ASSISTED DRIVING 9047

applications and build a more finer-grained model to estimate
their service demand. Besides, in this article, we treat the task as
the basic unit and assume that tasks are independent from each
other. However, in real-world assisted driving applications, the
involved tasks may have various inter-logical relationships, and
then influence the efficiency of task offloading. For the future
work, we will make more effort to explore the dependency of the
tasks and design a more efficient task offloading scheme, with
taking into account the internal complexity of assisted driving
applications.

In our experiment, we have limited the maximum number
of tasks processed simultaneously at a fog node to 5, due to
the memory capacity of the server. It is interesting to further
confirm the performance of our system through experiment with
servers having larger memory capacity. Furthermore, our task
utility objective function takes into account only the latency and
resolution parameters, while it provides the platform to integrate
further performance criteria, such as mobility-aware caching
into the optimization problem and to make more sophisticated
task offloading models. It is also worth mentioning that some
learning algorithms can be designed to predict the workload of
the fog nodes in some particular regions (with known mobility
trajectories) and hence alleviates the explicit communication
between the vehicle and server before the task offloading. This
will create an autonomous task offloading system for the next
generation of vehicular networking.

From the system scalability point of view, the client vehicle
makes the task offloading decisions by solving the local task
utility optimization problem at the beginning of every time
bucket after receiving the workload probability transition matrix
of the selected fog node. Since in practice the workload status
of the fog nodes at all time buckets are not known beforehand,
the proposed task offloading approach makes the task offloading
decisions in online manner which makes it suitable for practical
implementation at large-scale VFC environments.

In reality, the assisted driving applications and vehicle man-
ufacturers may prefer everything computed locally rather than
offloading computation to edge. However, with the data aggrega-
tion and analytics in edge, the assisted driving applications will
achieve collective perception for safety driving by offloading
tasks to the fog nodes. Furthermore, with the data fusion in the
backhaul network, the fog nodes connected to multiple networks
can perceive the traffic situation in a larger range, which will
benefit the route navigation applications involving traveling time
prediction and congestion avoidance. In the future work, we will
develop an information sharing and system coordination mech-
anism to enable “crowdsourcing” to assist individual vehicle to
gain better understanding of complex traffic situation and driving
environments.

In the proposed system, only the processing capability of
the fog nodes is utilized, while, the edge caching [28] at the
fog node can be also leveraged in order to further reduce the
operational latency for the client vehicles. However, the main
challenging issue would be designing efficient caching strategy
that can intelligently recognize the similar processing tasks and
cache them for the future access of the vehicles. Furthermore,
the collaborative caching and processing among the neighboring

fog nodes is expected to further improve the system perfor-
mance although careful investigation is required to validate this
expectation.

From the communication perspectives, the vehicular fog
nodes in our system are assumed to be moving buses which
commute on specified trajectories. As an alternative solution
particularly in situations when there are no regular buses avail-
able in the vicinity of cars, the moving drones can act as the
mobile fog node which establish the communication between
the vehicles on the road and the cloud server. In order to ensure
the autonomous and continuous task offloading service, the sys-
tem design for drones should take into account the limitation of
high energy consumption. Recent research proposes RF/wireless
energy transfer or the renewable energy harvesting as the promis-
ing solutions to overcome the energy consumption limitation
of the drones in 5G/Beyond 5G wireless cellular networks
[29], [30].

VIII. CONCLUSION

In this paper, we propose Chameleon, a latency and resolution
aware task offloading scheme for assisted driving applications.
It aims at finding task offloading strategies to reduce service
latency and increase the resolution level of processed images ac-
cording to the specific demands of assisted driving applications.
We approach the problem of seeking the optimal task offloading
strategy via formulation of a POMDP, taking into account the
variation of fog node workload, and solve it through stochastic
dynamic programming technologies. Compared with previous
works, our solution reduces service latency by up to 65% and
increases the average resolution level of processed image by up
to 83%.

REFERENCES

[1] S. Li et al., “Joint admission control and resource allocation in edge
computing for Internet of Things,” IEEE Netw., vol. 32, no. 1, pp. 72–79,
Jan. 2018.

[2] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog
computing: A viewpoint of vehicles as the infrastructures,” IEEE Trans.
Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

[3] M. Satyanarayanan, “Edge computing for situational awareness,” in Proc.
IEEE Int. Symp. Local Metrop. Area Netw., Jun. 2017, pp. 1–6.

[4] J. Feng, Z. Liu, C. Wu, and Y. Ji, “AVE: Autonomous vehicular edge
computing framework with ACO-based scheduling,” IEEE Trans. Veh.
Technol., vol. 66, no. 12, pp. 10660–10675, Jun. 2017.

[5] Y. Xiao and C. Zhu, “Vehicular fog computing: Vision and challenges,”
in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops, Mar.
2017, pp. 6–9.

[6] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylä-Jääski, “Fog following me:
Latency and quality balanced task allocation in vehicular fog computing,”
in Proc. Annu. IEEE Int. Conf. Sens., Commun., Netw., Jun. 2018, pp. 1–9.

[7] “Five trends to small cell 2020,” Oct. 2018. [Online]. Available: http://
www-file.huawei.com/-/media/CORPORATE/PDF/News/Five-Trends-
To-Small-Cell-2020-en.pdf

[8] C. Zhu, G. Pastor, Y. Xiao, and A. Ylä-Jääski, “Vehicular fog computing
for video crowdsourcing: Applications, feasibility, and challenges,” IEEE
Commun. Mag., vol. 56, no. 10, pp. 58–63, Oct. 2018.

[9] G. E. Monahan, “State-of-the-art—A survey of partially observable
Markov decision processes: Theory, models, and algorithms,” Manage.
Sci., vol. 28, no. 1, pp. 1–16, Jan. 1982.

[10] C. Huang, Y. P. Fallah, R. Sengupta, and H. Krishnan, “Adaptive interve-
hicle communication control for cooperative safety systems,” IEEE Netw.,
vol. 24, no. 1, pp. 6–13, Jan./Feb. 2010.

http://www-file.huawei.com/-/media/CORPORATE/PDF/News/Five-Trends-To-Small-Cell-2020-en.pdf

9048 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 9, SEPTEMBER 2019

[11] “Here API,” Sep. 2018. [Online]. Available: https://developer.here.com/
documentation/traffic

[12] S. Cao, X. Tao, Y. Hou, and Q. Cui, “An energy-optimal offloading
algorithm of mobile computing based on HetNets,” in Proc. IEEE Int.
Conf. Connected Veh. Expo, Oct. 2015, pp. 254–258.

[13] M. Deng, H. Tian, and B. Fan, “Fine-granularity based application of-
floading policy in cloud-enhanced small cell networks,” in Proc. IEEE
Int. Conf. Commun. Workshops, May 2016, pp. 638–643.

[14] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[15] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Joint allocation of radio
and computational resources in wireless application offloading,” in Proc.
Future Netw. Mobile Summit, Oct. 2013, pp. 1–10.

[16] M. Chen, Y. Qian, Y. Hao, Y. Li, and J. Song, “Data-driven computing and
caching in 5G networks: Architecture and delay analysis,” IEEE Wireless
Commun., vol. 25, no. 1, pp. 70–75, Feb. 2018.

[17] Y. Xiao and M. Krunz, “Distributed optimization for energy-efficient fog
computing in the tactile Internet,” IEEE J. Sel. Areas Commun., vol. 36,
no. 11, pp. 2390–2400, Nov. 2018.

[18] C. Zhu et al., “Folo: Latency and quality optimized task allocation in
vehicular fog computing,” IEEE Internet Things J., vol. 6, no. 3, pp. 4150–
4161, Jun. 2019.

[19] “HSL API,” Sep. 2018. [Online]. Available: https://digitransit.fi/en/
developers/apis/4-realtime-api/vehicle-positions

[20] D. Zhang and K. M. Wasserman, “Transmission schemes for time-varying
wireless channels with partial state observations,” in Proc. 21st Annu. Joint
Conf. IEEE Comput. Commun. Soc., Jun. 2002, pp. 467–476.

[21] N. Wang and J. Wu, “Opportunistic WiFi offloading in a vehicular envi-
ronment: Waiting or downloading now?” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[22] A. R. Cassandra, M. L. Littman, and N. L. Zhang, “Incremental pruning:
A simple, fast, exact method for partially observable Markov decision
processes,” in Proc. Thirteenth Conf. Uncertainty Artif. Intell., Morgan
Kaufmann Publishers Inc., 1997, pp. 54–61.

[23] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 7263–7271.

[24] A. Costa et al., “Evaluating WiMAX for vehicular communication appli-
cations,” in Proc. IEEE Int. Conf. Emerg. Technol. Factory Autom., Sep.
2008, pp. 1185–1188.

[25] R. Sen, A. Cross, A. Vashistha, V. N. Padmanabhan, E. Cutrell, and
W. Thies, “Accurate speed and density measurement for road traffic in
India,” in Proc. 3rd ACM Symp. Comput. Develop., Jan. 2013, Art. no. 14.

[26] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO—Simulation of urban mobility,” Int.
J. Adv. Syst. Meas., vol. 5, no. 3/4, pp. 128–138, Dec. 2012.

[27] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO traffic (LuST)
scenario: 24 hours of mobility for vehicular networking research,” in Proc.
IEEE Veh. Netw. Conf., Dec. 2015, pp. 1–8.

[28] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing
in vehicle networks: A deep reinforcement learning,” IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10190–10203, Nov. 2018.

[29] T. Long, M. Ozger, O. Cetinkaya, and O. B. Akan, “Energy neutral Internet
of Drones,” IEEE Commun. Mag., vol. 56, no. 1, pp. 22–28, Jan. 2018.

[30] S. Sekander, H. Tabassum, and E. Hossain, “Multi-tier drone architecture
for 5G/B5G cellular networks: Challenges, trends, and prospects,” IEEE
Commun. Mag., vol. 56, no. 3, pp. 96–103, Mar. 2018.

Chao Zhu received the B.E. degree in computer
science and technology from the Beijing University
of Posts and Telecommunications, Beijing, China, in
2012, and the M.S. degree in computer technology
from Tsinghua University, Beijing, China, in 2016.
He is currently working toward the Ph.D. degree
with the Department of Computer Science and the
Department of Communications and Networking,
Aalto University, Espoo, Finland. His research in-
terests include mobile edge computing and vehicular
networking.

Yi-Han Chiang received the Ph.D. degree from the
Graduate Institute of Communication Engineering,
National Taiwan University, Taipei, Taiwan, in 2017.
He is currently a Project Assistant Professor with
the National Institute of Informatics, Tokyo, Japan.
His research interests include network greenness,
wireless content caching, mobile edge computing,
multi-armed bandits, and online and approximation
algorithms.

Abbas Mehrabi received the B.Sc. degree in com-
puter engineering from the Shahid Bahonar Univer-
sity of Kerman, Kerman, Iran, in 2008, the M.Sc.
degree in computer engineering from Azad Univer-
sity, South Tehran, Iran, in 2010, and the Ph.D. de-
gree from the School of Electrical Engineering and
Computer Science, Gwangju Institute of Science and
Technology, Gwangju, South Korea, in 2017. He is
currently a Postdoctoral Researcher with the Depart-
ment of Computer Science, Aalto University, Espoo,
Finland. His research interests include quality of ex-

perience optimization and resource allocation in mobile edge computing envi-
ronments, Internet of things, vehicular fog computing, and scheduling/planning
problems in smart grids.

Yu Xiao received the doctoral degree in computer
science from Aalto University, Espoo, Finland, in
2012. She is currently an Assistant Professor with
the Department of Communications and Networking,
Aalto University. Her current research interests in-
clude mobile crowdsensing, augmented reality, and
edge computing.

Antti Ylä-jääski received the Ph.D. degree from ETH
Zurich, Zürich, Switzerland, in 1993. He has been a
Professor of telecommunications software with the
Department of Computer Science, Aalto University,
Espoo, Finland, since 2004. His current research
interests include green ICT, mobile computing, and
service architecture.

Yusheng Ji (M’94–SM’18) received the B.E., M.E.,
and D.E. degrees in electrical engineering from The
University of Tokyo, Tokyo, Japan. She joined the
National Center for Science Information Systems,
Tokyo, Japan, in 1990. She is currently a Professor
with the National Institute of Informatics, Tokyo,
Japan, and Sokendai (The Graduate University for
Advanced Studies), Hayama, Japan. Her research
interests include network architecture, resource man-
agement in wireless networks, and mobile computing.
She has served as a Board Member of Trustees of the

Institute of Electronics, Information and Communication Engineers (IEICE), a
Steering Committee Member of Quality Aware Internet SIG, an Expert Member
of IEICE Technical Committees on Communication Quality, a Symposium
Co-Chair of the IEEE GLOBECOM in 2012 and 2014, a Track Chair of IEEE
Vehicular Technology Conference 2016 Fall and 2017 Fall, an Associate Editor
for IEICE Transactions and IPSJ Journal. She is an Expert Member of the IEICE
Technical Committees on Internet Architecture, a Steering Committee Member
of Internet and Operation Technologies SIG of IPSJ, an Editor for the IEEE
TRANSACTIONS OF VEHICULAR TECHNOLOGY, and a TPC member for IEEE
International Conference on Computer Communications, IEEE International
Conference on Communications, IEEE Global Communications Conference,
IEEE Wireless Communications and Networking Conference, etc.

https://developer.here.com/documentation/traffic
https://digitransit.fi/en/developers/apis/4-realtime-api/vehicle-positions

