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Abstract

Background: In transcranial magnetic stimulation (TMS), the stimula-
tion-coil current is typically increased from 0 to over 5000A in less than
100 µs. At the peak current, the energy stored in the magnetic field is
over 300 J. Thus, the average power during a pulse exceeds 3MW; the
stimulator needs to be built from high-power electronics. The power re-
quirements often limit the duration and frequency of repetitive TMS, for
example, via coil heating.

Objective: We introduce a method for finding the minimum-energy
solution for a TMS coil with given focality constraints.

Methods: This optimization is performed by using a spherically sym-
metric head model and by expressing the coil as a continuous surface
current density, which is eventually discretized to form the coil windings.
For the optimization, we defined TMS focality separately for the directions
parallel and perpendicular to the maximum induced electric field.

Results: The computational model used for optimization was verified
by manufacturing a prototype coil and measuring the electric field it in-
duces in a spherically symmetric conductor. The optimized coil design
requires significantly less power than existing TMS coil designs (a 73%
reduction compared to an existing TMS coil with similar focality).

Conclusion: The described method allows for more-efficient, more-
focal TMS coils, which may reduce coil heating and the coil click.

1



1 Introduction
TMS coil focality and energy efficiency are intimately coupled; more energy
is needed for producing a more focal stimulus. In this paper, we introduce a
method for designing transcranial magnetic stimulation (TMS) coils that min-
imize the energy required for a given-focality pulse and evaluate whether it is
reasonable to make the induced electric field (E-field) more focal than that of
present figure-of-eight coils. In order to reach this goal, we will first introduce an
efficient way to calculate the induced electric field inside the head. This method
is based on continuous surface currents, vector-valued spherical harmonics, and
the spherically symmetric head model. As will be evident, this approach is
suitable for finding minimum-energy coils for any desired stimulus.

The »industrial standard» for focal TMS is a hand-held figure-of-eight coil.
With navigated TMS, the positional accuracy of the stimulus site for such a
system has been estimated to be 6 mm root mean square [1]. This figure includes
all error sources, such as imperfections in the subject-specific magnetic resonance
image giving the geometry of the head and approximations in the induced E-
field computation model. This positional uncertainty is significantly smaller
than the diameter of the region of high E-field for typical TMS coils [2].

During the first quarter-century of TMS, several coil designs have been in-
troduced. The most notable of these are: round coil (the first design to exist,
inducing non-focal stimulation, Ref. [3]), figure-of-eight coil (the standard so-
lution for focal stimulation, two circular coils with counter-circulating currents
next to each other with a focal point between these two circular coils, Ref. [4]),
slinky coil (where multiple circular coils are joined into a fan-like assembly above
the target, induced electric field similar to that of a figure-of-eight coil but with
reduced side maximums, Ref. [5]), four-leaf coil (two figure-of-eight coils com-
bined, suitable for short-range focal stimulation, Ref. [6]), and Hesed coil (a
complicated coil geometry including radial coil elements designed for deep brain
stimulus, Ref. [7]). In this paper, we do not use prior knowledge on the opti-
mal coil design, rather we let the minimum-energy condition determine the coil
geometry.

There exist several methods for calculating the induced electric field of a
TMS coil. These include methods that are based on the boundary element
method (BEM) and the finite element method (FEM). These methods are es-
sentially numerical solvers for the Maxwell’s equations and offer almost no in-
sight to the general properties of the induced electric field. However, they allow
for accurate modeling of the head. In addition to this kind of methods, there
are TMS-specific methods, like the one by Eaton [8], where the induced electric
field of a coil is calculated as a line integral of the coil current using spherical-
harmonic series. The method introduced in this paper gives the induced electric
field as a weighted sum of coil current distribution components. This solution
shows, for example, that for an arbitrary TMS coil the E-field pattern is a kind
of a mirror image (with a minus sign) of the coil current distribution, with the
higher spatial frequencies being attenuated faster as a function of depth than
the lower spatial frequencies.
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2 Computation of the induced E-field
In this section, we derive an expression for the E-field induced by an arbitrary
time-dependent spherical surface current density in the spherically symmetric
head model [9]. To obtain this, we first derive an expression for the magnetic
field B due to a surface current density; for coil optimization purposes, we
will also evaluate the energy stored in such a field. Appendix A introduces
the necessary mathematical tools for this section, including the magnetic scalar
potential, V ; the real spherical harmonics, Y ; and the real vector spherical
harmonics, Y . Section 2.4 justifies using a single-spherical-current-layer model
in solving the TMS-coil optimization problem.

2.1 The magnetic field of a spherical current distribution
Let us consider a divergence-free surface current density K(θ, φ) on a spherical
shell with radius R. Because the real vector spherical harmonics of Eq. (A.10)
form a complete orthogonal set for divergence-free vector fields on a spherical
shell, the general spherical surface current distribution is of the form

K(θ, φ) =

∞∑
l=1

l∑
m=−l

ilmY m
l,l(θ, φ)/R , (1)

where the constants ilm define the amplitudes of the different current-density
modes. In this case, the magnetic scalar potential from Eq. (A.6) is finite
everywhere. Thus, inside the spherical shell, we have

Vint(r, θ, φ) =

∞∑
l=0

l∑
m=−l

almr
lY ml (θ, φ) , (2)

and, on the outside,

Vext(r, θ, φ) =

∞∑
l=0

l∑
m=−l

blmr
−(l+1)Y ml (θ, φ) . (3)

Using Eqs. (2), (A.3), and (A.11), we obtain the magnetic field inside the
spherical shell:

Bint(r, θ, φ) = −µ0∇Vint = −µ0

∞∑
l=0

l∑
m=−l

alm∇
[
rlY ml (θ, φ)

]
= −µ0

∞∑
l=0

l∑
m=−l

alm
√
l(2l + 1)rl−1Y m

l,l−1(θ, φ) . (4)

Similarly, Eqs. (2), (A.3), and (A.9) give us the magnetic field outside the spher-
ical shell:

Bext(r, θ, φ) = −µ0∇Vext = −µ0

∞∑
l=0

l∑
m=−l

blm∇
[
r−(l+1)Y ml (θ, φ)

]

= −µ0

∞∑
l=0

l∑
m=−l

blm
√

(l + 1)(2l + 1)r−(l+2)Y m
l,l+1(θ, φ) . (5)
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Combining this with the boundary condition between the internal and external
magnetic field [10],

Bext(R, θ, φ)−Bint(R, θ, φ) = µ0K(θ, φ)× er , (6)

we obtain the expression for the magnetic field:

B(r, θ, φ) = µ0

∞∑
l=1

l∑
m=−l

ilm

(−1)
√

l+1
2l+1

rl−1

Rl Y m
l,l−1(θ, φ) , r < R√

l
2l+1

Rl+1

rl+2 Y
m
l,l+1(θ, φ) , r > R

. (7)

2.2 The magnetic field energy of the spherical surface cur-
rent distribution

The energy stored in a magnetic field is

U =
1

2µ0

∫
all space

B2dV . (8)

Substituting the expression for the magnetic field, Eq. (7), into this equation
and applying the orthogonality of the spherical harmonics under angular inte-
gration (Eq. (A.12)) to remove the cross terms yields that the energy of the
magnetic field is the sum of the energies of individual spherical-harmonic cur-
rent components. This is consistent with the fact that mutual inductances are
zero for all spherical-harmonic surface-current-density modes. By carrying out
the radial integration, we obtain

U =
µ0

2

∞∑
l=1

l∑
m=−l

i2lmR

2l + 1
. (9)

2.3 Induced electric field
The electric field induced inside a spherically symmetric conductor by an exter-
nal coil can be calculated using the triangle construction [11, 12]. The construc-
tion exploits the fact that an external coil cannot induce radial currents into a
spherically symmetric conductor. Thus, when a changing magnetic field induces
an electromotive force (EMF) into a closed loop 012 (Fig. 1), the induced radial
electric field is zero, and thus∮

∂012

E · dl =

∫ 2

1

E · dl . (10)

The EMF can be calculated using the third Maxwell equation—Faraday’s law
of induction—

∇×E = −∂Bint

∂t
, (11)

which equals ∮
∂012

E · dl = −
∫
012

∂Bint

∂t
· dS . (12)

Because E is a smooth function, we can solve its value as a function of
position by calculating the EMF of a triangular loop of infinitesimal width and
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0

12

Figure 1: The triangle construction.

dividing this by the distance between points 1 and 2. To get both the θ and
the φ components (the r component is zero), we have to do this twice for each
location with two perpendicular triangular loops.

Performing the integrations at the limit of narrow triangles yields the ex-
pressions for the tangential components of E. It turns out that the electric field
due to each (l,m) term in Eq. (1) can be expressed with just one real vector
spherical harmonic function, and thus

E(r, θ, φ, t) = −µ0

∞∑
l=1

l∑
m=−l

∂ilm(t)

∂t

1

2l + 1

( r
R

)l
Y m
l,l(θ, φ) . (13)

This equation shows that the induced field pattern is a kind of a mirror image
(the minus sign in Eq. (13)) of the surface current density, with the higher
spatial frequencies being attenuated faster as a function of depth than the lower
ones.

2.4 Justifying the single-spherical-current-layer model
Until now, we have not fixed the radius of the surface current density distri-
bution, R. From Eqs. (9) and (13) it is obvious that R should be as small as
possible for each spherical-harmonic component in order to achieve minimum-
energy stimulation. This is an intuitive choice, as it both maximizes the induced
electric field (Eq. (13)) and minimizes the energy (Eq. (9)) for a given current.

However, the intuition could easily be mistaken as the energy is proportional
to the square of the current. Thus, it might actually be beneficial to move a
small proportion of the current into a more distant spherical shell. Whether this
is beneficial depends on the mutual inductances between these spherical shells.

For the spherical current shells, it can be shown with calculus of varia-
tions that it is not beneficial to split the current into smaller proportions (Ap-
pendix B). In Appendix B, we also show that radial currents do not introduce
anything new to the induced electric field in the spherically symmetric head
model but increase the energy stored in the field. This means that an arbi-
trary current distribution outside the head can be substituted with a tangential
current distribution requiring less energy for the same induced current pattern.
Thus, a single as-close-to-target-as-possible spherical current layer is a global
optimum among the set of all current density distributions from the inductive
energy point of view.
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3 TMS-coil optimization method
Eq. (13) gives the electric field at a point inside a spherically symmetric conduc-
tor enclosed inside the spherical current shell (i.e., at a point inside the head)
for an arbitrary surface current density specified by Eq. (1). For an arbitrary
current density with uniform pulse waveform, the electric field is

E(r, θ, φ) = −µ0
∂f(t)

∂t

∞∑
l=1

l∑
m=−l

ilm
1

2l + 1

( r
R

)l
Y m
l,l(θ, φ) , (14)

where f(t) is the waveform of the current pulse and ilm its spatial amplitude
spectrum. Combining this with the magnetic field energy from Eq. (9), we
clearly see that the electric field of the higher-order terms is more expensive
in terms of energy than that of the lower-order terms. Thus, truncating the
spherical-harmonic series should not have a significant effect on minimum-energy
solutions.1,2

3.1 Defining the focality of a stimulus
For now, we have considered a spherically symmetric head. Even though human
head is not actually globally spherically symmetric it is nearly spherical locally.
However, the symmetry does not hold for the sensitivity for stimulation. This
is because the cortex of the brain is folded into gyri and sulci and the brain
responds maximally to TMS when the induced electric field is perpendicular to
a sulcus [13, 14].

If we want to have a focal stimulus, we must minimize the area where the
induced electric field is strong. However, the direction perpendicular to the
direction of the induced electric field is more important in defining focality than
the direction parallel to the induced electric field. This is because the former
induces stimulation right next to the target area; the latter affects the other
side of the gyrus (for a stimulus perpendicular to a sulcus).

Previously, there have been multiple definitions for the focality. In Ref. [15],
Thielscher and Kammer measured the focality of a stimulus based on the surface
area at the target depth where the induced E-field exceeds a certain fraction of
the maximum induced E-field. When the threshold value is 50%, the focality of
a typical figure-of-eight coil is 25–35 cm2 (assuming a cortical radius of 70 mm).
In Ref. [2], Deng et al. defined another measure for the focality, effective surface
area,

S1/2 =
V1/2

d1/2
, (15)

where V1/2 is the volume inside the brain where the stimulus is over 50% of the
maximum and d1/2 is the maximum depth where the stimulus is over 50% of
the maximum. This metric takes into account that it is harder to have a focal
stimulus deeper in the head.

However, using the 50% boundary is not always ideal. This is because of
two things. First, for a typical stimulus strength, 50% of the stimulus maximum

1Obviously, the higher order terms include higher spatial frequencies than the lower-order
terms. Some of these are needed for more focal stimuli.

2The second power in Eq. (9) makes it beneficial to have little of some high-order compo-
nents. However, with a reasonable truncation cut-off point this difference is negligible.
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causes little activation of the cortex [16, 17]; second, for typical figure-of-eight
coils the distance from the target to the 50% boundary is 2–5 cm, much farther
than the positional accuracy. Because of this, we propose the following definition
for focality:

1. The focal region of a TMS stimulus is the area where the energy density
of the stimulation exceeds 50% of the maximum. That is, the electric field
is over 1/

√
2 ≈ 70% of the maximum.

2. The focality is measured in two directions, one parallel to the direction of
the maximum stimulus and one perpendicular to it. These measures are
expressed with full-width at half-maximum (FWHM) values. The focal
region is limited by the four great circles drawn at the four FWHM points
perpendicular to their direction from the target point (Fig. 2).

This definition works well only for focal stimulus, that is, when there is a clear
target with maximum stimulus.

Figure 2: The focal region. The black arrow represents the induced electric field
direction at the target, within the light gray area the induced electric field is over
1/
√

2 of the maximum, the solid gray lines define the parallel and perpendicular
FWHM, and the dotted gray lines depict the great circles surrounding the focal
region. Notice that the widest point does not need to be directly in either of
the two FWHM directions.

3.2 Optimization problem
From Eqs. (9) and (14), we see that a focal pulse requires more energy than a
less focal one. Thus, finding the surface current density with minimum energy
for given constraints is an optimization problem. This problem is presented in
Table 1. (We set ∂f(t)/∂t = 1/(100 µs) for a 100-µs-rise-time pulse.)

The problem in Table 1 include non-linear constraints for the norm of the
induced electric field. Optimization problems with non-linear constraints are in
general much harder to solve than ones with only linear constraints. In order to
make the optimization more efficient, we can approximate the norm constraint
(the endpoint of the E-field vector lies inside a circle with a given radius) with a
few linear constraints (the endpoint lies inside a regular convex polygon). With
16 linear constraints, the norm can be approximated with maximum error of less
than 1%. Now, we have an optimization problem with a convex feasibility set
and a convex objective function. This ensures that a local minimum is also the
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Table 1: Minimization problem. Subscript || refers to the component parallel
with the target field and ⊥ refers to the component perpendicular to it.

Optimization variables i = {ilm}
Objective function U(i)
Equality constraints E||,0 = 100 V/m at the focal point

E⊥,0 = 0 at the focal point
Inequality constraints |E| ≤ |E0| everywhere

|E| ≤ |E0|/
√

2 outside the focal region

global minimum [18]. As the objective function is always positive, there exists
a minimum if there exists a feasible point.3 Thus, the approximate solution for
the global optima of the optimization problem can be found quickly with the
interior point method.

3.3 Transforming the optimization problem into linear al-
gebra

The spherical harmonics in Eq. 14 are expensive to calculate. For this reason,
it is beneficial to calculate them only once for the optimization. This can be
done with the following method.

• Take N points where you want to compute the induced electric field from
inside the sphere.

• Calculate Eθ(r, θ, φ) and Eφ(r, θ, φ) per unit current at each of these points
for all l ∈ {1, . . . , lmax}, m ∈ {−l, . . . , l}.

• Form an
[
(lmax)

2
+ 2lmax

]
× 2N matrix A from these values.

• Enforce the constraints for the inner product of linear combinations of the
rows of A and the vector i. (For the 16-gon estimate of the norm, the
final constraint matrix has the size of

[
(lmax)

2
+ 2lmax

]
× 32N .)

It is important that the density of the points is sufficiently high so that
they can capture the highest-frequency components of the spherical harmonics
(sinusoidal waves with angular frequency ±lmax). This method can be used also
to visualize the induced electric field (or the current density), for example if the
points are chosen uniformly distributed on the sphere.

Choosing the cortex radius to be rtarget = 70 mm, the coil radius to be
Rcurrent = 90 mm, and the cut-off point for the spherical harmonic series to
be lmax = 30; we get a convex cost function with (lmax)

2
+ 2lmax = 960 input

variables. With this target radius and surface current radius, the radius for
head can be, for example, 85 mm.4 These radii are the same that were used by
Deng et al. in their study of 50 different TMS-coil designs [2]. Thus, this choice
allows a direct comparison between the results.

3A feasible point is a point that fulfills all the constraints.
4Like in the method by Eaton, [8], there is no direct dependence on the radius of head in

this model.

8



3.4 Discretization of the surface current density
Surface current densities like those described in the previous chapter can not be
realized in practice. However, they can be approximated with a coil consisting
of several winding loops, and this coil can be used as the TMS coil. A surface
current density can be discretized using stream functions [19], ψ, for which

K = ∇ψ × n , (16)

where K is the surface current density and n is the normal vector of the surface.
The stream functions for real vector spherical harmonics can be seen directly
from Eq. (A.10):

Y m
l,l(θ, φ) =

1√
l(l + 1)

r ×∇Y ml (θ, φ) = ∇

[
− r√

l(l + 1)
Y ml (θ, φ)

]
× er . (17)

Thus, the stream function for the surface current of the form

K(θ, φ) =
∑
l,m

ilmY m
l,l(θ, φ)/R (18)

is
ψ(θ, φ) = −

∑
l,m

ilm√
l(l + 1)

Y ml (θ, φ) . (19)

Next, we select the number of steps used to approximate the stream function,
Nsteps. For simple coil designs, such as circular or figure-of-eight coil, this is
also the number of turns in the coil. However, for more complicated designs,
the numbers of turns in the coil may be higher. Now, we can define the coil
current5

I =
maxψ −minψ

Nsteps
. (20)

The coil loops are on the isolines of ψ such that

ψ(θ, φ) = minψ +

(
n− 1

2

)
I , n ∈ {1, . . . , Nsteps} . (21)

The loops can be further discretized into polygons, for which the inductances
can be calculated using formulas from Ref. [20].

The induced electric field inside the head can be calculated using the triangle
construction described earlier in Section 2.3 (i.e., by calculating the mutual
inductance of the coil and a triangle). However, now the triangle width has to
be finite (not infinitesimal). We used a width of 0.02 rad ∼= 1.4 mm for these
triangles.

3.5 Measurement set-up
In order to validate the computational methods, we manufactured one opti-
mized coil design. The coil was wound with 1-mm-thick continuous copper wire

5This is not exactly the same as the current required for the stimulus because the discretized
surface current density causes a different stimulation pattern in the cortex than the continuous
surface current density. This is apparent when Nsteps is small.
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by connecting the separate loops into each other in a spiral-like fashion. To
achieve sufficient winding precision, we fabricated a coil former using additive
manufacturing. The groove for the wire was made snug, which allowed fast
glue-free assembly. The reader should be aware that this prototype is not a
practical TMS coil as it was only intended for validating the computational
methods. For an actual TMS coil, one should, for example, glue the wire to
the coil former because of the Lorenz forces that are induced by the TMS pulse
(although these force are smaller in the optimized coil design than in standard
figure-of-eight coils). The coil was connected in series with a signal generator
for the measurements.

In order to measure the induced electric field, a computer-controlled mea-
surement rig was built [21]. The rig consists of two orthogonal triangular loops
for the triangle construction, and two servo motors to control the orientation
of the loops. The triangle loops are wound with a 0.15-mm-diameter copper
wire on a 3D-printed coil former; they have 70-mm-long radial edges and a
5-mm-long tangential edge. This non-differential tangential edge means that
the construction can measure the higher-frequency components of the spherical
harmonics (sinusoidal waves with angular frequency ±lmax) components with
up to

lmax ≈
2π · 70 mm

2 · 5 mm
≈ 40 . (22)

This is enough to capture all details of the induced electric field at this depth,
as higher than this spatial-frequency components will have attenuated by five
orders of magnitude more than the (l = 1) components. The coil and the
measurement rig are shown in Fig. 3.

The measurement points are chosen pseudo-uniformly from the upper hemi-
sphere. With 1000 points, the mean distance to the nearest neighbor is 5.3 mm
(and the largest single distance 5.5 mm). Thus, all the spatial-frequency com-
ponents that can reach the target depth are easily recorded.

The spatial accuracy of the servos used in the rig is approximately 2◦ ∼=
2.5 mm and the relative standard error between the two channels in the induced
electric field measurement is approximately 2% after a calibration with a circular
current loop.
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Figure 3: The minimum-energy TMS coil used to validate the computational
methods. The coil is wound on a plastic spherical coil former, which was 3D-
printed. The coil was only used to validate the methods and it is not a practical
TMS coil. The measurement rig (inset) fits inside the hollow coil former.
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4 Results
Using the constraints from Section 3.2 and the parameters from Section 3.3,
we could solve for the global optimum solution with different focalities. The
dependency between the minimum energy and the parallel and perpendicular
focalities is shown in Fig. 4. In this plot, we show the smallest peak magnetic-
field energy for a 100-µs 100-V/m stimulus.

We chose Magstim 70 mm Double Coil as a baseline for the comparison.
The reason for this is that the structure of the Magstim coil is depicted in
Ref. [22]. Approximating the coil with 1-mm-thick wiring at a plane 90 mm
from the origin, we obtain for it an inductance of 15.90 µH, which is close to
specifications (16.35 µH). We refer to this coil as a standard figure-of-eight coil,
or the standard coil.

The FWHM for the standard figure-of-eight coil was 32 mm in the direction
perpendicular to the electric field and 50 mm in the direction parallel with it.
A 100-µs 100-V/m pulse with the standard coil required maximum current of
6400 A and thus coil energy of 330 J. The coil and the resulting E-field are
visualized in Fig. 5a. The optimal solution for this kind of stimulus required just
77 J of stored energy, thus we can reduce the energy requirement significantly or
alternatively make the stimulus more focal with the original energy requirement.

Figure 4: Minimum energy for given FWHM. Trying to deviate the ratio of
parallel and perpendicular FWHM far from optimal ratio (of approximately
2 : 1) will require more energy, and thus in the region painted white, it is
beneficial to reduce the FWHM instead of increasing it. (Also, when trying
to produce a stimulus with broader focality than 85 mm parallel FWHM and
40 mm perpendicular FWHM, broadening the focality will require more energy
instead of less energy.) The solid black line is the 77-J contour line and the
dashed black line the 330-J contour line. The other contour lines are drawn at
multiples of 100 J, and the red point represents the FWHM of the standard coil.

4.1 Discretization of the surface current density
Discretization of the surface current densities allows using other field-computation
methods to verify the obtained results and to compare them to values from ex-
isting TMS coils.
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Solving the optimization problem from Section 3.2 with the parameters from
Section 3.3 with the focality of the standard coil yielded a butterfly-like con-
tinuous surface current distribution. Using this, the 100-µs 100-V/m pulse had
a maximum energy of (only) 77 J. Then, this current density was discretized
into 18 loops (the same number as in the standard coil). The resulting coil had
an inductance of 7.8 µH. For a 100-µs 100-V/m pulse this coil required maxi-
mum current of 4800 A and thus maximum coil energy of 89 J. The coil and the
resulting E-field are visualized in Fig. 5b.

We can see from Fig. 5 that the induced electric fields for the standard and
the optimized coil are similar near the focal point. However, the optimized
design has a higher E-field further away from the focal point. This phenomenon
is visualized in Fig. 6.

If we calculate the volume of the area inside the brain, where |E| ≥ |E0|/2,
we obtain V1/2, standard = 23.9 cm3 and V1/2, optimized = 37.1 cm3. The cor-
responding maximum depths, where this condition is met are d1/2 standard =
1.35 cm and d1/2, optimized = 1.72 cm. Using Eq. (15) results in S1/2, standard =
17.6 cm2 and S1/2, optimized = 21.6 cm2. Thus, although the coils are equally
focal using our proposed focality metric, the optimized coil design is signifi-
cantly less focal than the standard coil using the focality metric by Deng et al.
This difference here is mostly because we defined the focality as 1/

√
2-maximum

instead of 1/2-maximum. If we replace the boundary conditions in the optimiza-
tion problem with 50%-boundary conditions obtained from the standard-coil, we
will obtain a 83-J continuous surface current density. This can be discretized
into a 95-J coil, for which d1/2 = 1.40 cm and S1/2 = 15.8 cm2 (Fig. 5c).

In addition to these coils, we also created a very focal 690-J continuous
current density (with parallel FWHM of 22 mm and perpendicular FWHM of
18 mm). From this, we obtain a coil with an inductance of 5.1 µH, maximum
current of 16 000 A, and maximum coil energy of 690 J. For this coil, the parallel
FWHM is 24 mm and perpendicular FWHM is 18 mm (Fig. 5d).

4.2 Comparing the calculated and measured values
An optimized current distribution with perpendicular FWHM of 31 mm and
parallel FWHM of 51 mm was computed. This was then discretized into 18
current loops, which were modeled as 1-mm-thick wires. The inductance of
this coil was computed to be 8.07 µH. Let us define gain as the ratio between
maximum induced electric field and the time-derivative of current,

gain =
E0

dI/dt
. (23)

The computed gain for the coil is 2.13 (µV/m)/(A/s), which gives for 100-µs
pulse Umax = 1

2LI
2 = 89 J.

The individual current loops were connected into a single coil, and an actual
coil was wound from 1-mm copper wire. This coil is shown in Fig. 3. Measuring
the E-field using the measurement rig from Section 3.5, we obtain perpendicular
FWHM of 33 mm and the parallel FWHM of 51 mm. The resistance of the coil
was 87 mΩ, the inductance at 10 kHz was 8.14 µH, and the maximum gain was
2.01 (µV/m)/(A/s), which give Umax = 100 J. In Fig. 7, we have plotted the
measured gain versus the calculated gain at 1000 points inside the head. The
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Figure 5: The coil geometry and the induced electric field for (A) the standard
figure-of-eight coil, (B) the optimized coil, (C) the 50%-boundary-condition-
optimized coil, and (D) a very focal coil. (All numbers calculated assuming a
100-µs TMS pulse with 100-V/m maximum induced electric field. The current
direction is clockwise in the red wires and counterclockwise in the black wires.)

least-squares fit between these two indicate that the measured gain was 6%
smaller than the computed one.
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Figure 6: Envelopes of the electric field strength as a function of distance d
from the target point. The upper black line represents the maximum E-field
in any direction and the lower black line represents the minimum E-field in
any direction. The standard coil and the two optimized coils have very similar
E-fields near the target. (A) standard coil; (B) optimized design; (C) 50%-
boundary-condition-optimized design; (D) a very focal coil (coils A–D, Fig. 5).
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5 Discussion
The optimal coils in Fig. 5 resemble the optimized muscle stimulation coil from
Ref. [23]. In both cases, the winding density has been concentrated over the
stimulation point, and the coil has been curved to follow the surface of the
tissue. As they optimized their coils in a cylinderical geometry, it seems that
general features of the minimum-energy coils are robust to the tissue geometry.
A somewhat similar coil design was also evaluated in Ref. [2] (coil #38), where
its E-field was found to resemble that of a figure-of-eight coil.

The induced electric field patterns of the optimized coil geometries (Figs. 5b
and 5c) are similar to that of the standard figure-of-eight coil near the focal
region. That is, these three coils will produce almost identical brain stimulation
near the target. However, the optimized coils cause a much larger induced
electric field in the region opposite to the target. For the first geometry, the
induced electric field near the opposite point of the head is on average 20% of
the maximum induced electric field; twice that of the standard coil. Still, this
should not significantly affect the outcome of a stimulus as an induced electric
field with 20% of the maximum strength will cause little activation of the cortex.
Thus, the optimized coils will stimulate the brain in a very similar manner to
the standard coil. Because different figure-of-eight coils seem to have similar
field characteristics [2, 15], we can say that the optimized designs behave like
any 70-mm figure-of-eight coil.

However, there are some practical considerations with the optimized design
shown in Fig. 5b. First, the farthest-away wires extend almost to the opposite
side of the head. This limits the possible regions of head that can be reached,
as these wires would have to go below the chin. The problem can be addressed
in two ways. The naive approach is to deform the wires away from the spherical
shape; this will increase the inductance. The other solution is to add constraints
also for the current distribution; we can for example demand that the surface
current density is small at the region opposite to the target. This will increase
the proportion of the higher order terms, and thus increase the needed current.

As the radial coil current elements do not contribute to the stimulation, the
induced E-field of, for example, the slinky coil [5] can also be realized with a
more efficient flat coil. Because a circular coil held perpendicular to the head
surface produces an induced E-field similar to that of a figure-of-eight coil, the
flat version of the slinky coil will resemble a figure-of-eight coil with the windings
concentrated over the target point (i.e., similar to the optimized coil).

Also, for example, the very focal coil in Fig. 5d is topologically equivalent
to the 3D differential coil proposed by Hsu and Durand in Ref. [24]. That is, in
both coils there are two additional wings with opposite current direction to the
main part of the coil reducing the region of high E-field in the perpendicular
direction. The major difference between these coil designs is that in their coil
design the wings were implemented in an inefficient manner with perpendicular-
to-head circular coils.

In a recent paper, different designs for deep TMS (dTMS) were evaluated
[25]. The coil focality was shown to deteriorate with stimulus depth, and close-
to-head coils were found more efficient than 3D coil designs such as the H1
Hesed coil. These findings are in agreement with our findings: the focality is
reduced because the higher spatial frequencies decay faster than lower spatial
frequencies when the stimulus depth is increased, and because having radial
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current elements in the coil is inefficient as there exists a more efficient, close-
to-head, coil producing the same induced E-field as that of any 3D coil design.
The methods from our paper can also be applied for optimizing dTMS coils.

In this paper, we have only considered an air coil, i.e., a coil without an
iron core. In Ref. [26], Epstein and Davey showed how an iron-core coil can
be significantly more efficient than an air coil. By suppressing the external
magnetic fields, an iron core can further reduce the energy of the minimum-
energy solution with given focality constraints.

5.1 Definition of the focality
The definition of the focality is ambiguous. In the literature, the focality of
a stimulus is often determined based on the surface area or the volume where
the stimulus intensity is greater than 50% of the maximum. The boundary of
this region is usually relatively far from the target point. Thus, this does not
necessarily work well for estimating the focality of a relatively focal stimulus.

On the other hand, a design that is equally focal according to the 50%-
boundary metric is not necessarily equally focal according to the 70%-boundary
metric and the other way round. This can be seen from the coil designs of Fig. 5.
Although the two coils (Figs. 5a and 5b) are, by design, similar according to
our focality metric, they differ significantly in the focality metric by Deng et
al., Ref. [2]. Because of this, one should select the focality metric based on the
application of the stimulus.

For example, if one is to design a coil for mapping the motor cortex with
pulses just above the motor threshold, one should use a metric where the focality
is defined with a high threshold boundary. The extreme case of this would be
using the spatial curvature of the electric field strength, that is, the second
spatial derivatives of the pulse strength at the target.
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6 Conclusion
We have formulated a model for computing the induced electric field in the
spherically symmetric head model for an arbitrary spherical surface current
density. Using this model, the global optimum solution for low-depth TMS coil
is an as-close-to-head-as-possible double-coned coil with butterfly-wing shaped
windings (Fig. 5b). This design is significantly better than the standard figure-
of-eight solution.

The focality of a TMS coil can be increased quite significantly from the cur-
rent designs. This can be achieved although reducing perpendicular FWHM
from 30 mm to 20 mm increases the required energy threefold.6 This is because
the present coil designs seem to be far from optimal, the optimized coil from
Fig. 5b requires 73% less energy for producing similar stimulation as the stan-
dard coil (Fig. 5a). This is due to the fact that in-plane figure-of-eight design
has both greater inductance and worse connection to the cortex than the close-
to-head-everywhere design.

We were able to verify the results experimentally. The calculation and the
measurement gave, within measurement accuracy, the same FWHMs. Though
the measured gain differs from the calculated gain by 6%, which is much more
than the measurement accuracy of 2% between the two channels, the shape of
the induced electric field is similar for both calculation and the measurement.
Thus, this difference may be partially due to uncertainty in the calibration
process. However, the most likely explanation for this error is inaccuracy in
the coil position and the coil windings with respect to the measurement probe.
Namely, our simulations reveal that an error of 1 mm in the coil position radial
to the focal point changes the induced E-field magnitude by 4%.

In summary, there is room for improvements from the present coil designs.
The simple figure-of-eight design needs approximately four times more energy
than the theoretical limit for producing a similar induced electric field. With
our methods, we could design and produce an optimized coil that is less than
one third more expensive than the obtained theoretical limit.
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A Mathematical tools

A.1 Basic electromagnetism
The fourth Maxwell equation—Ampère’s circuit law with Maxwell’s correction—
states that

∇×B = µ0J + µ0ε0
∂E

∂t
, (A.1)

where B is the magnetic field, µ0 is the vacuum permeability, J is the current
density, ε0 is the vacuum permittivity, and E is the electric field. In the quasi-
static case in a region where there is no source current density [27],7 Eq. (A.1)
can be written as

∇×B = 0 . (A.2)

Thus, the magnetic field may be represented with the magnetic scalar potential
V :

B = −µ0∇V . (A.3)

The second Maxwell equation—Gauss’s law for magnetism—states that

∇ ·B = 0 . (A.4)

Combining Eqs. (A.3) and (A.4) we get Laplace’s equation:

∇2V = 0 . (A.5)

A.2 Real spherical harmonics
The general solution of Eq. (A.5) in spherical coordinates (r, θ, φ) is

V (r, θ, φ) =

∞∑
l=0

l∑
m=−l

[
almr

l + blmr
−(l+1)

]
Y ml (θ, φ) , (A.6)

where Y ml (θ, φ) are real spherical harmonics and alm and blm are constants.
The real spherical harmonics are defined as

Y ml (θ, φ) =


√

(2l+1)(l−m)!
2π(l+m)! Pml (cos θ) cosmφ , m > 0√

2l+1
4π P 0

l (cos θ) , m = 0

−
√

(2l+1)(l+m)!
2π(l−m)! P−ml (cos θ) sinmφ , m < 0

, (A.7)

where Pml (x) are associated Legendre polynomials of degree l and order m.
Just like the complex spherical harmonics, the real spherical harmonics are
orthonormal over the sphere:∫

4π

Y ml YML dΩ = δlLδmM . (A.8)

7Inside the head, there are obviously currents, but these are much weaker than the coil
currents. Thus, for our purposes, it suffices to calculate the magnetic field due to the TMS
coil.
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A.3 Real vector spherical harmonics
Because we are interested in the magnetic field, it is useful to define vector-
valued spherical harmonics. These can be defined as [28]

Y m
l,l+1(θ, φ) =

1√
(l + 1)(2l + 1)

rl+2∇
[

1

rl+1
Y ml (θ, φ)

]
, l ≥ 0 , (A.9)

Y m
l,l(θ, φ) =

1√
l(l + 1)

r ×∇Y ml (θ, φ) , l ≥ 1 , (A.10)

Y m
l,l−1(θ, φ) =

1√
l(2l + 1)

1

rl−1
∇
[
rlY ml (θ, φ)

]
, l ≥ 1 . (A.11)

The notation allows a direct comparison between the complex vector spheri-
cal harmonics introduced in Refs. [29, 30]. These vector-valued functions are
orthonormal over the sphere:∫

4π

Y m
l,l+n · Y

M
L,L+NdΩ = δlLδmMδnN ; n,N ∈ {−1, 0, 1} . (A.12)

Furthermore, the real vector spherical harmonics form a complete set and can
present any vector function on the surface of a sphere. The following properties
of the vector spherical harmonics are used in Appendix B:

∇×
(
fY m

l,l

)
=

√
l

2l + 1

(
l

r
f − ∂f

∂r

)
Y m
l,l+1 −

√
l + 1

2l + 1

(
l + 1

r
f +

∂f

∂r

)
Y m
l,l−1

(A.13)
and

∇×
(
∇× fY m

l,l

)
=

(
l(l + 1)

r2
− 2

r

∂

∂r
− ∂2

∂r2

)
fY m

l,l , (A.14)

where f(r) is a scalar function. Many other identities for the real vector spherical
harmonics can also be obtained by adapting those given in Ref. [30].

A.4 Divergence-free basis functions
Following the derivation in Ref. [31], it is possible show that an arbitrary
divergence-free real-valued vector function in a volume can be presented as a
linear combination of the basis functions

ulm(r, θ, φ) = f−lm(r)Y m
l,l(θ, φ) +∇×

(
f+lm(r)Y m

l,l(θ, φ)
)
, (A.15)

where f−lm and f+lm are functions defining the radial dependency. f−lm and f+lm can
also be presented using a complete set of elementary scalar functions satisfying
the boundary conditions. Note that, on a spherical shell, we can form a complete
set of basis functions for divergence-free vector fields by the real vector spherical
harmonics of Eq. (A.10).
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B Proof of the optimality of a single-layer cur-
rent density

In this Appendix, we provide a proof that a single current-carrying layer placed
as close to the spherically symmetric target volume (“head”) as possible is the
optimal solution in the sense that it minimizes the inductive energy.

First, let us consider current density that has no radial components. We will
show that it is always beneficial to place all such tangential currents as close to
the head as possible.

Let us consider current density at two spherical shells with radii R1 and
R2 > R1. We can compute the energy stored in the magnetic field caused by
these two shells using the Eqs. (1), (7), and (8). This energy can be divided
into two components, the sum of the energies of the two shells alone (Eq. (9))
and a cross-term from their interaction with each other:

U = (U1 + U2) + Ũ . (B.1)

From the orthonormality of the real vector spherical harmonics (Eq. (A.12)),
we see that the surface integral over the cross-term energy density is zero if
l1 6= l2, m1 6= m2, or R1 < r < R2. Thus, the energy stored in the cross terms
of the magnetic field of the two spherical shells is

Ũ = µ0

∑
l,m

i1,lmi2,lm

[∫ R1

0

l + 1

2l + 1

r2l−2

Rl1R
l
2

r2dr +

∫ ∞
R2

l

2l + 1

Rl+1
1 Rl+1

2

r2l+4
r2dr

]
,

(B.2)

where the constants i1,lm define the current distribution in the inner shell and
i2,lm in the outer shell. Defining R2 := αR1 = αR, α ≥ 1, we obtain

Ũ = µ0

∑
lm

i1,lmi2,lm

[∫ R

0

l + 1

2l + 1
r2lR−2lα−ldr +

∫ ∞
αR

l

2l + 1
r−2l−2R2l+2αl+1dr

]

= µ0

∑
lm

i1,lmi2,lm

[
l + 1

2l + 1

1

2l + 1
Rα−l +

l

2l + 1

1

2l + 1
Rα−l

]
=
∑
lm

µ0R

(2l + 1)αl
i1,lmi2,lm . (B.3)

From Eq. (13), we obtain the induced electric field. For two shells, we have

E(θ, φ) = −µ0

∑
lm

∂f(t)

∂t

1

2l + 1
Y m
l,l(θ, φ)

[( r
R

)l
i1,lm +

( r

αR

)l
i2,lm

]
(B.4)

and
U =

1

2

∑
lm

µ0R

2l + 1

[
i21,lm + 2

i1,lmi2,lm
αl

+ αi22,lm

]
. (B.5)

For given E, these equations are equivalent to

constant ≡ E′lm = i1,lm + α−li2,lm , (B.6)

U ′lm(i1,lm, i2,lm) = i21,lm + 2
i1,lmi2,lm

αl
+ αi22,lm , (B.7)
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and
U ′ =

∑
l,m

U ′lm . (B.8)

Here, we want to minimize U ′, which is achieved by minimizing the La-
grangian Λlm:

Λlm(i1,lm, i2,lm, λ) = U ′lm(i1,lm, i2,lm) + λlm(i1,lm + α−li2,lm − E′lm) , (B.9)

where λlm are the Lagrange multipliers.

∇Λlm(i1,lm, i2,lm, λlm) = 0⇔


2i1,lm + 2α−li2,lm + λlm = 0

2α−li1,lm + 2αi2,lm + λlmα
−l = 0

i1,lm + α−li2,lm − E′lm = 0

. (B.10)

The solution to this is i1,lm = E′lm, i2,lm = 0, and λlm = −2E′lm. This is
equivalent with the situation that all the current density moved to the inner
shell.

Although we only examined a two-shell system, the result holds for an arbi-
trary number of shells. This is because it is beneficial to move the currents one
by one to the innermost shell using the following procedure:

1. Take the two innermost shells.

2. Combine the second with the first. This reduces the connection of that
shell with the remaining shells (because the coupling (Eq. (B.5)) between
the remaining shells is reduced) and enhances the coupling with the brain.

3. Repeat the process until you have only one shell left.

The continuum of radial shells can be thought of as a limiting procedure.
Next, we will examine the effect of radial current densities on the energy

efficiency of the stimulation. Given the basis functions of Eq. (A.15), let us
consider divergence-free volume current density of the form

J lm(r, θ, φ) =

{
0 , r < R
∇×

(
jlm(r)Y m

l,l(θ, φ)
)
, r ≥ R , (B.11)

where jlm(r) is a function defining the radial dependency of the current density.
At the boundary, the continuity of the current requires jlm(R) = 0. We can
solve the corresponding magnetic field Blm by noting that ∇ · Blm = 0 and
∇×Blm = µ0J lm. Thus, because Blm is also divergence-free, we can express
it using the basis functions of Eq. (A.15):

Blm(r, θ, φ) =

{
alm,int(r)Y

m
l,l(θ, φ) +∇×

(
blm,int(r)Y

m
l,l(θ, φ)

)
, r < R

alm,ext(r)Y
m
l,l(θ, φ) +∇×

(
blm,ext(r)Y

m
l,l(θ, φ)

)
, r ≥ R ,

(B.12)
where alm,int, alm,ext, blm,int, and blm,ext define how the magnetic field behaves
as a function of r. Because of Eqs. (A.12), (A.13), and (A.14), the magnetic
field should have the same (l,m) indices as the current density. Requiring that
∇ ×Blm = µ0J lm, evaluating the curls by using Eqs. (A.13) and (A.14), and
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requiring that the multipliers of the vector spherical harmonics in the resulting
equations are zero, we obtain the following set of differential equations:

l

r
(µ0jlm(r)− alm,ext(r)) +

∂

∂r
(alm,ext(r)− µ0jlm(r)) = 0 (B.13)

l + 1

r
(alm,ext(r)− µ0jlm(r)) +

∂

∂r
(alm,ext(r)− µ0jlm(r)) = 0 (B.14)(

l(l + 1)

r2
− 2

r

∂

∂r
− ∂2

∂r2

)
blm,ext(r) = 0 (B.15)(

l

r
− ∂

∂r

)
alm,int(r) = 0 (B.16)(

l + 1

r
+

∂

∂r

)
alm,int(r) = 0 (B.17)(

l(l + 1)

r2
− 2

r

∂

∂r
− ∂2

∂r2

)
blm,int(r) = 0 (B.18)

Together with the requirements that Blm is finite at r = 0 and when r → ∞
and that Blm is continuous at r = R, these equations give the expected re-
sult alm,ext(r) = µ0jlm(r) and alm,int(r) = blm,int(r) = blm,ext(r) = 0. Thus,
Blm = 0 when r < R. This means that current densities of the form Eq. (B.11)
do not contribute to the brain stimulation. Furthermore, because according
to Eq. (A.12) Blm at r ≥ R is orthogonal to the field produced by the shell-
type current density, superposing these current densities to the shell-type cur-
rent density would only increase the energy of the magnetic field (Section 2.2).
Thus, we conclude that a single current-carrying layer as close to the spheri-
cally symmetric target volume as possible is the globally optimal solution for
minimum-energy TMS coils.
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