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ABSTRACT Wepresent a reinforcement learning (RL)model that is based onQ-learning for the autonomous
control of ship auxiliary power networks. The development and application of the proposed model is
demonstrated using a case-study ship as the platform. The auxiliary power network of the ship is represented
as a Markov Decision Process (MDP). Q-learning is then used to teach an agent to operate in this MDP by
choosing actions in each operating state which would minimize fuel consumption while also respecting the
boundary conditions of the network. The presented work is based on an extensive data set received from
one of the cruise-line operators on the Baltic Sea. This data set was preprocessed to extract information for
the state representation of the auxiliary network, which was used for training and validating the model. As
a result, it is shown that the developed method produces an autonomous control policy for the auxiliary
power network that outperforms the current human operated manual control of the case-study ship. An
average of 0.9 % fuel oil savings are attained over the analyzed round-trips with control that displayed
similar robustness against blackouts as the current operation of the ship. This amounts to 32 tons of fuel oil
saved annually. In addition, it is shown that the developed model can be reconfigured for different levels of
robustness, depending on the preferred trade-off between maintained reserve power and fuel savings.

INDEX TERMS Autonomous shipping, energy consumption reduction, Ferry, machinery, Q-learning,
reinforcement learning, ship.

I. INTRODUCTION
Increasing energy efficiency and autonomous operation
are currently two major trends in the shipping industry.
In response to accords, such as the Paris Agreement [1], being
signed, industrial leaders must develop more energy efficient
operation techniques. Although the Paris Agreement does not
specifically apply to the shipping sector, the International
Maritime Organization has set its own strategy on the best
ways to reach similar goals [2]. Reaching these goals depends
on the development of variousmeasures that would reduce the
amount of air pollutants generated by ships. These measures
are analyzed in a comprehensive survey in [3].

Although autonomous shipping has been quite exten-
sively studied, research has often focused on autonomous
navigation or maneuvering of the ship as in [4] and [5].
Therefore, the autonomous control of the auxiliary power
network of a ship has received far less attention. Autonomous
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control of the auxiliary power network presents an oppor-
tunity to increase the overall autonomity of a ship. In this
article, we present a methodology for controlling the auxil-
iary power network of a ship with the purpose of achieving
autonomous control while reducing fuel consumption and
retaining robustness against blackouts. The developed
RLmodel is trained on data gathered from a ship operating on
the Baltic Sea and uses Q-learning to create the control logic.

RL has been successfully applied in a multitude of areas
where a supervised model would be limited due to a con-
stantly changing environment, or difficulties in defining the
model. One of the advantages of RL control algorithms is that
they can be constantly adjusted as the algorithm operates,
leading to a constantly learning algorithm. The aim is to
create a smart and robust system, which is capable of provid-
ing the demanded power, as well as predicting future power
demand and preliminarily adjusting the system accordingly.

This article is a continuation from the authors’ previous
work on the analysis of energy storage feasibility in an
auxiliary power network of a ship. In that earlier paper, the
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optimal control was achieved via off-line optimization meth-
ods assuming that the operation and load cycles were known.
The study resulted in the best case payback time of a battery
and also suggested the battery sizing. [6]

This paper aims to achieve an online control methodology
to find efficient usage patterns for on-board power generating
equipment. In contrast to the last paper, we do not consider an
energy storage to be a part of the auxiliary network. However,
the authors plan to extend the control model described here to
the control of the auxiliary network with an energy storage.

II. BACKGROUND
A. REINFORCEMENT LEARNING
RL [7] is a subgroup of machine learning, in which an agent
learns to adopt actions in an environment that maximize a
numerical reward signal. Contrary to other machine learning
methods, in RL, the agent is not explicitly guided by some
pre-trained policy, but must instead learn correct actions by
trial and error. Thus, the agent in reinforcement learning
is both the formulator of an optimal policy as well as the
executor of actions.

The environment is often established as a finite Markov
Decision Process (MDP) which is a collection of possi-
ble states and actions. The transition between states occurs
through actions, one time-step increment at a time. It can be
defined as a 4-tuple (S,A,Pt ,Rt ) where
• S is a finite set of states s,
• A is a finite set of possible actions a,
• Pt = Pr{st+1 = s′|st = s, at = a} is a set of
probabilities of transitioning from state s to s′ with action
a at time-step t and

• Rt is a set of immediate rewards r obtained by transi-
tioning from state s to s′ at time-step t .

The agent tries to learn an optimal policy π (s) that expresses
which action in state s results in maximal reward r in the long
run. The cumulation of rewards by following policyπ (s) from
state s is called the value function and can be expressed as

vπ (s) =
∑
a

π (a|s)
∑
s′,r

p(s′, r|s, a)[r + γ vπ (s′)], (1)

where vπ (s) is the value of state s when following a sequence
of actions given by policy π (s). π (a|s) is the probability of
choosing action a in state s and γ is a discount factor for
future rewards. The various methods for iterating an optimal
policy for the devised MDP are based on Eq. 1. RL methods
have beenwidely implemented into various control tasks with
varying success.

One of the most famous implementations of RL was
TD-Gammon; an algorithm developed in [8] to play
backgammon that exceeded the level of the world’s best
human players. Computer games are often the platform on
which state-of-the-art RL algorithms are developed, due to
the rules in games being absolute, thus rendering them easy
to formulate in terms of an MDP. Furthermore, the reward
function is often easily determined as it can be tied to a score
in the game or a similar construct.

RL has also been successfully utilized in a number of real-
world control tasks. For example, in [9], a RL method was
demonstrated to control the inverse hovering of a helicopter.
The solution was based on first learning the dynamic model
of the helicopter by applying supervised learning on flight
data, and then searching for the optimal control policy. The
authors especially noted the speed at which they were able to
develop new kinds of controllers for the helicopter.

Additionally, RL methods have been widely implemented
in the control of robotics. A comprehensive analysis of these
applications is provided in survey [10]. The survey also stands
as an exhaustive analysis of modern RL, emphasizing prob-
lems and aspects of RL that occur when applied to real-
world problems. These include topics such as the curse of
dimensionality, problems associated with continuous state-
spaces and the difficulty of assigning suitable rewards for
states.

B. Q-LEARNING
Q-learning [11] is an off-policy, model-free reinforcement
learning algorithm. The name, Q-learning, derives from the
formulation of Q-functions: Q(s, a), which are iteratively
updated. Q(s, a) equals the value of taking action a in state s.
In pseudocode, the complete Q-learning algorithm is
as follows:
Q(s, a) = 0 for all s ∈ S and a ∈ A

s = starting state
While current iteration < total iterations Do

Choose action a according to the ε − greedy policy
Execute action a to get new state s′ and reward r
Q(s, a) = (1− λ)Q(s, a)+ λ(r + γ ∗ maxa′∈AQ(s′, a′))
s = s′

current iteration = current iteration +1
λ is the learning rate of the agent, which specifies how

much the value of Q(s, a) is altered from its previous eval-
uation by a new discovery. The ε− greedy policy determines
that the agent should mostly choose random actions initially,
while shifting towards choosing the actions which maximize
Q(s, a) as more iterations are completed. The idiom that
Q-learning is an off-policy algorithm is due to the agent not
necessarily executing actions according to the best policy it
has found, given by maxa∈AQ(s, a)) in a certain state s.
The formula of Q-learning proposed by Watkins has after-

wards been altered so that it can be used in larger state-
spaces as well as converge faster. In [12], the Q-learning
algorithm was developed further by introducing a neural net-
work to assess the values of state-action pairs. This allowed
Q-learning to be employed in vast and continuous state-
spaces, as previously the algorithm was limited by computer
memory due to the large number of storedQ(s, a) values. Fur-
thermore, this allowed the agent to propagate the information
of previous actions to actions in similar states, which reduced
the time to convergence.

In [13], it was shown that the convergence time of the
algorithm could be decreased by carrying a probability
distribution along the expected Q-values. The probability
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distribution was constructed as an estimate of the likelihood
that the analyzed Q(s, a) value was correct. In this way,
the agent could factor in its uncertainty about the correctness
of an action, even though the face-value of that action was the
highest.

C. STATE-OF-THE-ART
As explained at the end of the last section, the original version
of Q-learning was not well suited for large state-spaces. This
problem has been addressed in for example [14], where the
convergence of a Q-learning algorithm was evaluated with
various linear function approximators.

More recently, it was demonstrated that deep neural net-
works can be effectively utilized as function approximators
by employing memory replay functionality in the Q-learning
algorithm [15]. The authors coined the algorithm ‘‘Deep Q
Network’’ or DQN. TheDeterministic PolicyGradient (DPG)
algorithm was developed in [16] on the basis of previous
stochastic policy gradient algorithms [17], to render the esti-
mation of action values more efficient in continuous action
spaces.

In [18], the authors combined DQN and DPG to further
increase the performance deep RL. The resulting algorithm
was applicable to continuous state and action spaces with sta-
ble value function approximation. The authors used various
physics tasks to benchmark their algorithm, and compared
it to different planning controllers with full access to the
physical model of the task. The results were surprisingly
good with the RL algorithm outperforming the model-based
controllers on various tasks only using pixel images of the
physics tasks as state representation.

Perhaps the most well-known modern implementation of
RL is the artificial intelligence that mastered the Chinese
game of Go [19]. This implementation used deep neural net-
works to evaluate state-action values and a pipe-lined learning
phase in which the neural networks were first trained by
supervised learning, and then reinforcement learning. The
supervised learning portion used data gathered from moves
that Go experts had made, and the reinforcement learning
portion learned on its own by playing against itself. In addi-
tion to this, a novel Monte Carlo tree search algorithm was
implemented to more accurately evaluate the values of state-
action pairs.

In [20], a DQN was implemented to control an energy
storage in a micro-grid with photovoltaic panels. The authors
claimed that the control algorithm was able to capture the
stochastic nature of power consumption and solar irradiance,
and they were able to increase the operational revenue of the
system on a test-bed.

The application of Q-learning for the control of residen-
tial energy management systems was proposed in [21]. The
authors proposed a system which would distribute power to
consumers, such as dishwashers and ovens, at specific time-
slots with the intention of minimizing total energy cost and
power peaks. The control logic behind this system was based
on Q-learning, which captured the stochasticity of energy

pricing and user behaviour. They concluded that the system
was able to reduce the average cost of energy for the user,
as well as smoothen the overall energy usage.

In [22], the application of RL was studied for the power
management of anHDD storage device and aWLANcard in a
computer. The application was based on TD(λ) learning [23],
which is amethod applicable to continuous state-spaces while
also sharing some similarities with Q-learning. The authors
demonstrated that their power management system reduced
energy consumption by 16.7% compared to the previous rule-
based control. A similar study on the application of RL for
the power management of computer systems was conducted
in [24].

An optimization based approach was proposed in [25]
for the optimal management of power distribution in an all-
electric ship power topology with an energy storage. The
target of the optimization was to minimize fuel consumption
while respecting the technical boundaries of the ship and
limiting the total greenhouse gas emissions. The control logic
was established in a cascading three-phase dynamic pro-
gramming model. First, the usage of the energy storage was
calculated, then, the optimal dispatch of the generators, and
finally, a control logic was chosen that fulfilled a constraint
of minimum distance to travel.

While the proposed method was elaborately created, it still
relied on knowing the power demand profile beforehand.
In [26], the same author improved the devised methodology
further by including the control of propulsion power in the
model as a decision variable. The main benefit of such an
approach was that an energy storage was no longer needed
for optimizing the dispatch of the energy system. Similar
optimization models have been devised in [27] and [28].

In [29], an optimization approach was employed to control
the energy system of an all-electric tugboat with an energy
storage. The authors recognized the need for predicting future
power demand thus proposing a novel load prediction algo-
rithm to work in conjunction with the optimization approach.
The combined usage of these two methodologies worked to
some extent, and the authors were able to achieve roughly
9% fuel savings in simulated runs, compared to a rule-based
controller. Nonetheless, the authors acknowledged the chal-
lenges associated with the approach due to the stochasticity
of the power demand. Load prediction algorithms have also
been proposed in [30] for ships and for land-based electricity
grids in [31].

The problem formulation in this work is closest to the
work carried out in [32]. In the doctoral dissertation, the unit
commitment problem of switching generators on and off
aboard a vessel is studied, and a methodology is proposed
based on the optimization of load dependent start tables that
signify when the process of starting and stopping generating
sets should occur. A similarity can be identified between the
load tables and state-action pairs in Q-learning.

To the best of the authors’ knowledge, no literature exists
that applies RL methods to the control of the auxiliary
power network of a ship. The literature examined in the
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TABLE 1. Ship main parameters.

previous paragraphs is related to electric power management
in general. The passenger ferry auxiliary power network has
certain unique properties, such as considerably high power
peaks and the need to retain a variable power reserve. These
features distinguish the presented ferry case from the existing
literature on RL applications.

Furthermore, the current literature on on-board power
management is focused on optimization approaches in which
the power demand profile is either assumed to be known
beforehand, or then a separate load prediction algorithm
is employed alongside the optimization. Additionally, these
approaches are often exceedingly computationally heavy,
depending on the complexity of the optimization model.

RL methods fit the problem of power management very
well, as both load prediction and system control are inherently
included in the learned policy. Furthermore, the actuation of
the control logic is drastically computationally lighter com-
pared to optimization methods. This is because the resource
intensive training phase is completed beforehand.

Due to these reasons, it is worthwhile exploring the possi-
bility of applying RL methods for the control of the auxiliary
power network of a ship. This paper aims to take the first step
towards this goal by introducing the way to take into account
concepts which are unique to the problem in a RL framework.
This work makes the following original contributions:

• the formulation of a ship’s auxiliary network as a MDP,
• the application of Q-learning for near-optimal,
autonomous control of the power network,

• the demonstration of how improvements in control logic
affect fuel efficiency and,

• open access to the used Python scripts.

III. METHODS
A. CASE-STUDY SHIP
The case-study ship is a conventional, direct-driven passenger
ferry. It operates on the Baltic Sea between Helsinki and
Stockholm, briefly stopping at Mariehamn along the way.
The main parameters of the ship are shown in Table 1. This
study is based on a comprehensive data set extracted from the
automation system of the ferry. The data set contains 9 round-
trip measurements of the ferry’s auxiliary power network
operation with a measurement interval of five minutes.

The auxiliary power is produced by four generating sets,
of which two have a power rating of 2400 kW and the other
two a power rating of 3200 kW. The auxiliary power demand

FIGURE 1. The ferry energy system topologies: main propulsion (left) and
auxiliary power network (right).

can be roughly divided into power consumed by the bow
and stern thrusters, and ferry hotel load. The hotel load is
composed of consumers such as the HVAC system, lighting
and other appliances.

Power for the main propulsion is delivered by four diesel
engines with a power rating of 8145 kW. These engines
drive the ships two main propellers, and they are completely
separated from the auxiliary network. As such, the main
propulsion side of the energy systemwill not be considered as
a part of this study. A detailed description of the whole ship’s
energy system topology can be seen in Fig. 1. Note that the
actual cylinder count of the engines does not correspond with
the cylinders shown in the picture.

Fig. 2 shows a typical auxiliary power demand profile for
the ferry during one 48-hour round-trip. The auxiliary power
demand is characterized by a fluctuating base power demand
around 2000 kW corresponding to the hotel load, and by
infrequent peaks of power demand. The six sharp peaks in
the power demand profile occur when the ship ismaneuvering
with thrusters while entering or leaving the harbor.

The shown auxiliary power profile corresponds to one
round-trip cruise from Helsinki to Stockholm, and then back
to Helsinki. The six peaks signify the following maneuver-
ing events of the ferry in the order in which they occur:
1) leaving Helsinki harbor, 2) entering and leaving the har-
bor of Mariehamn, 3) entering the harbor of Stockholm,
4) leaving the harbor of Stockholm, 5) entering and leaving
the harbor of Mariehamn and finally, 6) entering the harbor
of Helsinki. The maneuvering events in Mariehamn appear
as a single peak in the data, because the mooring time is only
10 minutes.

Figure 2 also shows the way the generating sets of the
ship are operated. Generating sets 1 and 2 are the smaller,
2400 kW, variants and 3 and 4 the larger, 3200 kW engines.
A typical trend in the operation of the generating sets is that
one generating set is used to produce power when staying
in port, and at least two are used when operating in the
Swedish archipelago between the port of Mariehamn and
Stockholm. During open sea operation, the choice between
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FIGURE 2. The ferry auxiliary power demand on a round-trip cruise.

using one or two generating sets seems to depend on the actual
power demand. Typically when demand exceeds 2000 kW on
the open sea, another generating set is started. This behavior
is also consistent with the other round-trip data sets.

The reason for using more than one generating set to
produce power when one set would suffice is to prevent
blackouts by increasing the power redundancy. It is evident
that a blackout occurs if the only online generating set sud-
denly fails; therefore, as a safety measure, at least two sets
are operational when redundancy is needed, for example,
for maneuvering. Ship classifications include passages that
determine auxiliary thrusters as Type 1 Redundancy, which
means that the allowed time-lag for re-establishing function-
ality cannot exceed 30 seconds in case the case of a single sys-
tem failing [33]. This imposes a redundancy requirement on
the generating sets as well, because auxiliary thruster power
demand forms a significant proportion of the overall demand
when they are used. This is also reflected by the fact that
generating set manufacturers provide recommendations for
minimum amounts of power retainment when using multiple
generating sets [34].

However, running several generating sets to increase
redundancy leads to a lower fuel efficiency. Maritime regu-
lations state situations for which redundant power generation
is required and ship automation systems include hard-coded
rules to switch on and off generating sets, but on-board
crew can also manage the number of active generating sets.
According to the presented data, the rule of operation is not
as simple as just having at least two generating sets running
constantly.

In open sea operation, the operation policy seems to bal-
ance between robustness against blackouts and saving fuel
by using just one generating set. There is a minimum amount
of reserve power that the auxiliary network tries to maintain
by switching on generating sets in case the amount of cur-
rent reserve power falls below a given threshold value. The
threshold varies depending on the position on the route.

The control logic of the auxiliary power network is quite
complex due to these characteristics. To the best of the
authors’ knowledge, this control is typically established with
a rule based logic in modern ships, which can become

decidedly complicated as the logic attempts to consider all
relevant factors. With RL, the power system can be described
using a MDP. The complex control logic of the power system
is contained in the learned policy.

B. DATA PROCESSING
A total of nine 48 hour round-trips in the data set were
utilized in this study. These data contained the following
values indexed by timestamps:
• auxiliary power demand,
• actual operation of generating sets,
• fuel consumption of generating sets,
• ship position as coordinates.

The complete data set was first divided into 9 round-trips,
each starting and ending at the port of Helsinki. To establish
a comprehensive state representation of the auxiliary power
network of the ship, it was determined that the operational
mode and destination of the ship must be included in the
model as state variables.

Four distinct operational modes were distinguished in this
case which were described with an integer number:
• 1 for maneuvering with auxiliary thrusters,
• 2 for open sea operation
• 3 for operation in the Swedish archipelago and
• 4 for staying in port.

And similarly for the current destination of the ship:
• 0 for staying in port,
• 1 for Mariehamn,
• 2 for Stockholm and
• 3 for Helsinki.
These values were added to the data sets by first analyzing

the derivative of a moving mean over the data sets to identify
the power peaks. With the peaks identified, it was possible
to assign each timestep new data-values corresponding to the
operational mode and destination of the ship.

The auxiliary power network should maintain a suitable
amount of reserve power in order to maintain the ability
to turn on power consumers at short notice, which may be
necessary in scenarios that require actions, such as sudden
maneuvering. The reserve power needs to be quantified as a
numerical value in the data in order for the Q-learning agent
to adopt this robust operation as well. The reserve power was
calculated by subtracting the power demand from the max-
imum possible power output of the online generating sets.
A numerical reserve power threshold for open sea operation
can be deciphered from Fig. 3.

Looking at the operation around the 700th timestep, we can
see that a generating set is switched off when the retained
reserve power with one generating set reaches 1200 kW. This
threshold is used as the base-line value of reserve power in
the proposed methodology in the next sections.

This data set forms a good platform onwhich the feasibility
of the proposed method can be verified. Note that actual
implementations should use a more comprehensive data set,
preferably with data of the vessels year-round operation.
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FIGURE 3. Ship auxiliary power demand and reserve power retainment
on a round-trip cruise.

This is to ensure the entire possible range of operation is
captured in the data, and learned by the Q-learning agent.

C. AUXILIARY NETWORK AS A MDP
The performance of Q-learning depends significantly on the
way the auxiliary power network is established as a MDP.
This section follows the same nomenclature as in II-A. The
possible states of the system are described as vectors of the
form
S = (G1,G2,G3,G4,Mo,Dg,Gs), where
• G1 = {0, 1},
• G2 = {0, 1},
• G3 = {0, 1},
• G4 = {0, 1},
• Mo = {1, 2, 3, 4},
• Dg = {0, 5, 10, . . . , 400},
• D = {0, 1, 2, 3}.

G1...4 is the state of a single generating set, where 0 means
that the generating set is off-line and 1 that it is online.
Mo is the operational mode of the ship, Dg the distance
to the current destination in kilometers and D the current
destination. The possible actions A represent commands to
switch the corresponding generating sets on or off with the
addition of a possible action to do nothing.

When an action is taken a timestep variable is incre-
mented by one. This timestep variable is used to update state-
variablesMo,Dg andD, as well as to calculate the immediate
reward received from the current state.

Some partial observability manifests itself through
the stochasticity of the immediate reward. Nevertheless,
the prevalence of this stochasticity does not necessitate the
consideration of belief states when assessing the value of
state-action pairs; thus, the MDP is treated as if it was fully
observable. It could be argued that an underlying MDP exists
for this problem formulation perfectly capturing the upcom-
ing power demand changes in its state-variables. Such state-
representation would need to include an immense amount of
variables, rendering it unfeasible for real-world applications.
In this work, the variableswere chosen to ensure that the state-
representation is sufficiently extensive, while still choosing

values that are easily available for the actual ferry. It is the
task of the Q-learning agent to formulate a policy which takes
into account the stochasticity of the power demand.

The immediate reward Rt is calculated from the specific
state that the agent inhabits according to:

r = cmax − ccurrent + pon + poff + preserve + pdemand , (2)

where cmax is the maximum possible consumption in
the current state and ccurrent is the actual consumption.
pon and poff are penalties associated with starting and shutting
down a generator, respectively, and preserve and pdemand are
the penalties for not fulfilling the reserve power and power
demands.
cmax in Eq. 2 is defined as the consumption in case the

current power demand was fulfilled by having all of the
four power generators online. The consumption of a single
generating set is calculated in g/s from the SFOC-curve of
the diesel engine of the set, and defined as:

c(L) = SFOC(L) ∗ Pg_max ∗ L ∗ 3600s, (3)

where c is the consumption of the engine in g/s as a function
of the engines load L. SFOC is the SFOC-curve of the engine,
which is the consumption (g/kWh) as a function of the engine
load and Pg_max is the power rating of the engine.

The SFOC values were attained from the engine manufac-
turers product guide [35]. The product guide offered values
for operating points at 50%, 75%, 85% and 100% engine
load. These points were used to interpolate the complete
SFOC curve with quadratic polynomial interpolation.
ccurrent in Eq. 2 is the combined consumption of the gener-

ators currently online. The engine controllers of the auxiliary
power network employ load balancing methods to ensure that
the generating sets produce electricity at a stable frequency
in parallel operation. This means that all online generating
sets are maintained at the same load percentage to ensure that
power transients equally affect their speed. Thus, the load
percentage can be calculated in each state from the current
power demand according to:

L = Pd/Pmax , (4)

where Pd is the current power demand and Pmax is the sum
of the online generating set power ratings.

In Eq.2, pon is set as the fuel oil consumption of an idle
engine for 180 seconds, which corresponds to the generating
set ramp-up time before it can be connected to the auxiliary
power network [35]. Similarly, poff is equal to the idle con-
sumption for 300 seconds. The reasoning behind this value
is that according to the examined data sets, the engines are
run on idle for five minutes before they are completely shut
down.
preserve in Eq. 2 was calculated as Ra − Rd multiplied by

a reserve violation penalty weight, where Ra = Pmax − Pd
and Rd is the reserve demand. While the other penalty and
reward terms are determined by the fuel oil consumption of
the auxiliary power network, preserve is more of an abstract
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penalty associated with the robustness of the operation. This
is the reason for a weight term being associated with the
penalty, which could be adjusted like a model hyperpa-
rameter. Finally, pdemand was declared to be an arbitrarily
large quantity, in this case, 90 million, to clearly signal the
Q-learning agent that power demand violation is not tolerated
under any circumstances.

D. Q-LEARNING
As described in section III-B, data from 9 trips were used to
train and test the Q-learning model. The 9 trips were divided
into 7 training sets and 2 testing sets. These trips included a
single trip in which the ship did not stop at Mariehamn when
traveling from Stockholm due to rough weather. The data set
of this trip was restricted to appear only in the 7 training sets,
as the algorithm would most likely not be able to operate
competently on a testing set that does not resemble any of the
sets used for training. The 7 training sets were concatenated
together to form a cohesive set of data, spanning over a total
time-frame of 336 hours.

The Q-learning algorithm was executed with a future
reward discount factor of 0.7, and a learning rate of 0.055.
The weight factor on violating the reserve power requirement
was set at 75. The selection process of these hyperparameter
values will be explored in the next section.

The agent begins exploring the state-space by taking ran-
dom actions with a probability of ε, and actions that maxi-
mize Q(s, a) otherwise. epsilon is calculated with a decaying
ε-greedy policy:

ε = e(i/I ), (5)

where i is the current iteration and I the total amount of
iterations to perform. Equation 5 causes exploration of the
state-space to be initially preferred heavily over exploitation
of previous knowledge. The probability of random actions
diminishes over iterations, which allows the agent to even-
tually start leveraging its previous knowledge, and focus on
exploring the sequence of actions it considers optimal. The
auxiliary power network state-space is traversed so that the
action given by the agent is executed, which naturally changes
theG1...4 terms of the current state. A timestep variable is also
incremented by one, and variablesMo,Dg andGS of the state
are updated according to the new timestep. This is continued
until the last timestep in the data is encountered, in which
case, the MDP is reset to the initial state and the time-step is
set to 1 again.

The state-space was formatted to include 20480 possible
states. The possible actions in states in which a single gener-
ating set was online were limited in such a way that the agent
could not shut down the last operating generating set. Sub-
sequently, 97280 possible state-action pairs remained in Q.
This number of the state-action pairs is quite manageable
for modern computers, which is the reason why no func-
tion or neural network approximator was required for the
evaluation of state-action values in this case. An illustration

TABLE 2. Hyperparamater test ranges and increments.

of how the Q-learning algorithm advances and how the MDP
is utilized can be seen in Fig. 4.

E. HYPERPARAMETER TUNING
Ideally, a developed RL model should be robust against small
changes in its hyperparameters to avoid unnecessarily metic-
ulous hyperparameter tuning. The changeable hyperparame-
ters in the Q-learning model were the learning rate λ and the
discount factor γ as per usual. In addition to these, the weight
factor on reserve power demand violation penalty was also
considered a tuning parameter. This is not a hyperparameter
of themodel in itself, but it has significant impact on the value
estimation of states.

To conduct a comprehensive analysis, suitable discrete
ranges were selected for all of the parameters mentioned
above, and then all possible combinations of those parameter
selections were created. The changed parameters, their ranges
and increments are shown in Table 2.
The model was then executed for 10 million iterations for

each combination of the hyperparameters. Afterwards, hyper-
parameter combinations were discarded, which resulted in a
policy which violated the power demand requirement after
5 million iterations. Finally, the results of the policies with
the remaining hyperparameter combinations were manually
evaluated based on their convergence time and fuel savings.
Based on the analysis, the best hyperparameters in terms of
convergence time and stability were λ = 0.055, γ = 0.7 and
a reserve power violation weight of 75.

IV. RESULTS
Fig. 5 illustrates the learned control logic for trip number 8,
whichwas part of the testing set. The operation of the generat-
ing sets resembles that of the measured real-world operation
closely, in which the auxiliary power generating sets were
controlled manually. This is due to the boundary condition
of reserve power being derived from the real-world operation
data. One of the major differences between the manual con-
trol and the one established in this work, is that the learning
agent prefers to start just one additional generating set for
maneuvering events whereas three generating sets are used
in the manual control of the ship.

Notably, the agent has learned to operate in the harbors
using only one generating set and two generating sets in
the critical area of the Swedish archipelago. The agent also
prefers to use one of the smaller generating sets while in
harbor, contrary to most of the harbor operations in the
measurements. In addition, the agent has also learned that
hotel load tends to increase right after leaving the port of
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FIGURE 4. Flowchart describing how the Q-learning algorithm advances, and how information is exchanged between it and the MDP.

Helsinki, compared to the value of hotel load when staying
in the port of Helsinki. Therefore, an additional generating
set is employed despite the operational mode being open sea
operation; an operational mode in which one generating set
is usually preferred. Conversely, when arriving in Helsinki,
the agent prefers to use only one generating set.

The saved fuel compared to the actual operation
was 211 kg, corresponding to a consumption decrease
of 1.09%. The control logic shown in Fig. 5 was learned
by the model after 80 million iterations. The learning period
took about 6 hours on a standard desktop computer equipped
with an Intel Core i7-9700k processor running at 3.7 GHz and
with 16 Gb of RAM.

The fuel oil savings differ by a small amount depending on
which trip is selected for analysis. The savings for each trip
are shown in Table 3.
The variance in fuel oil savings can be explained by the

human factor effect in actual operations. Some of the actual
operational profiles, namely 2 and 3, exhibited fuel oil con-
suming control sequences, such as switching from generating
set 3 to 4 during open sea operation, and starting additional

FIGURE 5. Auxiliary network control with Q-learning.

generating sets well in advance for maneuvering events.
These trips were also the ones in which the Q-learning agent
managed to save most fuel compared to the actual operation.
Conversely, the operational profile for trip number 8, which
is depicted in Fig. 2 and Fig. 5, contains no such sequences
in the actual operational profile. Subsequently, the fuel oil
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TABLE 3. Fuel oil savings in each of the analyzed trips.

FIGURE 6. Auxiliary network control with Q-learning ignoring reserve
power requirement.

savings are less, being formed primarily due to using two
generating sets for maneuvering operations and one of the
smaller generating sets for some of the port operations.

An interesting case emerges when we set the weight factor
of reserve power violations to 0. In this case, the Q-learning
agent does not receive a negative reward signal even if it
violates the established reserve power requirement. Such a
modification causes the agent to seek an optimal policy to
minimize the fuel oil consumption with no consideration of
reserve power.

Figure 6 shows the way such a control logic operates the
generating sets. As expected, the agent prefers to use only one
of the generating sets for most of the operations, excluding
maneuvering events in which an additional generating set
is started. The fuel saved in such a scenario was 861 kg
compared to the manually controlled real-world operation,
a consumption decrease of 4.45%. This greedy control strat-
egy provides insight into the relationship between the optimal
energy saving operation and flexible operation which retains
reserve power for unexpected events.

Fig. 7 provides an insight into the actual learning process.
The cumulative reward signal was recorded every 25000th
iteration, by extracting the learned Q-values at that iteration,
and then using those as a policy for operating through the test-
ing data sets. The reward signals of each time step were then
summed together to form the cumulative reward signal. The
cumulative reward signal is characterized by a seemingly fast

FIGURE 7. Cumulative reward signal development while learning.

FIGURE 8. Close-up of discrete fluctuations in the cumulative reward.

climb to around 70 million. Afterwards, the reward fluctuates
in a discrete manner around the value of 70 million.

A close-up of these fluctuations is shown in Fig. 8. The
close-up reveals that the fluctuations appear to cycle through
a few distinct cumulative reward values. A closer analysis
revealed that these fluctuations correspond with the agent
deciding whether to use a large or a small generating set
for port operations. In this case, trip number 9, followed
by 8 were used as the testing data sets.

Fig. 9 depicts the amount of policy changes made during
the measurement period of 25000 iterations. The amount of
policy changes saturates in approximately 15 million itera-
tions to just a few changes in the measurement period. After-
wards, the amount of policy changes starts growing larger.
However, the majority of these latter policy changes have no
effect on the value of the policy, because they are composed of
changes between identical actions, such as choosing between
starting two identical generating sets.

V. DISCUSSION
Based on the simulation results on real measured input data,
moderate fuel savings can be attained by adjusting the con-
trol methodology of the auxiliary power network, in the
case of the restricting boundary conditions, such as reserve
power retainment, being kept the same as in manual opera-
tion. The average 0.9% average savings in fuel oil result in
approximately 17000 $ savings annually, according to the
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FIGURE 9. Amount of policy changes made during the learning process.

3-year average price of LSMGO in the Rotterdam har-
bor [36]. Further increases in energy efficiency depend on
either relaxing the reserve power requirement, or introduc-
ing new features into the power system such as an energy
storage.

A comparison can be made between the proposed method-
ology and the methodology presented in [32], in which the
on/off switching of generating sets was governed by opti-
mized load dependent start tables. The load dependent start
tables were optimized according to the probability distribu-
tion of possible operational modes of the ship. This leads to
the load dependent start tables usually being correct when
choosing to switch a generating set on or off, but situations
may occur when the operational mode changes quickly lead-
ing to generating sets being unnecessarily switched on or off.
The proposed methodology in the present work does not
suffer from the same problem, because the agent learns the
complete operating cycle rather than the probability dis-
tribution of possible operating modes. The cost-functions
of the load dependent start tables were also non-convex in
some situations, which leads to uncertainty in the optimal-
ity of the solution. The author also hints in [37] that the
load dependent start tables could also be formulated for
power networks that contain an energy storage. However,
this claim is left unverified, as the author does not dis-
cuss the means by which such an implementation could be
achieved.

A proportion of the declared fuel oil savings are a result
of the Q-learning agent using only two generating sets for
maneuvering events, whereas threewere used in themeasured
manually controlled operation. There might be an underly-
ing reason as to the reason that three might be preferred,
but based on the analyzed data, two sets satisfy the power
demand for all the presented maneuvering events. In the case
of three sets being needed for safety reasons, the fuel oil
consumption of the auxiliary power network with control by
Q-learning would more closely resemble that of the actual
control.

Furthermore, this analysis was based on data collected
during the winter. It is expected that the hotel load depends

on the time of year, because the power demand of the HVAC
system depends on the interior temperature of the ship.
In the case of the changes in hotel load magnitude becoming
considerable, the state-representation should include the time
of year as a state-variable. This is a topic for further research.

In theory, the model is capable of formulating an optimal
control policy for the auxiliary network without the explic-
itly declared reserve power amounts. Learning such a policy
would depend on the presence of a data set that perfectly cap-
tures the possible state-space of the ship, including blackouts
which are rarely experienced on board, as well as a perfectly
evaluated penalty for undergoing a blackout. In such a case,
the Q-learning agent would eventually experience an event
that extremely rarely leads to the blackout, and adjust its
value estimations as if a reserve power demand was explicitly
declared, as it was in the present study. This idea was explored
in the results which analyzed the control policy in which the
reserve power violations were ignored. Such an analysis leads
to a model which captures the stochasticity present in the
data set that it was trained on, which can be suitable in the
case of the training data set being sufficiently extensive. Thus,
the authors suspect that with more real-world operation data,
the hyperparameter tuning is less sensitive and the number of
rules and limitations of the control can be reduced.

In this study, the parameters of the engines in the auxiliary
network were derived from the documents of the manufac-
turer. This naturally leads to two equally sized engines being
identical from the perspective of the agent forming the control
policy. If the presented methodology was applied on a real
ship, the automation system of the ship could be furnished
with a method for evaluating the individual specific fuel
consumption curves of engines, which can change based on
the condition of the engine. As a consequence, the policy
learning agent would learn to prefer engines with smaller fuel
consumption, leading to smaller overall consumption. The
policy would be fairly different from the current practice in
manual operation, in which engines are run in turns in order
to accumulate operation hours evenly.

The benefits of intelligent autonomous control of ship aux-
iliary power networks become more evident when an energy
storage is included in the network topology. In such systems,
the power production of the generating sets can be decoupled
from the power demand in time with the energy storage. This
renders the control of these hybrid networks inherently more
complex. On the other hand, the energy storage operates as a
passive source for reserve power, thus increasing the overall
fuel efficiency of the ship.

The inclusion of an energy storage into the MDP rep-
resentation of the network could be achieved by discretiz-
ing the input and output power of the energy storage, and
including the power levels in the MDP as possible actions.
If this results in an exceedingly large state-action space, the
Q-Learning algorithm can be modified to employ either a
function approximator or a neural network for the Q-values.
In this way, the input and output powers of the energy storage
can be treated as continuous variables.
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VI. CONCLUSION
This paper presents a RLmethod for automating the operation
of the auxiliary power network of a ship. Real operational
data was gathered from the automation system of a passenger
vessel and used to train the RL model which was based on
Q-Learning. The focus of the work was on modelling the
auxiliary power network of the vessel as a MDP, respecting
the real-life restrictions of the network, such as the need to
retain a certain amount of reserve power. The MDP was also
formulated to ensure that the original version of Q-Learning
could be utilized to achieve sufficient, near-optimal control
of the generating sets in the auxiliary power network.

Results showed that the devised RL method was suitable
for achieving autonomous control of the auxiliary power
network, based on the used data. Compared to the actual
operation of the network, an average of 0.9% fuel savings
were attained. Consequently, the conclusion was drawn that
further increases in fuel efficiency depend either on relaxing
the requirement of retaining reserve power, or then introduc-
ing novel technologies into the auxiliary power network, such
as an energy storage.

This study forms a basis for future work by establishing
the RL model of the auxiliary power network, which can
be extrapolated to more demanding control tasks, such as
controlling the auxiliary power network with an energy stor-
age. The overall goal is to advance the research of energy
efficient ships towards the goals set by IMO for sustainable,
autonomous, and safe maritime operation.
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